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A biologically plausible model of spiking neural dynamics developed from
first principles

Evolutionary pressure enforces efficient implementations of biological functions
that are necessary for survival.

Neural networks are very likely subjected to such pressure.

Neural function stems from neural dynamics, with action potentials / spikes the
elementary signals that underlie neural information processing.

Methods of information theory suggest that information is transmitted with a
time-dependent neural code [1-3].
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Figure 1. Coding by Spike Timing versus Spike Count

(A) Example of a neuron where all the information was in the spike count. PSTHs for each of the nine whisker stimuli are shown on the left.
The mutual information between the stimulus set and neuronal response is shown on the right as a function of time after stimulus onset.
Information in spike timing (solid line) and spike count (dotted line) were computed using the corresponding series expansions described in
Experimental Procedures.
(B) A neuron for which there was significant information in spike timing. PSTHs and mutual information plotted as for (A).

We used an information theoretic method (Panzeri et size !t and the response was a binary “word” of length
T/!t. The overall contribution of temporal coding wasal., 1999; Panzeri and Schultz, 2000) that separates the

contributions from the different types of neural coding evaluated as the difference between the two information
measures. Different values of !t (from 20 to 2.5 ms) were(see Experimental Procedures). The richness of possible

spike patterns (and thus the complexity of possible neu- considered when evaluating the spike time information.
Furthermore, by considering individually the terms dueral codes) increases rapidly with the number of spikes

emitted on each stimulus trial. Conversely, low firing to the PSTH and those due to spike time correlations,
we assessed whether temporal encoding was due torates limit the potential coding complexity. Typical spike

counts for barrel cortical neurons are just 0–3 spikes/ firing rate modulation or complex spike patterns.
whisker deflection. This allows the information to be well
approximated by a series expansion that depends only Comparison of Information Transmitted by Spike

Timing versus Total Spike Counton the time-varying firing rate (conventionally illustrated
as the poststimulus time histogram, PSTH) and the pair- Examples of two cells are shown in Figure 1. At the left,

PSTHs to deflection of each of the nine whiskers (50wise correlation between spike times (Panzeri et al.,
1999; Panzeri and Schultz, 2000). trials per whisker) are shown. One of the cells (Figure

1A) displayed a strong response to its principal whiskerWe computed both the information contained in the
spike counts and that in the spike times with the series and very weak responses to its nonprincipal ones, apart

from D3 (left panel). Hence, essentially all the informationexpansion approach. All analyses were based on a
poststimulus time window 0–T. Results were computed about stimulus location was transmitted simply by the

total spike count (right panel, dotted line), and there wasas a function of the window size T and thus reveal the
information accumulated from time 0 to time T. For spike no extra benefit from spike timing (solid line).

The second cell (Figure 1B) represented stimulus loca-count coding, the “response” on each trial was simply
the number of spikes occurring in the time window. For tion in a different way. Here, the temporal structure of

the PSTH differed among stimuli: whisker D2 evokedspike time coding, the window was broken into bins of
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is decreased, timing must be precise on the scale of the
smaller bin size. Using a single, 20 ms bin, the average
information across all 106 sampled neurons was 0.10 !
0.006 bits. Reducing bin size to 10 ms, the information
present in the 0–20 ms interval increased to 0.14 ! 0.008
bits. Further reductions of bin size to 5 ms and finally
to 2.5 ms yielded additional increases in information to
0.146 ! 0.008 and 0.154 ! 0.008 bits over the 0–20 ms
poststimulus interval, respectively. The shortest bin that
could be robustly estimated was 2.5 ms. Hence, the
precision of the code was at least 2.5 ms.

How was such high precision generated? The critical
factor was that the latency difference between the re-
sponse to whisker D2 and that to surrounding whiskers

Figure 4. Precision of the Timing Code
“survived” the trial-to-trial variability in first spike time.

Mutual information in spike timing, using the series expansion The average latency to D2 deflection was 10 ms, whereasmethod, was computed for the interval 0–20 ms relative to stimulus
that to surround deflection was 14 ms, consistent withonset for various time bin sizes. The values plotted here are bits in
Armstrong-James et al. (1992). Following D2 deflection,the total 0–20 ms poststimulus interval, averaged over all 106 cells.

Bars denote SEM. the standard deviation of the first spike time across trials
(i.e., the jitter) was just 2.6 ! 0.3 ms. Therefore, the
reliability of first spike timing was sufficient to support

be understood by considering the number of spikes reliable temporal coding of stimulus location based on
evoked by each stimulus (Figure 3B). Whisker D2 evoked latency differences.
a large response, well differentiated from that of the
other whiskers. The latter evoked smaller responses
which were less discriminable from one another (for Nature of the Temporal Code

Thus, spike timing, and not merely total spike count,the receptive field structure of barrel D2 neurons, see
Armstrong-James et al., 1994). The stimulus-specific conveys information about whisker location. Next, we

consider the nature of the temporal coding. The simplestinformation added by spike timing was greatest about
principal whisker stimulation, contributing 0.19 stimu- temporal code is one where stimuli are distinguished by

different temporal profiles of firing rate modulation. Ratelus-specific bits when the stimulus site was D2 and an
average of 0.04 bits when the stimulus site was a sur- modulation coding is present whenever the profile of

the PSTH differs across stimuli (Figure 1B) and can inrounding whisker. Thirty-eight percent of the extra mu-
tual information contributed by timing was specific to fact carry information even in the absence of total spike

count differences: the areas of the PSTHs can be equalthe principal whisker.
but their profiles different. If the spike times are indepen-
dent given the time-dependent firing rate, then the PSTHPrecision of Spike Timing

What degree of precision underlies the spike timing is a complete description of the response. In contrast,
if spike times are not independent, more complex typescode? To answer this question, we varied the resolution

at which the spike times were binned and computed of temporal coding are possible. To uncover complex
temporal coding, it is necessary to measure the trial-to-the average information across stimuli as a function of

bin size (Figure 4). If information increases as bin size trial correlation between the responses in different time

Figure 5. Influence of Stimulus-Independent
Correlations on Temporal Coding

(A) shows raster plots for the response of a
hypothetical neuron to two stimuli (X and Y)
across two time bins (t1 and t2). The four rows
of raster plots correspond to four different
presentations of the stimuli. In the upper set,
there are strong positive stimulus-indepen-
dent correlations between time bins (e.g., on
trials where there are more spikes in t1, there
tend to be more spikes in t2, so called “corre-
lated noise”). In the lower part, there are
strong negative correlations (e.g., on trials
where there are more spikes spikes in t1, there
tend to be fewer spikes in t2, “anti-correlated
noise”). Although the mean response across
trials for a given stimulus is equal for both
types of noise correlation (B), there is a large
difference in stimulus discriminability. Trials
in which the stimuli can be discriminated (the

spike pattern provides an unambiguous stimulus identification) are indicated by check marks in (A). For positive stimulus-independent
correlations, all eight trials are discriminable. For negative correlations, only two are discriminable and six trials are confusable (indicated by
question marks).

[1] Panzeri et al., Neuron (2001), [2] Petersen et al., Neuron (2001) [3] Kayser, Logothetis, Panzeri, PNAS (2010)
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Biologically realistic models of neural dynamics: spiking neural networks

Generalized leaky integrate-and-fire networks [1,2] with adaptation, refractoriness or
dynamic threshold [3] accurately describe spiking dynamics of biological neural
networks [4,5], at least with parameters fitted for a particular brain state.

[1] Brunel, J. Comp. Neurosci (2000) [2] Renart et al., Science (2010) [3] Brette & Gerstner, J. Neurophys. (2005)
[4] Jolivet, Lewis, Gerstner, J. Neurophys. (2004); [5] Jolivet et al., J. Neurocience (2008)

However,

the neural function in these networks is not defined

typically, unstructured connectivity is assumed, while in the brain, recent analyses
of neural data suggest structured connectivity [6-10]

unclear functional meaning of network parameters

[6] Ko et al., Science (2011, 2013) [7] Song et al., (2005) [8] Chettih and Harvey Nat. Neurosci. (2019) [9] Koren,
Andrei, Hu, Dragoi, Obermayer Cell reports (2020)
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Efficient coding (with spikes)

Efficient coding: accurate representations of sensory stimuli with limited neural
resources [1-2].

This theory has been successful in describing classical and non-classical receptive
fields in the primary visual cortex [3], among others.

Recently, efficient coding theory has been extended to dynamical systems [4-5]
and to spiking neural networks [5-9].

However, previous implementations lack biological plausibility: Dale’s law, E-I
architecture, local currents, realistic time constants, state-dependent activity,
etc...

Our aim is to
extend, generalize, adapt the efficient coding theory so that it is fully consistent with
biological networks
see to what extent we can explain information processing in biological networks

[1] Barlow [2] Bialek, Rieke, van Steveninck, Warland, Advances in Neural Information Processing (1989) [3]
Olshausen and Field, Nature (1996) [4] Zhu & Rozell, PLOS Comp. Bio. (2013) [5] Boerlin, Machens, Denève,
PLOS Comp. Bio. (2013) [6] Chalk, Gutkin, Deneve, eLIfe (2016) [7] Koren & Denève, PLOS Comp. Bio. (2017)
[8] Buxo and Pillow, PLOS Comp. Bio. (2020) [9] Timcheck, Kadmon, Boahen, Ganguli, PLOS Comp. Bio. (2021)
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Build-in properties of the model (assumptions)

1 distributed (population) code

2 mixed selectivity of single neurons

3 efficient coding

4 Dale’s law

Let us define the following variables

high-dimensional time-dependent stimulus s⃗(t)

target representation d
dt
x⃗(t) = Ax⃗(t) + s⃗(t)

A: linear transformation between the stimulus and the target representation

linear readout of spiking activity ⃗̂xE(t) and ⃗̂xI(t)
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Build-in properties of the model: distributed code and mixed selectivity of
single neurons

1) Distributed code is build-in by defining the readout as a sum of activity across
neurons [1-2]:

dx̂E
m(t)

dt
= −

1

τE
x̂E
m(t) +

NE∑
i=1

wE
mif

E
i (t)

dx̂I
m(t)

dt
= −

1

τI
x̂I
m(t) +

NI∑
i=1

wI
mif

I
i (t)

where fy
i (t) =

∑
α δ(t− tyi,α) is the spike train of neuron i of type y ∈ {E, I}.

2) Mixed selectivity of single neurons [3] is build-in by
assigning to each neuron a selectivity vector
w⃗y

i = [wy
1i, ..., w

y
Mi]

⊺

[1] Boerlin, Machens, Deneve, PLOS Comp. Bio. 2013 [2] Koren & Panzeri, Advances in Neural Information
Processing Systems (2022) [3] Fusi et al. Curr. Opinion Neurobiol. (2016) [4] Kasfahan et al. Nat. Comm (2021)
[5] Kira, ..., Panzeri, Harvey et al. Nat. Comm. (2023)
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Build-in properties of the model: efficient coding with spikes

Efficient = Accurate and with limited number of spikes:

LE(t) =
M∑

m=1

(xm(t)− x̂E
m(t))2 + βE

NE∑
i=1

(rEi (t))2

LI(t) =
M∑

m=1

(x̂E
m(t)− x̂I

m(t))2 + βI
NI∑
i=1

(rIi (t))
2

d

dt
ryi (t) = −

1

τyr
ryi (t) + fy

i (t)

We assume there will be a spike of a specific neuron only if
this decreases the loss function.

Ly
(
t+|

[
fy
i (t

+) = 1
]
+ ηyi (t

+)
)
< Ly

(
t−|

[
fy
i (t

−) = 0
])

,

Error-corrective spiking:

[1] Koren & Schwalger, CoSyNe (2020) [2] Koren & Schwalger,OCNS talk (2020) [3] Koren & Panzeri, Advances
in Neural Information Processing Systems (2022)

8 / 23



Analytically derived model: generalized leaky integrate-and-fire

Subthreshold dynamics of single neurons:

τE V̇
E
i (t) = −V

E
i (t) + I

ff
i (t) + I

EE
i (t) + I

EI
i (t) + I

local E
i (t) + I

h
i (t),

τI V̇
I
i (t) = −V

E
i (t) + I

IE
i (t) + I

II
i (t) + I

local I
i (t),

with fire-and-reset rule:

if V y
i (t

−
) ≥ ϑ

y
i (t

−
) → V

y
i (t

+
) = V

reset y
i ,

firing threshold:

ϑ
y
i (t) =

1

2
(µy + ∥w⃗y

i ∥
2
2) + σ

y
i ξ

y
i (t), y ∈ {E, I},

and reset potential:

V
reset E
i = −

1

2
(β

E − ∥w⃗E
i ∥2

2)

V
reset I
i = −

1

2
(β

I
+ ∥w⃗I

i ∥
2
2).

[1] Koren & Panzeri, Advances in Neural Information Processing Systems (2022) [2] Koren & Panzeri, DGKN
kongress (2023)
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Feedforward and synaptic currents

Feedforward current:

Iffi (t) = τE

M∑
m=1

wE
mism(t).

Assuming network computation is leaky integration of the stimulus,
d
dt
x⃗(t) = − 1

τE x⃗(t) + s⃗(t) we get [E-to-I, I-to-I, I-to-E] synaptic currents (no E-E

connections):

IIEi (t) = −τI

NE∑
j=1

JIE
ij fE

j (t),

IIIi (t) = −τI

NI∑
j=1
j ̸=i

JII
ij fI

j (t),

IEI
i (t) = −τE

NI∑
j=1

JEI
ij fI

j (t),
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Analytically derived properties of the model: structured connectivity

Similarity of vectors:

From analytical derivation of the loss
functions, we get that the connectivity is
determined by the similarity of selectivity
vectors:

Jpost pre
ij = (w⃗pre

i )⊺w⃗post
j

We use random weights wy
mi ∼ N (0, σy

w) and enforce Dale’s law by removing
connections between neurons with different selectivity, justified also by empirical
studies [1-2]:

Jpost pre
ij =

{
(w⃗pre

i )⊺w⃗post
j , if (w⃗pre

i )⊺w⃗post
j > 0

0 otherwise

[1] Ko et al. Nature (2011), [2] Koren, Andrei, Hu, Dragoi, Obermayer, Cell reports (2020)
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Structural property of the model: spike-triggered local current (not build-in)

Spike-triggered adaptation [1] arises if we assume that the time constant of the

population readout ⃗̂xE(t) (⃗̂xI(t)) is faster than the single neuron readout rEi (t)

(rIi (t))

If the opposite is true, we get spike-triggered facilitation

I local yi (t) = −βy

(
1−

τy

τr,yi

)
ryi (t), y ∈ {E, I},

The theory also predicts this biologically plausible relation of membrane time
constants: τE ≥ τI

[1] Mensi et al., J. Neurophys. (2012)
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Coding property of the leaky integrator: unbiased estimator

Simulation of 400 E and 100 I neurons encoding 3 input variables, with every sm(t) an
Ornstein-Uhlenbeck processes, independent across dimensions.

Distribution of
time-dependent bias
between target signal and
estimate:
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Dynamical property of the leaky integrator: firing rates and variability

firing rates are in physiological ranges

log-normal distribution of firing rates
across neurons [1]

coefficient of variation (single neuron
variability) around 1

Strong trial-to-trial variability of single
neurons, but nearly identical population
readout across trials [2] → stable
perception.

[1] Koren, Blanco-Malerba, Panzeri, Schwalger, in prep. [2] Koren and Denève, PLOS Comp. Bio. (2017)
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Dynamical property of the leaky integrator: E-I balance

average E-I balance

time-dependent E-I balance
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State-dependent activity of the leaky integrator

The model

displays state-dependent activity as a function of the metabolic constant βy

but does not go into regimes with unphysiological firing rates as in previous works
on efficient coding [1-2]

Loss functions:

LE(t) =
M∑

m=1

(xm(t)− x̂E
m(t))2 + βE

NE∑
i=1

(rEi (t))2

LI(t) =
M∑

m=1

(x̂E
m(t)− x̂I

m(t))2 + βI
NI∑
i=1

(rIi (t))
2

[1] Boerlin, Machens, Denève, PLOS Comp.Bio. (2013) [2] Koren & Denève, PLOS Comp.Bio. (2017)
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Dynamical consequence of structured E-I connectivity: Lateral inhibition
between E neurons with similar selectivity.

In a network without feedforward input,

stimulate a single E neuron

measure the change in firing rate in other
(E) neurons [1].

Effect of perturbation in single trial:

averaged across trials:

[1] Chettih & Harvey Nat. Neurosci (2019) [perturbation study in V1]
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Assuming a general linear transformation defines E-E connectivity

We now assume a general linear transformation between the stimulus and target
representation:

d

dt
x⃗(t) = Ax⃗(t) + s⃗(t).

We write the matrix A as:
A = B − τ−1

E IMxM

and τ−1
E IMxM defines the leak current in E neurons, while B defines recurrent E-E

connectivity:

JEE
ij =

{
(w⃗E

i )⊺Bw⃗E
j , if (w⃗E

i )⊺w⃗E
j > 0, B positive semi-def.,

0, otherwise.

[1] Koren & Panzeri, Advances in Neural Information Processing Systems (2022)
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The matrix B and the E-E connectivity

To observe the property of positive semi-definiteness, we write B as follows:

B = aΓΓ⊺, Γ = [b⃗1, . . . , ⃗bM′ ], a > 0, M ′ ≤ M

To have rank(B) = 1; Γ = b⃗1, B = ab⃗1b⃗1
⊺

To have 1 < rank(B) ≥ M , Γ = [b⃗1, . . . , ⃗b′M ]; b⃗1, b⃗2,..., ⃗b′M linearly independent

A = τ−1
E IMxM , B = 0

(no E-E connections, feedforward-driven): rank(B) = 1:
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Assuming more complex computations: rank(B) > 1

...distributes the representation across all neurons in the network: also neurons that
are not driven by the feedforward current participate in network’s response.

B

C

A

A. Network simulation with weak noise at spike generation. B. Network simulation
with stronger noise at spike generation. C. Same as in B, but without the external
stimulus. Network shows spontaneous Up and Down states.
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Summary

Optimal solution of a quadratic loss between low-dimensional target and
estimated signals with quadratic metabolic cost is a generalized leaky integrate
and fire model.

Lateral inhibition is the core mechanism of efficient coding, implemented through
structured connectivity between E and I populations.

Network’s computation is reflected in the structure of the connectivity.

The model shows a number of structural, dynamical and coding properties of
biological networks.

Coding properties:

efficient coding

distributed population
code

mixed selectivity of
single neurons

encoding of
high-dimensional
stimuli

Structural properties:

local current
(adaptation)

structured recurrent
connectivity

network’s computation
determines the
complexity of E-E
synaptic interactions

Dynamical properties:

firing rates in
physiological ranges

strong trial-to-trial
variability

average and
time-dependent E-I
balance

state-dependent
dynamics; Up and
Down states
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