Introduction to optimal transport

Nicola Gigli

December 4, 2023

Content

Formulation of the transport problem

▶ The notions of *c*-convexity and *c*-cyclical monotonicity

The dual problem

Optimal maps: Brenier's theorem

Content

► Formulation of the transport problem

▶ The notions of *c*-convexity and *c*-cyclical monotonicity

The dual problem

Optimal maps: Brenier's theorem

The setting

We shall work on Polish spaces, i.e. topological spaces which are metrizable by a complete and separable distance.

Given such space X, by $\mathscr{P}(X)$ we mean the space of Borel probability measures on X.

It is perfectly fine to consider just the case $X = \mathbb{R}^d$.

A notion: the push forward

Let X, Y be Polish spaces, $\mu \in \mathscr{P}(X)$ and $T : X \to Y$ a Borel map.

The measure $T_*\mu \in \mathscr{P}(Y)$ is defined by

$$T_*\mu(A) := \mu(T^{-1}(A)),$$
 for every Borel set $A \subset Y$

The measure $T_*\mu$ is characterized by

$$\int f \, \mathrm{d} T_* \mu = \int f \circ T \, \mathrm{d} \mu,$$

for any Borel function $f: Y \to \mathbb{R}$.

Monge's formulation of the transport problem

Let $\mu \in \mathscr{P}(X)$, $\nu \in \mathscr{P}(Y)$ be given, and let $c : X \times Y \to \mathbb{R}$ be a *cost* function, say continuous and non-negative.

Problem: Minimize

$$\int c(x,T(x))\,\mathrm{d}\mu(x),$$

among all *transport maps* from μ to ν , i.e., among all maps T such that $T_*\mu=\nu$

Why this is a bad formulation

There are several issues with this formulation:

- it may be that no transport map exists at all (eg., if μ is a Delta and ν is not)
- the constraint $T_*\mu=\nu$ is not closed w.r.t. any reasonable weak topology

Kantorovich's formulation

A measure $\gamma \in \mathscr{P}(X \times Y)$ is a *transport plan* from μ to ν if

$$\pi_*^1 \gamma = \mu,$$

$$\pi_*^2 \gamma = \nu.$$

Problem Minimize

$$\int c(x,y)\,\mathrm{d}\gamma(x,y),$$

among all transport plans from μ to ν .

Why this is a good formulation

- ▶ There always exists at least one transport plan: $\mu \times \nu$,
- ► Transport plans 'include' transport maps: if $T_*\mu = \nu$, then $(Id, T)_*\mu$ is a transport plan
- ► The set of transport plans is compact w.r.t. the weak topology of measures.
- ▶ The map $\gamma \mapsto \int c(x,y) \, \mathrm{d}\gamma(x,y)$ is linear and weakly lower semi-continuous,

Why this is a good formulation

- ▶ There always exists at least one transport plan: $\mu \times \nu$,
- ► Transport plans 'include' transport maps: if $T_*\mu = \nu$, then $(Id, T)_*\mu$ is a transport plan
- ► The set of transport plans is compact w.r.t. the weak topology of measures.
- ▶ The map $\gamma \mapsto \int c(x,y) \, \mathrm{d}\gamma(x,y)$ is linear and weakly lower semi-continuous,

In particular, minima exist.

Now what?

What can we say about optimal plans?

In particular:

- ▶ Do they have any particular structure? If so, which one?
- Are they unique?
- Are they induced by maps?

Content

Formulation of the transport problem

▶ The notions of *c*-cyclical monotonicity and *c*-convexity

The dual problem

Optimal maps: Brenier's theorem

A key example

Let $\{x_i\}_i$, $\{y_i\}_i$, i = 1, ..., N be points in X and Y respectively

$$\mu := \frac{1}{N} \sum_{i} \delta_{x_{i}},$$

$$\nu := \frac{1}{N} \sum_{i} \delta_{y_{i}}.$$

A key example

Let $\{x_i\}_i$, $\{y_i\}_i$, $i=1,\ldots,N$ be points in X and Y respectively

$$\mu := \frac{1}{N} \sum_{i} \delta_{x_{i}},$$

$$\nu := \frac{1}{N} \sum_{i} \delta_{y_{i}}.$$

Then a plan γ is optimal iff for any $n \in \mathbb{N}$, permutation σ of $\{1, \ldots, n\}$ and any $\{(x_k, y_k)\}_{k=1,\ldots,n} \subset \operatorname{supp}(\gamma)$ it holds

$$\sum_{k} c(x_k, y_k) \leq \sum_{k} c(x_k, y_{\sigma(k)})$$

The general definition

We say that a set $\Gamma \subset X \times Y$ is *c-cyclically monotone* if for any $n \in \mathbb{N}$, permutation σ of $\{1, \ldots, n\}$ and any $\{(x_k, y_k)\}_{k=1, \ldots, n} \subset \Gamma$ it holds

$$\sum_{k} c(x_k, y_k) \leq \sum_{k} c(x_k, y_{\sigma(k)})$$

First structural theorem

Theorem A transport plan γ is optimal if and only if its support supp (γ) is c-cyclically monotone.

First structural theorem

Theorem A transport plan γ is optimal if and only if its support supp (γ) is c-cyclically monotone.

In particular, being optimal depends only on the support of γ , and not on how the mass is distributed on the support (!).

Content

Formulation of the transport problem

▶ The notions of *c*-cyclical monotonicity and *c*-convexity

The dual problem

Optimal maps: Brenier's theorem

The dual formulation

Given the measures $\mu \in \mathscr{P}(X)$, $\nu \in \mathscr{P}(Y)$ and the cost function $c: X \times Y \to \mathbb{R}$, maximize

$$\int \varphi \, \mathrm{d}\mu + \int \psi \, \mathrm{d}\nu,$$

among all couples of functions $\varphi: X \to \mathbb{R}, \, \psi: Y \to \mathbb{R}$ continuous and bounded such that

$$\varphi(x) + \psi(y) \le c(x, y), \quad \forall x \in X, y \in Y.$$

We call such a couple of functions admissible potentials

A simple inequality

Let γ be a transport plan from μ to ν and (φ,ψ) admissible potentials. Then

$$\int c(x,y) \, d\gamma(x,y) \ge \int \varphi(x) + \psi(y) \, d\gamma(x,y)$$
$$= \int \varphi(x) \, d\mu(x) + \int \psi(y) \, d\nu(y).$$

Thus

 $\inf\{transport\ problem\} \geq sup\{dual\ problem\}$

A property of admissible potentials

Say that (φ, ψ) are admissible potentials and define

$$\varphi^{c}(y) := \inf_{x} c(x, y) - \varphi(x).$$

Then $\varphi^c \ge \psi$ and (φ, φ^c) are admissible as well.

A property of admissible potentials

Say that (φ, ψ) are admissible potentials and define

$$\varphi^{c}(y) := \inf_{x} c(x, y) - \varphi(x).$$

Then $\varphi^c \ge \psi$ and (φ, φ^c) are admissible as well.

Similarly, we can define

$$\psi^{c}(x) := \inf_{y} c(x, y) - \psi(y),$$

so that $\psi^c \ge \varphi$ and (ψ^c, ψ) are admissible

The process stabilizes

Starting from (φ, ψ) , we can consider the admissible potentials (φ, φ^c) , $(\varphi^{cc}, \varphi^c)$, $(\varphi^{cc}, \varphi^{cc})$...

The process stabilizes

Starting from (φ, ψ) , we can consider the admissible potentials (φ, φ^c) , $(\varphi^{cc}, \varphi^c)$, $(\varphi^{cc}, \varphi^{cc})$...

This process stops, because $\varphi^{\it ccc} = \varphi^{\it c}$.

The process stabilizes

Starting from (φ, ψ) , we can consider the admissible potentials (φ, φ^c) , $(\varphi^{cc}, \varphi^c)$, $(\varphi^{cc}, \varphi^{cc})$...

This process stops, because $\varphi^{ccc} = \varphi^c$. Indeed

$$\varphi^{ccc}(y) = \inf_{x} \sup_{\tilde{y}} \inf_{\tilde{x}} c(x, y) - c(x, \tilde{y}) + c(\tilde{x}, \tilde{y}) - \varphi(\tilde{x}),$$

and picking $\tilde{x}=x$ we get $\varphi^{ccc}\leq \varphi^c$, and picking $\tilde{y}=y$ we get $\varphi^{ccc}\geq \varphi^c$.

c-concavity and c-superdifferential

A function φ is *c*-concave if $\varphi = \psi^c$ for some function ψ .

The c-superdifferential $\partial^c \varphi \subset \mathsf{X} \times \mathsf{Y}$ is the set of (x,y) such that $\varphi(x) + \varphi^c(y) = c(x,y).$

Second structural theorem

For any *c*-concave function φ , the set $\partial^c \varphi$ is *c*-cyclically monotone, indeed if $\{(x_k, y_k)\}_k \subset \partial^c \varphi$ it holds

$$\sum_{k} c(x_{k}, y_{k}) = \sum_{k} \varphi(x_{k}) + \varphi^{c}(y_{k})$$

$$= \sum_{k} \varphi(x_{k}) + \varphi^{c}(y_{\sigma(k)})$$

$$\leq \sum_{k} c(x_{k}, y_{\sigma(k)})$$

Second structural theorem

For any *c*-concave function φ , the set $\partial^c \varphi$ is *c*-cyclically monotone, indeed if $\{(x_k, y_k)\}_k \subset \partial^c \varphi$ it holds

$$\sum_{k} c(x_{k}, y_{k}) = \sum_{k} \varphi(x_{k}) + \varphi^{c}(y_{k})$$

$$= \sum_{k} \varphi(x_{k}) + \varphi^{c}(y_{\sigma(k)})$$

$$\leq \sum_{k} c(x_{k}, y_{\sigma(k)})$$

Actually much more holds:

Theorem A set Γ is *c*-cyclically monotone iff $\Gamma \subset \partial^c \varphi$ for some φ *c*-concave.

To summarize

Given $\mu \in \mathscr{P}(X)$, $\nu \in \mathscr{P}(Y)$ and a cost function c, for an admissible plan γ the following three are equivalent:

- $ightharpoonup \gamma$ is optimal
- ightharpoonup supp(γ) is *c*-cyclically monotone
- $\operatorname{supp}(\gamma) \subset \partial^c \varphi$ for some *c*-concave function φ

(this requires some minor technical compatibility conditions between μ, ν, c which we neglect here)

No duality gap

It holds

 $\inf\{transport\ problem\} = sup\{dual\ problem\}$

Indeed, if γ is optimal, then $\mathrm{supp}(\gamma)\subset \partial^c\varphi$ for some c-concave φ . Thus

$$\int c(x,y) \, d\gamma(x,y) = \int \varphi(x) + \varphi^{c}(y) \, d\gamma(x,y) = \int \varphi \, d\mu + \int \psi \, d\nu$$

Content

Formulation of the transport problem

▶ The notions of *c*-cyclical monotonicity and *c*-convexity

The dual problem

► Optimal maps: Brenier's theorem

The case $X = Y = \mathbb{R}^d$ and $c(x, y) = |x - y|^2/2$

 φ is *c*-concave iff $\hat{\varphi}(x) := |x|^2/2 - \varphi(x)$ is convex. Indeed:

c-concavity and convexity

$$\varphi(x) = \inf_{y} \frac{|x - y|^2}{2} - \psi(y)$$

$$\Leftrightarrow \varphi(x) = \inf_{y} \frac{|x|^2}{2} + \langle x, -y \rangle + \frac{|y|^2}{2} - \psi(y)$$

$$\Leftrightarrow \varphi(x) - \frac{|x|^2}{2} = \inf_{y} \langle x, -y \rangle + \left(\frac{|y|^2}{2} - \psi(y)\right)$$

$$\Leftrightarrow \hat{\varphi}(x) = \sup_{y} \langle x, y \rangle - \left(\frac{|y|^2}{2} - \psi(y)\right),$$

The case $X = Y = \mathbb{R}^d$ and $c(x, y) = |x - y|^2/2$

c-superdifferential and subdifferential

$$(x,y) \in \partial^c \varphi \text{ iff } y \in \partial^- \hat{\varphi}(x).$$

The case $X = Y = \mathbb{R}^d$ and $c(x, y) = |x - y|^2/2$

c-superdifferential and subdifferential

$$\begin{aligned} &(x,y) \in \partial^c \varphi \text{ iff } y \in \partial^- \hat{\varphi}(x). \\ &\text{Indeed:} \\ &(x,y) \in \partial^c \varphi \\ &\Leftrightarrow \left\{ \begin{array}{l} \varphi(x) = |x-y|^2/2 - \varphi^c(y), \\ \varphi(z) \leq |z-y|^2/2 - \varphi^c(y), \end{array} \right. \forall z \in \mathbb{R}^d \\ &\Leftrightarrow \left\{ \begin{array}{l} \varphi(x) - |x|^2/2 = \langle x, -y \rangle + |y|^2/2 - \varphi^c(y), \\ \varphi(z) - |z|^2/2 \leq \langle z, -y \rangle + |y|^2/2 - \varphi^c(y), \end{array} \right. \forall z \in \mathbb{R}^d \\ &\Leftrightarrow \varphi(z) - |z|^2/2 \leq \varphi(x) - |x|^2/2 + \langle z - x, -y \rangle \qquad \forall z \in \mathbb{R}^d \\ &\Leftrightarrow -y \in \partial^+ (\varphi - |\cdot|^2/2)(x) \\ &\Leftrightarrow y \in \partial^- \hat{\varphi}(x) \end{aligned}$$

Reminder: differentiability of convex functions

Let $\hat{\varphi}: \mathbb{R}^d \to \mathbb{R}$ be convex.

Then for a.e. x, $\hat{\varphi}$ is differentiable at x. This is the same as to say that for a.e. x the set $\partial^-\hat{\varphi}(x)$ has only one element.

Brenier's theorem: statement

Let $\mu, \nu \in \mathscr{P}(\mathbb{R}^d)$. Assume that $\mu \ll \mathcal{L}^d$.

Then:

- there exists a unique transport plan
- this transport plan is induced by a map
- the map is the gradient of a convex function

Pick an optimal plan γ .

- Pick an optimal plan γ .
- ▶ Then $supp(\gamma) \subset \partial^c \varphi$ for some *c*-concave function φ .

- Pick an optimal plan γ .
- ▶ Then $supp(\gamma) \subset \partial^c \varphi$ for some *c*-concave function φ .
- ▶ Then $supp(\gamma) \subset \partial^-\hat{\varphi}$ for some convex function $\hat{\varphi}$.

- Pick an optimal plan γ .
- ▶ Then $supp(\gamma) \subset \partial^c \varphi$ for some *c*-concave function φ .
- ▶ Then $supp(\gamma) \subset \partial^-\hat{\varphi}$ for some convex function $\hat{\varphi}$.
- ▶ Thus for γ -a.e. (x, y) it holds $y \in \partial^- \hat{\varphi}(x)$.

- Pick an optimal plan γ .
- ▶ Then $supp(\gamma) \subset \partial^c \varphi$ for some *c*-concave function φ .
- ▶ Then $supp(\gamma) \subset \partial^-\hat{\varphi}$ for some convex function $\hat{\varphi}$.
- ▶ Thus for γ -a.e. (x, y) it holds $y \in \partial^- \hat{\varphi}(x)$.
- Therefore for μ -a.e. x there is only one y such that $(x,y) \in \operatorname{supp}(\gamma)$, and this y is given by $y := \nabla \hat{\varphi}(x)$.

- Pick an optimal plan γ .
- ▶ Then supp(γ) $\subset \partial^c \varphi$ for some *c*-concave function φ .
- ▶ Then $supp(\gamma) \subset \partial^-\hat{\varphi}$ for some convex function $\hat{\varphi}$.
- ▶ Thus for γ -a.e. (x, y) it holds $y \in \partial^- \hat{\varphi}(x)$.
- Therefore for μ -a.e. x there is only one y such that $(x,y) \in \operatorname{supp}(\gamma)$, and this y is given by $y := \nabla \hat{\varphi}(x)$.
- ▶ This is the same as to say that $\gamma = (Id, \nabla \hat{\varphi})_* \mu$.

- Pick an optimal plan γ .
- ▶ Then $supp(\gamma) \subset \partial^c \varphi$ for some *c*-concave function φ .
- ▶ Then $supp(\gamma) \subset \partial^-\hat{\varphi}$ for some convex function $\hat{\varphi}$.
- ▶ Thus for γ -a.e. (x, y) it holds $y \in \partial^- \hat{\varphi}(x)$.
- Therefore for μ -a.e. x there is only one y such that $(x,y) \in \operatorname{supp}(\gamma)$, and this y is given by $y := \nabla \hat{\varphi}(x)$.
- ▶ This is the same as to say that $\gamma = (Id, \nabla \hat{\varphi})_* \mu$.
- ▶ But this is true for any optimal plan, thus if $\tilde{\gamma}$ is another optimal plan we must also have $\tilde{\gamma} = (Id, \nabla \hat{\varphi})_* \mu$ and therefore $\tilde{\gamma} = \gamma$

Thank you