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The setting

We shall work on Polish spaces, i.e. topological spaces which are
metrizable by a complete and separable distance.

Given such space X, by P(X) we mean the space of Borel probability
measures on X.

It is perfectly fine to consider just the case X = Rd .



A notion: the push forward

Let X,Y be Polish spaces, µ ∈ P(X) and T : X → Y a Borel map.

The measure T∗µ ∈ P(Y) is defined by

T∗µ(A) := µ(T−1(A)), for every Borel set A ⊂ Y

The measure T∗µ is characterized by∫
f dT∗µ =

∫
f ◦ T dµ,

for any Borel function f : Y → R.



Monge’s formulation of the transport problem

Let µ ∈ P(X), ν ∈ P(Y) be given, and let c : X × Y → R be a cost
function, say continuous and non-negative.

Problem: Minimize ∫
c(x ,T (x)) dµ(x),

among all transport maps from µ to ν, i.e., among all maps T such
that T∗µ = ν



Why this is a bad formulation

There are several issues with this formulation:

▶ it may be that no transport map exists at all (eg., if µ is a Delta
and ν is not)

▶ the constraint T∗µ = ν is not closed w.r.t. any reasonable weak
topology



Kantorovich’s formulation

A measure γ ∈ P(X × Y) is a transport plan from µ to ν if

π1
∗γ = µ,

π2
∗γ = ν.

Problem Minimize ∫
c(x , y) dγ(x , y),

among all transport plans from µ to ν.



Why this is a good formulation

▶ There always exists at least one transport plan: µ× ν,

▶ Transport plans ‘include’ transport maps: if T∗µ = ν, then
(Id ,T )∗µ is a transport plan

▶ The set of transport plans is compact w.r.t. the weak topology of
measures.

▶ The map γ 7→
∫

c(x , y) dγ(x , y) is linear and weakly lower

semi-continuous,

In particular, minima exist.
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Now what?

What can we say about optimal plans?

In particular:
▶ Do they have any particular structure? If so, which one?

▶ Are they unique?

▶ Are they induced by maps?
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A key example

Let {xi}i , {yi}i , i = 1, . . . ,N be points in X and Y respectively

µ :=
1
N

∑
i

δxi ,

ν :=
1
N

∑
i

δyi .

Then a plan γ is optimal iff for any n ∈ N, permutation σ of {1, . . . ,n}
and any {(xk , yk )}k=1,...,n ⊂ supp(γ) it holds∑

k

c(xk , yk ) ≤
∑

k

c(xk , yσ(k))
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The general definition

We say that a set Γ ⊂ X × Y is c-cyclically monotone if for any n ∈ N,
permutation σ of {1, . . . ,n} and any {(xk , yk )}k=1,...,n ⊂ Γ it holds∑

k

c(xk , yk ) ≤
∑

k

c(xk , yσ(k))



First structural theorem

Theorem A transport plan γ is optimal if and only if its support supp(γ)
is c-cyclically monotone.

In particular, being optimal depends only on the support of γ, and not
on how the mass is distributed on the support (!).
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The dual formulation

Given the measures µ ∈ P(X), ν ∈ P(Y) and the cost function
c : X × Y → R, maximize ∫

φ dµ+

∫
ψ dν,

among all couples of functions φ : X → R, ψ : Y → R continuous and
bounded such that

φ(x) + ψ(y) ≤ c(x , y), ∀x ∈ X, y ∈ Y.

We call such a couple of functions admissible potentials



A simple inequality

Let γ be a transport plan from µ to ν and (φ,ψ) admissible potentials.
Then ∫

c(x , y) dγ(x , y) ≥
∫
φ(x) + ψ(y) dγ(x , y)

=

∫
φ(x) dµ(x) +

∫
ψ(y) dν(y).

Thus
inf{transport problem} ≥ sup{dual problem}



A property of admissible potentials

Say that (φ,ψ) are admissible potentials and define

φc(y) := inf
x

c(x , y)− φ(x).

Then φc ≥ ψ and (φ,φc) are admissible as well.

Similarly, we can define

ψc(x) := inf
y

c(x , y)− ψ(y),

so that ψc ≥ φ and (ψc , ψ) are admissible
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The process stabilizes

Starting from (φ,ψ), we can consider the admissible potentials
(φ,φc), (φcc , φc), (φcc , φccc)...

This process stops, because φccc = φc . Indeed

φccc(y) = inf
x
sup

ỹ
inf
x̃

c(x , y)− c(x , ỹ) + c(x̃ , ỹ)− φ(x̃),

and picking x̃ = x we get φccc ≤ φc , and picking ỹ = y we get
φccc ≥ φc .
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and picking x̃ = x we get φccc ≤ φc , and picking ỹ = y we get
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c-concavity and c-superdifferential

A function φ is c-concave if φ = ψc for some function ψ.

The c-superdifferential ∂cφ ⊂ X × Y is the set of (x , y) such that

φ(x) + φc(y) = c(x , y).



Second structural theorem

For any c-concave function φ, the set ∂cφ is c-cyclically monotone,
indeed if {(xk , yk )}k ⊂ ∂cφ it holds∑

k

c(xk , yk ) =
∑

k

φ(xk ) + φc(yk )

=
∑

k

φ(xk ) + φc(yσ(k))

≤
∑

k

c(xk , yσ(k))

Actually much more holds:
Theorem A set Γ is c-cyclically monotone iff Γ ⊂ ∂cφ for some φ
c-concave.
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To summarize

Given µ ∈ P(X), ν ∈ P(Y) and a cost function c, for an admissible
plan γ the following three are equivalent:

▶ γ is optimal

▶ supp(γ) is c-cyclically monotone

▶ supp(γ) ⊂ ∂cφ for some c-concave function φ

(this requires some minor technical compatibility conditions between
µ, ν, c which we neglect here)



No duality gap

It holds
inf{transport problem} = sup{dual problem}

Indeed, if γ is optimal, then supp(γ) ⊂ ∂cφ for some c-concave φ.
Thus∫

c(x , y) dγ(x , y) =
∫
φ(x) + φc(y) dγ(x , y) =

∫
φ dµ+

∫
ψ dν
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The case X = Y = Rd and c(x , y) = |x − y |2/2
c-concavity and convexity

φ is c-concave iff φ̂(x) := |x |2/2 − φ(x) is convex.
Indeed:

φ(x) = inf
y

|x − y |2

2
− ψ(y)

⇔ φ(x) = inf
y

|x |2

2
+ ⟨x ,−y⟩+ |y |2

2
− ψ(y)

⇔ φ(x)− |x |2

2
= inf

y
⟨x ,−y⟩+

(
|y |2

2
− ψ(y)

)
⇔ φ̂(x) = sup

y
⟨x , y⟩ −

(
|y |2

2
− ψ(y)

)
,



The case X = Y = Rd and c(x , y) = |x − y |2/2
c-superdifferential and subdifferential

(x , y) ∈ ∂cφ iff y ∈ ∂−φ̂(x).

Indeed:

(x , y) ∈ ∂cφ

⇔
{
φ(x) = |x − y |2/2 − φc(y),
φ(z) ≤ |z − y |2/2 − φc(y), ∀z ∈ Rd

⇔
{
φ(x)− |x |2/2 = ⟨x ,−y⟩+ |y |2/2 − φc(y),
φ(z)− |z|2/2 ≤ ⟨z,−y⟩+ |y |2/2 − φc(y), ∀z ∈ Rd

⇔ φ(z)− |z|2/2 ≤ φ(x)− |x |2/2 + ⟨z − x ,−y⟩ ∀z ∈ Rd

⇔ −y ∈ ∂+(φ− | · |2/2)(x)
⇔ y ∈ ∂−φ̂(x)
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Reminder: differentiability of convex functions

Let φ̂ : Rd → R be convex.

Then for a.e. x , φ̂ is differentiable at x . This is the same as to say that
for a.e. x the set ∂−φ̂(x) has only one element.



Brenier’s theorem: statement

Let µ, ν ∈ P(Rd ). Assume that µ≪ Ld .

Then:
▶ there exists a unique transport plan

▶ this transport plan is induced by a map

▶ the map is the gradient of a convex function



Brenier’s theorem: proof

▶ Pick an optimal plan γ.

▶ Then supp(γ) ⊂ ∂cφ for some c-concave function φ.
▶ Then supp(γ) ⊂ ∂−φ̂ for some convex function φ̂.
▶ Thus for γ-a.e. (x , y) it holds y ∈ ∂−φ̂(x).
▶ Therefore for µ-a.e. x there is only one y such that

(x , y) ∈ supp(γ), and this y is given by y := ∇φ̂(x).
▶ This is the same as to say that γ = (Id ,∇φ̂)∗µ.
▶ But this is true for any optimal plan, thus if γ̃ is another optimal

plan we must also have γ̃ = (Id ,∇φ̂)∗µ and therefore γ̃ = γ
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Thank you


