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Problem statement

▶ Develop methods to quantify uncertainty in remote sensing data products
delivered by the Orbiting Carbon Observatory 2 and 3 missions.

▶ The methods must be “off-line" and not interfere with operational data
processing.

▶ They must be computationally efficient enough to keep up with the data
stream.

▶ This problem and our solution are discussed in detail in Braverman et al.,
2021. (doi: 10.1137/19M1304283).
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Background

▶ Passive remote sensing instruments measure photon counts in bins of a
discretized electromagnetic spectrum.

▶ The sun provides incoming photons, which are scattered and absorbed in
ways that depend on the media (atmosphere or surface) with which they
interact.

▶ May also be complicated by thermal emission.

▶ The instrument discretizes the spatial field into “footprints" and aggregates
photons over both footprint and spectral bin.
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Background
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Background

Remote sensing levels of data processing:

▶ Level 0: raw photon counts direct from satellite

▶ Level 1: georectified and calibrated radiances

▶ Level 2: estimates of geophysical state

▶ Level 3: “statistical summaries" of Level 2 on uniform space-time grid

▶ Level 4: output of models or data assimilation

Level 2 “data" aren’t “data"; they are inferences!

When drawing scientific conclusions or making policy decisions, it is crucial to
take account of uncertainties in these inferences.
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Background

Remote sensing observing system:

True
state

Forward
function

Noiseless
radiance

Instru-
ment

Obser-
vation

Retrieval State
estimate

X F0(·,B0) Y0 Y0 + ϵ Y R(·,F1,B1 . . .) X̂

F0 = nature’s true forward function; B0 = other true quantities.

F1 = forward model used in retrieval, R; B1 = other retrieval inputs.

ϵ = instrument measurement error.

. . . = other retrieval algorithm inputs.
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UQ formalism

VVUQ:

Computer
code

Forward UQ
QoI prediction

with uncertainty

Verification Validation

Mathematical
description

Reality
(experiment)

Inverse UQ
Input

uncertainty

Expert
opinion

Adapted from Wu et al, (2018). DOI: 10.1016/j.nucengdes.2018.06.004.
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UQ formalism

F(·) Forward UQ
ŷ = F(x∗)

(ensemble)

Direct
observations:
y(R)

1 , . . . ,y(R)
N

y(R)
i = FTrue(x) + ϵi

Inverse UQ

P
(

x
∣∣y(R)

1 , . . . ,y(R)
N

)

sample: x∗

(ensemble)

Dist(x)

Distribution of ŷ
describes uncertainty in
predictions made by F
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Roles of Math and Stat

▶ Statistical methods: inference from observations about unknown
probabilistic model

▶ estimation and hypothesis testing

▶ exploratory data analysis, density estimation, unsupervised learning

▶ regression, supervised learning, to uncover significant relationships

▶ uncover, test, and quantify relationships from data

▶ use estimated model to make statistical predictions with uncertainty.

▶ Statistical models inherently carry uncertainties with them.
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Roles of Math and Stat

F(·) Forward UQ
ŷ = F(x∗)

(ensemble)

Direct
observations:
y(R)

1 , . . . ,y(R)
N

y(R)
i = FTrue(x) + ϵi

Statistical
inference and

methods

sample: x∗

(ensemble)

Dist(x)

P
(

x
∣∣y(R)

1 , . . . ,y(R)
N

)
L
(

x;y(R)
1 , . . . ,y(R)

N

)

Distribution of ŷ
describes uncertainty in
predictions made by F

Estimation
Hypothesis

testing

EDA
Regression

Density
Estimation

DOE

Etc.
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Roles of Math and Stat

▶ Mathematical UQ: mathematical approaches for understanding
sources of uncertainty in F and facilitating efficient forward UQ.

▶ exploit structure and properties of F to guide forward UQ

▶ alternatives to brute-force Monte Carlo forward UQ

▶ numerical and other approximations for speed and efficiency

▶ optimization!

▶ Uncertainty expressed through probability distributions, and driven
by probabilistic description of input uncertainties.

12



Roles of Math and Stat

F(·) Forward UQ
ŷ = F(x∗)

(ensemble)

Direct
observations:
y(R)

1 , . . . ,y(R)
N

y(R)
i = FTrue(x) + ϵi

Inverse UQ

P
(

x
∣∣y(R)

1 , . . . ,y(R)
N

)

sample: x∗

(ensemble)

Dist(x)

Distribution of ŷ
describes uncertainty in
predictions made by F

Mathematical
guts of F

Polynomial
expansions

Local and Global
sensitivity analysis

Reduced
order models/

surrogates

Sparse
grids

Etc.
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Roles of Math and Stat

▶ Inverse problems: infer the state of a system from noisy, indirect
measurements.

▶ heavy use of Bayesian methods

▶ overlaps substantially with statistics, but more focussed on this class
of problems

▶ emphasis on algorithms/samplers

▶ because result is a distribution, easy forward propagation
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Roles of math and stat

F(·) Forward UQ
ŷ = F(x∗)

(ensemble)

Direct
observations:
y(R)

1 , . . . ,y(R)
N

y(R)
i = FTrue(x(R)) + ϵi

Inverse problems

P
(

x
∣∣y(R)

1 , . . . ,y(R)
N

)

sample: x∗

(ensemble)

Dist(x)

Distribution of ŷ
describes uncertainty in
predictions made by F

MCMC and
friends

Data
Assimilation

Design and analysis
of computer experiments

Model
discrepancy

Etc.
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Modifying the UQ formalism

F(·) Forward UQ
ŷ = F(x∗)

(ensemble)

Direct
observations:
y(R)

1 , . . . ,y(R)
N

y(R)
i = FTrue(x(R)) + ϵi

Inverse UQ

P
(

x
∣∣y(R)

1 , . . . ,y(R)
N , ŷ1, . . . , ŷM

)

sample: x∗

(ensemble)

Dist(x)
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Modifying the UQ formalism

F(·) Forward UQ
ŷ = F(X∗)

(ensemble)

Direct
observations:
y(R)

1 , . . . ,y(R)
N

y(R)
i = FTrue

(
x(R)

i

)
+ ϵi

Inverse UQ

P
(

X
∣∣y(R)

1 , . . . ,y(R)
N , ŷ1, . . . , ŷM

)

sample: X∗

(ensemble)

Dist(X)

This is fine if the objective is to perform UQ
on F. But it’s not.

The objective is to perform
UQ on the operational retrieval
algorithm, R.

Note: this is not the operational retrieval algorithm!
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Modifying the UQ formalism

R(·, . . .) Forward UQ
x̂ = R(Y∗)
(ensemble)

Direct
observations:
x(R)

1 , . . . ,x(R)
N

x(R)
i = RTrue

(
y(R)

i

)
+ τ i

RTrue =
[
FTrue

]−1

Inverse UQ

P
(

Y
∣∣x(R)

1 , . . . ,x(R)
N , x̂1, . . . , x̂M

)

sample: Y∗

(ensemble)

Dist(Y)

Problem: we have very few
direct observations of x(R).

Operational retrieval algorithm
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Modifying the UQ formalism

To recap,

▶ We want to perform UQ on the operational retrieval algorithm, R.
(Note that F is embedded in, and is thus part of, R.)

▶ This requires a computational experiment in which we sample over
R’s inputs to get an ensemble of outputs (x̂’s) that can be compared
to direct observations, x(R).

▶ We do not have enough instances of x(R) to do this.

▶ Moreover, performing inverse UQ without oversimplifying (e.g.,
using MCMC) is computationally infeasible. (The oversimplified
version is R).

▶ So what can we do?
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Modifying the UQ formalism

R(·, . . .) Forward UQ
x̂ = R(Y∗)
(ensemble)

Synthetic
observations:
xsim

1 , . . . ,xsim
N

Inverse UQ

P
(

Y
∣∣x(R)

1 , . . . ,x(R)
N , x̂1, . . . , x̂M

)

sample: Y∗

(ensemble)

Dist(Y)

Operational retrieval algorithm
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Modifying the UQ formalism

R(·, . . .) Forward UQ
x̂ = R(Ysim)
(ensemble)

Synthetic
observations:
xsim

1 , . . . ,xsim
N

F

P̃
(
Y
∣∣xsim

1 , . . . ,xsim
N

)

sample: Ysim

(ensemble)

Dist(Ysim)

Operational retrieval algorithm
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Modifying the UQ formalism

R(·, . . .) Forward UQ
x̂ = R(Ysim)
(ensemble)

Synthetic
observations:
xsim

1 , . . . ,xsim
N

F

P̃
(
Y
∣∣xsim

1 , . . . ,xsim
N

)

sample: Ysim

(ensemble)

Dist(Ysim)

Operational retrieval algorithm

P̃
(

X̂sim
∣∣Xsim

)
Think like statistician
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Modifying the UQ formalism

R(·,F, . . .) Forward UQ
Synthetic estimates

x̂sim
1 , . . . , x̂sim

N

Synthetic
observations:
xsim

1 , . . . ,xsim
N

F

P̃
(
Y
∣∣xsim

1 , . . . ,xsim
N

)
Synthetic

observations
ysim

1 , . . . ,ysim
N

Operational retrieval algorithm

P̃
(

X̂sim, Ŷsim
∣∣Xsim

)

ϵsim ∼ MVN (µϵ,Σϵ, ) Measurement error

Think like statistician
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Modifying the UQ formalism

What does “think like a statistician" mean?

▶ Statisticians invent new estimators and quantify their operating
characteristics.

▶ Here, we quantify the operating characteristics of the system

Xsim → F → Ysim → R → X̂sim

with and empirical estimate of P
(

X̂sim,Xsim
)

.

▶ Proposition: uncertainty is quantified by any useful reduction of
P̃
(

X̂sim,Xsim
)

, e.g., P̃
(

Xsim
∣∣X̂sim,

)
.
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Modifying the UQ formalism

Fine, but

1. what about the real system?

2. inverse crime: F is used twice (once to create ysim and once in R).
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UQ formalism

Fine, but

1. what about the real system?

2. inverse crime: F is used twice (once to create ysim and once in R).

1. We use the learned relationship P̃
(

Xsim
∣∣X̂sim,

)
to quantify

uncertainty is an actual instance of X̂:

P̃
(

XTrue
∣∣X̂Actual

)
.
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Modifying the UQ formalism

Fine, but

1. what about the real system?

2. inverse crime: F is used twice (once to create ysim and once in R).

1. We use the learned relationship P̃
(

Xsim
∣∣X̂sim,

)
to quantify

uncertainty in an actual instance of X̂:

P̃
(

XTrue
∣∣X̂Actual

)
.

2. Introduce model discrepancy.
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Model discrepancy

R(·,F, . . .) Forward UQ
Synthetic estimates

x̂sim
1 , . . . , x̂sim

N

Synthetic
observations:
xsim

1 , . . . ,xsim
N

F

P̃
(
Y
∣∣xsim

1 , . . . ,xsim
N

)
Synthetic

observations
ysim

1 , . . . ,ysim
N

P̃
(

X̂sim, Ŷsim
∣∣Xsim

)
δsim ∼ MVN (µδ,Σδ, )

Model discrepancy

ϵsim ∼ MVN (µϵ,Σϵ, ) Measurement error
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Model discrepancy

▶ Model discrepancy is δ = FTrue (XTrue)− F
(
XTrue) .

▶ We would like to simulate from the distribution of δ ∼ MVN (µδ,Σδ).

▶ Assume this distribution is Gaussian with mean µδ ≈ E(δsim) and
covariance matrix Σδ ≈ cov(δsim).

▶ We have noisy samples, Yi = FTrue (XTrue
i

)
+ ϵTrue

i , i = 1, . . . ,N.

▶ We don’t have F
(
XTrue), but we do have

[
F
(
Xsim)− F(X̂sim)

]
, which

motivates the approximation,

δsim ≈ FTrue (XTrue)− F
(

X̂Actual
)
−

[
F(Xsim)− F(X̂sim)

]
.
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Model discrepancy

▶ Let YActual ≡ FTrue (XTrue)+ ϵTrue, and ŶActual ≡ F
(

X̂Actual
)

, and similarly for
simulated. Then,

δsim ≈
(

YActual − ϵTrue − ŶActual
)
−

(
Ysim − Ŷsim

)
,

δsim + ϵ ≈
(

YActual − ŶActual
)
−

(
Ysim − Ŷsim

)
.

▶ Expected value:

E(δsim + ϵActual) ≈ E
(

YActual − ŶActual
)
− E

(
Ysim − Ŷsim

)
,

µ̃δ + 0 ≈ 1
N

N∑
n=1

(
YActual

n − ŶActual
n

)
− 1

M

M∑
m=1

(
Ysim

m − Ŷsim
m

)
,

where n = 1, . . . ,N indexes actual retrievals, and m = 1, . . . ,M indexes
trials of the simulation.
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Model discrepancy

▶ Covariance:

cov(δsim + ϵActual) ≈ cov
(

YActual − ŶActual
)
+ cov

(
Ysim − Ŷsim

)
− 2 cov

(
Y − Ŷ,Ysim − Ŷsim

)
Σ̃δ = cov

(
δsim

)
≤ cov

(
YActual − ŶActual

)
+ cov

(
Ysim − Ŷsim

)
− cov(ϵActual),

≈ ĉov
(

YActual − ŶActual
)
+ ĉov

(
Ysim − Ŷsim

)
− cov(ϵActual),

assuming cov
(

YActual − ŶActual,Ysim − Ŷsim
)
≥ 0, and ϵ and δsim are

independent.
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Methodology

Synthetic true
state ensemble

Forward
function

Synthetic noiseless
radiance ensemble{

Xsim}Xsim ∼ P̃(Xsim) F(Xsim)
{

Ysim
0

}
Y sim

0 + ϵsim+δsim

ϵsim ∼ MVN(0,Σϵ)

Measurement error

δsim ∼ MVN(µ̃δ, Σ̃δ)

Model discrepancy
adjustment

Instru-
ment

{
Ysim} Observation

ensemble
R(F,Ysim, . . .)

Retrieval{
X̂sim

}
State estimate

ensemble{
Xsim, X̂sim

}

Fit GMM

P̃
(

Xsim
∣∣∣X̂sim

) µ̂
(k)
X|X̂

(·), Σ̂
(k)
X|X̂(·), π̂k|x̂(·)

k = 1, . . . , K̂

X̂Actual

Actual retrieval

P̃
(

XTrue|X̂Actual
)

Estimated posterior
distribution of state

P̃
(

Xsim, X̂sim
)
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Summary/discussion

▶ UQ community traditionally focusses on uncertainties of
deterministic models’ output.

▶ Stat community traditionally focusses on building statistical models,
which carry uncertainty with them, but do not explicitly encode
mechanistic knowledge.

▶ Remote sensing is a good example of a problem that combines
elements of both.

▶ Other examples?
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Summary/discussion

If the UQ community (as presently constituted) is to expand towards
more statistics and statisticians, what parts of that audience should we
target?

▶ design and analysis of computer experiments, and experimental
design in general (ASA’s UQ Interest Group)

▶ spatial/spatio-temporal statistics uses GP’s and other models with
spatial location/time as inputs; leverage this in more general UQ
settings (e.g., emulators)

▶ machine learning is often inherently statistical but uncertainty not
emphasized- could we do more?

▶ inverse problems community that intersects with UQ is not
well-represented in mainstream statistics- another opportunity?
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Summary/discussion

▶ Mainstream statisticians contemplate a wider range of applications
in which computational models are not necessarily the focus, and
exist along side data collected for other purposes.

▶ Expanding UQ territory will be accomplished by young researchers
willing to think “outside the box". It will require a cultural shift.
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