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Counting points

Doing enumerative geometry means finding how many solutions
a geometric problem has, without finding the solutions. Typically,
the problem and the solutions will depend on parameters, but the
number of solutions will not.
Examples
Two lines in a plane meet in one point.
Bezout’s theorem: Two plane curves C of degree d and C ′ of
degree d ′, have exactly dd ′ points in common.
Warning: we need complex, projective, and multiplicities!



Counting curves

▶ There is one line through two given points.

▶ Given four lines in space, there are two lines intersecting all of
them.

▶ Any smooth cubic surface contains 27 lines.

▶ Given 5 conics in the plane, there are 3264 conics tangent to
all of them.

We count solutions when expected dimension is zero.
Exp. dim. = # parameters - # equations



Which curves do we count

A projective variety X is a closed subset of CPN , zero locus of
homogeneous polynomials.

▶ Chow: every compact complex submanifold of CPN is a
projective variety; we call it a smooth projective variety.

▶ Riemann: every compact Riemann surface is a projective
curve C .

A map f : C → X has two invariants: the genus g of C , and the
(homology/multidegree) class β := f∗([C ]).



How we count, basis case

▶ The set of all lines in projective space is a smooth projective
variety G of dimension 4.

▶ Degree three homogenous polynomials define a rank 4 vector
bundle E on G ; choosing a specific cubic defines a section s
of E .

The number of points in G such that s = 0 is∫
G
c4(E )



Moduli of maps

▶ Good news We fix X , g and β. The set M(X ; g , β) of all
maps f : C → X of genus g and class β has a natural
structure of moduli space.
Conditions we are interested in can be expressed as vanishing
of a section of a vector bundle E on M(X ; g , β).

▶ Bad news M(X ; g , β) is not compact/proper. Also, I didn’t
tell you what kind of structure.

▶ Good news There is a natural compactification M(X ; g , β)
(Gromov/Konstevich-Manin).

▶ Bad news M(X ; g , β) has no well defined dimension (e.g. for
X = P2, g = 1, β = 3).



M(X ; g , β) has an expected dimension of is

d := (3− dimX )(g − 1) + c1(TX )β.

(index of a Fredholm operator/deformation theory).
Note special case dimX = 3 and c1(TX ) = 0 that is X is a
Calabi-Yau threefold.
Problem Both spaces can locally be ”made into” manifolds of
dimension d . But to get numbers we need a global calculation, not
a local one!



Why: string theory enter the picture

Based on string theory ideas, Edward Witten asked himself in
1991: what if we pretend M(X ; g , β) is a smooth of the expected
dimension d?

He then showed that, if this were the case, a lot of counting curves
problems could in principle be solved: the solutions have been
called Gromov-Witten invariants.

He combined the invariants in a partition function Z , and he and
other physicist ”derived” that Z must satisfy a series of partial
differential equations, PDEs. In some cases such PDEs are enough
to compute the invariants.



Interesting, promising results... based on an assumption that was
known to be wrong.

Kontsevich and Manin produced an axiomatization of Witten’s
argument.

Kontsevich then showed that, if KM axioms could be made
rigorous, the problem of counting plane curves of genus zero and
any degree could be solved recursively.

Goal for mathematicians: replace Witten’s ”derivation” by
PROOF(S).



Progress in symplectic geometry

Symplectic geometers solved the problem in a very large number of
cases.

First of all, it was shown that in many cases one could make
M(X ; g , β) a compact manifold of dimension d by fiddling with
the complex structure of X , to a generic almost complex structure.

Then, it was shown that in even more cases one could get a
manifold by fiddling with the partial differential equation defining
M(X ; g , β) via a Fredholm operator.



Algebraic geometry shows up

Consider the curve C of equation y + x3 = 0 in the plane {z = 0},
and let X be the cylinder over C (that is, the set of (x , y , z) such
that y + x3 = 0).

Which lines are contained in X? As a set: the vertical lines
meeting z = 0 in a point of C . But what are the equations? It’s
called algebraic geometry, so let’s do algebra.

Non horizontal lines L depend on 4 parameters (a, b, u, v) where
(a, b, 0) = L ∩ {z = 0} and (u, v , 1) is the direction of L.
We call such a line L(a, b, u, v).



Parametrically, we can write the line L = L(a, b, u, v) as

(a, b, 0) + t(u, v , 1) = (a+ tu, b + tv , v).

Algebraically L ⊂ X iff (a+ tu) + (b+ tv)3 = 0: the equation of X
restricts to zero on L.

We get four equations, the coefficients of 1, t, t2, t3:

▶ a3 + b = 0;

▶ 3a2u + v = 0;

▶ 3au2 = 0;

▶ u3 = 0.

We can solve in v and b and get two free parameters a, u with
conditions 3a2u = a3 = 0. This does NOT mean a = 0!



Algebraic geometry progress

Kai Behrend and Yuri Manin recast the Kontsevich Manin axioms
not in terms of numbers, but of a virtual class, a homology class
on the moduli space of the expected dimension, over which to
make integrals.

This wasn’t a new idea in algebraic geometry, and in fact a very
general formulation had been produced by Fulton and
MacPherson; however such class existed only if there was a global
presentation, not only a local one.



Problem solved!

In 1996, Jun Li and Gang Tian gave a construction of the virtual
class, in full generality and proved all its properties.

The key ingredient is a so called tangent-obstruction complex, and
the technique involves local choices, gluing, and showing that the
result doesn’t depend on the choices.



Why am I telling you this?

In 1997, Kai Behrend and I replaced Li and Tian’s hard work by
putting together more advanced, if still classical (before 1980),
techniques:

1. algebraic stacks (Artin, 1974);

2. cotangent complex and deformations (Illusie, 1968);

3. derived categories and Picard stacks (Deligne, 1977).

Our paper is pretty unreadable! To everyone’s relief, we also
provided a very concrete criterion to apply our machinery in most
cases where one can define an expected dimension at all.



Gromov Witten invariants: computational techniques

Tom Graber and Rahul Pandharipande used our construction to
prove a virtual version of the classical localization formula in
intersection theory, which became one of the key computational
methods in the field.

The construction led naturally to proving relationships between
enumerative invariants, without actually computing them. For
instance, Kontsevich’s original formula counts recursively the
number Nd of curves of genus zero and degree d through 3d − 1
generic points in the plane, using as seed just the number N1.

Gromov Witten invariants are a source of examples of Frobenius
manifolds, which brought fruitful interactions with the research in
integrable systems.



Donaldson invariants

The original motivation for Li and Tian had been not just to give a
definition of Gromov Witten invariants, but also to redefine
Donaldson invariants, heavily based on analysis methods, in a
purely algebraic geometry set-up.

This became indeed possible, but not in full generality because of a
technical issue with strictly semistable sheaves.



Donaldson – Thomas invariants

In 1998, Donaldson proposed to his PhD student Richard Thomas
to construct invariants for some well-behaved 6-dim manifolds.

Thomas tried symplectic techniques, but only succeeded by shifting
to algebraic geometry and using our method on projective 3folds.

The special case where KY is trivial, so called Calabi Yau
threefolds, became immediately popular among geometers and
string theorists.



What next? Outside algebraic geometry

▶ Theoretical physics

▶ Integrable systems

▶ Symplectic geometry

▶ PDEs on formal power series

▶ Index of Fredholm operators among Banach orbibundles



What next? Gromov Witten

▶ Relative GW invariants, degeneration formulas

▶ GW for orbifolds

▶ open GW invariants

▶ GW invariants in characteristic p

▶ Other invariants (non-contracting maps, quasimaps...)



What next? Donaldson-Thomas

▶ Invariants in CY threefolds, including noncompact ones

▶ Wall crossing methods

▶ Invariants for Quot schemes

▶ Degeneration formulas

▶ Behrend function



Theoretical advances, mild

▶ Virtual pushforward and pullback

▶ Virtual structure sheaf

▶ Symmetric obstruction theories

▶ Use of master spaces

▶ Virtual Grothendieck Riemann Roch



Infinity category advances

▶ Quasismooth derived schemes

▶ Shifted symplectic structures

▶ Categorification of Behrend function

▶ Trimester at IHP 2023!



Thank you!
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