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Introduction

Spatial Statistics

Spatial Statistics broadens the classical statistical models and
methods to those recognizing the presence and importance of
spatial information

It takes spatial dependence into account.

“After choosing the area we usually have no guidance beyond the widely
verifiable fact that patches in close proximity are commonly more alike, as
judged by the yield of crops, than those which are far apart.”

– R. A. Fisher (1935) on analyzing agricultural field
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Introduction

A Classical Spatial Statistical Model

Suppose that we want to infer a latent univariate spatial process
{Y (s) : s ∈ D} from incomplete and noisy data at a finite of locations.

Data process (describing observed or potentially observed data):

Z (s) = Y (s) + ε(s); s ∈ D

Latent spatial process of interest: Y (·)
Measurement-error process: ε(·) white noise with E (ε(s)) = 0,
var(ε(s)) = σ2εv(s)

Data vector: Z ≡ (Z (s1), . . . ,Z (sn))′

Sample size: n, which can be large.
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Introduction

Spatial Statistical Model, cont’d

Model the latent process Y (·) with

Y (s) = µ(s) + ν(s),

µ(·) denotes the large-scale variation, referred to as trend in spatial
statistics literature.
ν(·) is a spatial process with mean zero and a covariance function
(kernel):

E (ν(s)) = 0,

cov(ν(si ), ν(sj)) = C (si , sj).

ν(·) and ε(·) are assumed to be independent.
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Introduction

Spatial Statistical Model, cont’d

Define Y, ε, and ν in an analogous manner to the data vector
Z ≡ (Z (s1), . . . ,Z (sn))′.
We obtain

Z = Y + ε

Then

Σ = var(Z) = var(ν) + var(ε)
≡ C + σ2εV

≡


C (s1, s1) C (s1, s2) · · · C (s1, sn)
C (s2, s1) C (s2, s2) · · · C (s2, sn)

...
...

...
...

C (sn, s1) C (sn, s2) · · · C (sn, sn)

+ σ2εV

where V ≡ diag(v(s1), . . . , v(sn)).
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Introduction

Kriging

Kriging: Infer Y (s0) from data Z, in an optimal way

It is also called Spatial BLUP. Matheron (1962) used the term in honor
of D. G. Krige, a South African mining engineer. It is also known as
optimum interpolation in atmospheric sciences

Optimality: Ŷ (s0) minimizes the mean squared prediction error
(MSPE)

- MSPE of generic predictor Y ∗(·) : E(Y (s0) − Y ∗(s0))2

Derivation of Kriging requires only the mean and covariance functions
but we don’t need to assume a joint Gaussian distribution.

When we add the assumption with a Gaussian process (GP), the
Kriging predictor will become the predictor we use in GP regression.
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Introduction

Kriging, ctd

Kriging predictor:

Ŷ (s0) = T(s0)′α̂+ k(s0)′(Z− T α̂)

Associated uncertainty, described via the Kriging standard error:

σk(s0) = {C (s0, s0)− k(s0)′Σk(s0)

+(T(s0)− T ′k(s0))′(T ′Σ−1T )−1(T(s0)− T ′k(s0))}1/2

where
α̂ = (T ′Σ−1T )−1T ′Σ−1Z,

k(s0) = Σ−1c(s0),

c(s0) = cov(Z,Y (s0)) = (C (s0, s1), . . . ,C (s0, sn))′,

and Σ denote the n × n covariance matrix of the data vector:
Σn×n = var(Z).
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Introduction

Research problems in spatial statistics+UQ are often driven by the
need to analyze and model complex spatial data/processes, such as
those from remote sensing and climate sciences:

Noise and missing data
Large data volumes
Complicated spatial/spatio-temporal dependence, or dependence
structure related to input variables
Multi-resolution, multi-scale, multivariate data
Lack of spatially representative ground truth
How to perform UQ from inferred “data products”
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Introduction

I will present two case studies to demonstrate how we attempted using
spatial statistical methods for uncertainty quantification in remote sensing
and climate science and discuss the challenges we have found and
potential research directions from different viewpoints.

1 Providing fine-scale climate projections using coarse-scale climate
model output and remote sensing data, statistical downscaling

2 Constructing an emulator for a complex physics-based forward
model in the Orbiting Carbon Observatory (OCO-2).

SpatialStat-UQ February 2024 9 / 50



Case Studies Statistical Downscaling

Introduction

Climate models are crutial tools for scientists to project future climate
change and to understand its potential impact.

Atmosphere–ocean general circulation models (GCMs) are developed to
simulate the climate over the entire globe.
Due to model complexity and limitations of computational resources,
GCMs are restricted to generate outputs on coarse spatial scales,
typically 200–500km.

GCM outputs are limited in describing local/regional climate
phenomena that are more relevant to natural-resource management
and environmental policy decisions. → Downscaling is needed!
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Case Studies Statistical Downscaling

Climate Model Downscaling

There are two main types of downscaling:

Dynamical downscaling: Using high-resolution regional simulations,
also called regional climate models (RCMs), with initial and boundary
conditions provided from a GCM.
Statistical downscaling: Establishing a statistical relationship to
transfer coarse-resolution GCM outputs into fine-resolution outputs.

Physics-driven vs. Data-driven

Computation-intensive vs. Computation-efficient

Uncertainty quantification (UQ)
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Case Studies Statistical Downscaling

Motivating Example: Downscaling Sea Surface
Temperature

Coral reefs face stressors such as rising ocean temperatures (Hughes
et al., 2003; Hoegh-Guldberg et al., 2007; Gattuso et al., 2015;
Masson-Delmotte et al., 2018) in addition to other local factors such
as destructive fishing practices and coastal development.

Thermal stress index are developed by Coral Reef Watch (Liu et al,
2003, 2006) based on sea surface temperatures.
Downscaled sea surface temperature (SST) are required to calculate
such index in order to better inform local conservation decisions.

Van Hooidonk et al. (2016) and Dixon et al. (2022): Interpolating
GCM SST outputs to the fine resolution grid and adjusting the mean
based on observations.
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Case Studies Statistical Downscaling

Our study region is the Great Barrier Reef (GBR) region.

Data:

Monthly averaged NASA/JPL Multiscale Ultrahigh Resolution (MUR)
satellite SST data at 1km resolution from June 2002 to December
2020; more than 300,000 pixels in the study region
Monthly SST outputs from a GCM model at 100km resolution in the
Coupled Model Intercomparison Project Phase 6 (CMIP6).
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Case Studies Statistical Downscaling
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Case Studies Statistical Downscaling

Jointly Modeling Climate Model Output and MUR Data

Let Yt,1(s) and Yt,2(s) denote the MUR SST and interpolated and
bias corrected GCM SST at location s and time t, respectively.

We take a joint modeling perspective and assume the bi-variate
spatial process, Yt(s) ≡ (Yt,1(s),Yt,2(s))′,

Yt(s) = µt(s) + vt(s)

The trend µt(s) is modeled to be the 5-year moving averages of Yt,2(s)
and a linear combination of large-scale basis functions.
We assume that the trend term captures temporal and spatio-temporal
dependence and assumes that vt(s) is independent across time t.
We model vt(s) = (vt,1(s), vt,2(s))′ as a bi-variate Gaussian process
with a basis-function representation to achieve efficient computation.
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Case Studies Statistical Downscaling

Downscaling

Similar to what we do in GP regression, the conditional mean are
used for predictions, while the conditional variance are used to
describe the associated uncertainty.

We can further generate the predictive distribution of the downscale
SST field (over more than 300,000 pixels jointly) by taking advantage
of the basis function representation and sampling from conditional
distributions:

1 Sample vt0,2|Yt0,2

2 Sample vt0,1|vt0,2 and the corresponding sampled Yt0,1 is calculated as
sampled vt0,1 plus the trend.
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Case Studies Statistical Downscaling

Figure:

Downscaled SSTs for January 2023 (left) and January 2090 (right) from
two scenarios.

SpatialStat-UQ February 2024 17 / 50



Case Studies Statistical Downscaling

Discussion

Let’s view downscaling from the perspective of function
approximation and UQ in computer experiments:

Output: SST Yt,1(s)
Input: Climate model output Yt,2(s)
Possible ways to construct and predict the response surface:

GP regression for Yt,1(s) on Yt,2(s)?
GP regression for Yt,1(s) by considering Yt,2(s) and spatial location s as
input together?
GP regression for Yt,1(s) by considering SST at Yt,2(u) with u within
certain distance with s?
Allowing the GP to be nonstationary and nonseparable?
Constructing “deep” models and function-on-function learning?
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Case Studies Statistical Downscaling

Discussion, cont’d

Recall that there are two main types of downscaling

Dynamical downscaling: Using high-resolution regional simulations,
also called regional climate models (RCMs), with initial and boundary
conditions provided a GCM.
Statistical downscaling: Establishing a statistical relationship to
transfer coarse-resolution GCM outputs into fine-resolution outputs.
Dynamical downscaling is physics-informed while statistical downscaling
is data-driven, but dynamical downscaling is computationally intensive.
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Case Studies Statistical Downscaling

Following the “borrowing strength” idea from spatial statistics, how
about using both dynamical downscaling and statistical
downscaling?

Understand where statistical downscaling perform well
Use dynamical downscaling in certain input subspace (e.g., high errors
and high uncertainty from statistical downscaling)
Increase synergies → physics-informed learning:

Fusing dynamical downscaling into statistical downscaling to improve
overall downscaling results
Leveraging the knowledge from statistical downscaling to parameterize
the regional climate model (i.e., constructing reduced-order models) to
make dynamical downscaling more efficient
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Case Studies Emulator

Motivation: Orbiting Carbon Observatory-2 (OCO-2)

Orbiting Carbon Observatory-2 (OCO-2) is NASA’s first dedicated
Earth remote sensing satellite to provide data products for
atmospheric carbon dioxide.

(Credit: Eldering et al., 2017)
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Case Studies Emulator

Orbiting Carbon Observatory-2 (OCO-2)

Introduction

Motivation: Orbiting Carbon Observatory-2 (OCO-2)

• OCO-2 is a NASA mission dedicated to study atmospheric CO2.
• The remote sensing observing system is a complex data-generating

process with several key components.
I True top-of-atmosphere radiance is a function of atmospheric state.
I Instrument observes noisy radiance.
I Retrieval algorithm produces estimate of atmospheric CO2.

• The forward model F (X ) is a high-dimensional complex simulator
used to relate geophysical input variables (X ), including CO2 dry air
mole fraction, to thousands of radiances (Y ) at irregular wavelengths.

Figure retrieved from Hobbs 2018
Gang Yang (UC) Advanced Examination May 11, 2020 5 / 49

The OCO-2 remote sensing observing system is a complex
data-generating process with several key components.

The radiance Y is viewed as a forward function of geophysical variables,
called the state vector x.
Instrument measures radiance, and the retrieval algorithm produces an
estimate of the state vector, including CO2 vertical profile.

The forward model F (x) is a complex simulator used to relate input
variables (x), including CO2 vertical profile, to thousands of radiances
(Y) at irregular wavelengths.
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Case Studies Emulator

Uncertainty Quantification in Remote Sensing

Probabilistic assessment and uncertainty quantification of remote
sensing retrievals are crucial to the success of using these remote
sensing data to reveal valid scientific findings and to answer scientific
hypotheses appropriately.

Hobbs et al. (2017) and Turmon and Braverman et al. (2021) suggest
using simulation-based experiments, known as observing system
uncertainty experiments (OSUEs), to quantify various sources of
uncertainty in probabilistic assessment of remote sensing retrievals.

Such experiments are supposed to be cost-effective as they are based
on simulations.
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Case Studies Emulator

Introduction

Observing System Uncertainty Experiments (OSUEs)

• Simulation-based experiments was suggested for quality assessment
and uncertainty quantification of remote sensing retrievals, known as
the observing system uncertainty experiments (OSUEs; Turmon and
Braverman, 2019).

• The forward model F (X ) is required to run many times over a large
spatial domain at various specifications of the model inputs for
large-scale OSUEs.

• Our goal is to develop an e�cient statistical emulator for the forward
model to reduce the computational costs while keep good accuracy.

Figure retrieved from Ma et al. 2019
Gang Yang (UC) Advanced Examination May 11, 2020 6 / 49

Hobbs et al. (2017) develop an OSUE to characterize the uncertainty
associated with XCO2 under different combinations of geophysical
conditions and algorithm choices. The experiment proceeds with 4
steps:

1 simulating a large random sample of state vectors x
2 evaluating the forward model at each of the simulated state vectors,

and adding random errors to generate the radiances Y
3 performing the retrieval algorithm to yield retrievals x̂
4 retrieval error analysis XCO2 vs. X̂CO2
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Case Studies Emulator

The computational cost of the forward model F(·) makes such an
experiment computationally expensive:

The forward model F(·) consists of a solar model, atmospheric model,
surface model, radiative transfer (RF) model, and instrument model.
The computation associated with the RF model is usually the
rate-limiting step in many remote sensing applications, including
OCO-2.

Therefore, we would like to build an emulator F̂(·), which does not
comprise much on accuracy while enhancing computational efficiency.

We can employ this computationally more efficient emulator in the
OSUEs to study uncertainty propagation under different combinations
of geophysical conditions and algorithm choices.
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Case Studies Emulator

Challenges

We have n = 10, 849 observations of radiances and state vectors
based on which we will build a statistical emulator. The size of data
can cause computational issues for a GP emulator. [No longer a big
issue, thanks to the previous work in this area]

Using GP to describe the input-output relationship?

The outputs of F (·) are radiances at hundreds of wavelengths from
three bands, the O2 band, the weak CO2 band, and the strong CO2

band.
F (·) is a nonlinear complex function with high-dimensional input state
vector; x is m-dimensional with m = 56.
Directly modelling the relationship between high-dimensional outputs
and inputs can be complicated, in terms of both computation and
modeling.

Highly multivariate output + high-dimensional input
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Method

Proposed Framework

The proposed framework consists of three steps:

Step 1: : Functional principal component analysis through the Principal
Analysis by Conditional Estimation (PACE; Yao et al., 2005) is used to
model irregularly spaced radiances and represent them via estimated
low-dimensional functional principal component (FPC) scores.
Step 2: : The original m-dimensional input space of X is reduced to a
low-dimensional space by the Gradient-based Kernel Dimension
Reduction (gKDR; Fukumizu and Leng, 2014).
Step 3: : Construct a Gaussian process emulator using the
low-dimensional pairs.
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Method

Model Set-up

Let Yij(wij , xi ) be the spectrum radiance output from F (·) at
wavelength wij from the i th sounding, i = 1, . . . , n; j = 1, . . . , ni . We
define:

Yi = (Yi1,Yi2, . . . ,Yini )
′; xi = (xi1, xi2, . . . , xim)′.

Input xi includes CO2 profile, aerosol parameters, albedo parameters
and other coefficients, altogether m = 56.
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Method

Functional Principal Component Analysis (FPCA)

The radiance spectra are modeled as realizations of a random function
S(w , x) with an uncorrelated error term ε (mean 0 and variance σ2).

Yij(wij , xi ) = S(wij , xi ) + εij

Through Karhunen-Loéve expansion (Karhunen, 1947),

S(w , x) = µ(w) +
∞∑
k=1

ξk(x)φk(w)

µ(w) is the mean function.

ξk(·) is the kth functional principal component (FPC) score, which are
independent random variables with mean 0 and variance λk .

The eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λk ≥ · · · ≥ 0, are corresponding to
eigenfunctions φk(ω).
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Method

FPCA via PACE

The functional output F (w , x) can be approximated by a truncated
representation with leading eigenfunctions that explain the majority of
variability

F (w , x) ≈ µ(w) +
K∑

k=1

ξk(x)φk(w)

We perform FPCA via the Principal Analysis by Conditional
Estimation (PACE; Yao et al., 2005):

Pool all the sample Yij , 1 ≤ i ≤ n, 1 ≤ j ≤ ni , and estimate the mean
and covariance by local linear smoothing.
The FPC scores ξk(x) are estimated through conditional expectation.
Asymptotic properties of the estimated eigenfunctions and FPC scores
will be used to study the approximation error of the resulting GP
emulator.
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Method

We use the fraction of variance explained (FVE) to choose K .

With K no more than 3, we can achieve nearly lossless representation
with at least 99.9% of variation in the radiance spectra is preserved
from the three bands, respectively.

We thus transform the original hundreds of radiances Yi to a
K -dimensional output ξi , i = 1, . . . , n.
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Method

Dimension Reduction for x

The inputs of the forward function is an m-dimensional state vector x.
In OCO-2, m = 56.

An intuitive way to reduce the dimension is just to apply the principal
components analysis (PCA). However, PCA only considers the
correlation structure within x and ignores the role of outputs Y.

We call R(x) ∈ Rd where d < m a sufficient dimension reduction if

p(Y|x) = p(Y|R(x)),

where p(Y|x) and p(Y|R(x)) are conditional probability density
functions with respect to x and R(x), respectively.
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Method

Gradient-based Kernel Dimension Reduction (gKDR)

Quite a few methods are available for dimension reduction of inputs x.
We choose to use the Gradient-based Kernel Dimension Reduction
(gKDR; Fukumizu and Leng, 2014)

The aim of gKDR is to find a projection matrix B onto a
d-dimensional subspace (d < m) such that

p(ξ|x) = p(ξ|B ′x)

gKDR uses positive definite kernels for nonparametric estimation of the
projection matrix.
It does not require the gradient function of F (·) as in the active
subspace method (AS; Constantine et al., 2014; Ma et al., 2021).
It doesn’t assume any specific parametric models for p(ξ|x) and can be
used for multivariate outputs.
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Method

gKDR, cont’d

Choose d for dimension-reduction of x:

Fukumizu and Leng (2014) suggested selecting d based on the
subsequent utilization of d rather than the dimension-reduction
procedure when dimension reduction serves as a preprocessing step.
Within our proposed framework, it is intuitive to select the structural
dimension d based on the predictive performance of the resulting
emulator.
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Method

Gaussian Process (GP) Emulator

After dimension reduction:

Y (w)⇒ ξ = (ξ1, . . . , ξK )′

x ∈ Rm ⇒ u = B′x ∈ Rd

For each ξk , we consider a Gaussian process:

ξk(u) ∼ GP
(
µ(u),C (u,u′)

)
The mean function is assumed to be zero.
The covariance function C (·, ·) : Rd ×Rd → R is assumed to be a
separable squared exponential covariance function with parameters Θ
plus a nugget effect τ 2.

We implemented two methods; both are computational efficient but
assume stationary vs. nonstationary covariance functions.

Nearest Neighbor Gaussian Processes (NNGP; Datta et al., 2016)
Local Approximate Gaussian Processes (LaGP; Gramacy et al., 2013)
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Method

Summary of Emulator-Construction Steps

FPCA via PACE: For i = 1, . . . , n,

Yi (w , xi )⇒ µ(w); {φ1(w), . . . , φK (w)}; ξi = (ξi1, . . . , ξiK )

gKDR:
(ξi ; xi )⇒ (ξi ;ui ) where ui = B′x

GP emulator: For k = 1, . . . ,K ,

ξk |B′x ∼ GP(·, ·)⇒ ξ∗k |B′x∗

Reconstructing the radiances:

F̂ (w , x∗) = µ(w) +
K∑

k=1

ξ∗k(x∗)φk(w)
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Method

Approximation Error

For the kth FPC score, we obtain the overall approximation error
bound of the GP emulator ξ̂k to ξk :

‖ξ̂k(u)− ξk(x)‖ ≤ ‖ξk(x)− ξ̃k(u)‖+ ‖ξ̃k(u)− ξ̂k(u)‖

‖ξk(x)− ξ̃k(u)‖ is due to low-dimensional approximation (e.g., Liu and
Guillas, 2017).
‖ξ̃k(u)− ξ̂k(u)‖ depends on the Gaussian process approximation (e.g.,
Wang et al., 2019)

Utilizing the asymptotic properties of PACE, we are also able to
provide finite-dimensional asymptotic simultaneous inference for
{F̂K (w , x)− FK (w , x)}.
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Results

OCO-2 Data

Input: {xi} are 56-dimensional state vector.

Output: Yij(wij , xi ) is the spectrum radiance output at wavelength wij

with input xi from the i th sounding, i = 1, . . . , 10849, j = 1, . . . , ni .
Outputs from different soundings have varying wavelengths.

We divide the data into training vs testing: training=9849,
testing=1000.

Our emulator-construction steps are implemented for the O2, WCO2,
and SCO2 bands, respectively.
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Results

PACE Results

Figure: Estimated mean functions (top) and eigenfunctions (bottom) for O2

(left), WCO2 (middle), and SCO2 (right), respectively.
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Results

PACE Results, cont’d

Figure: Estimated eigenvalues (top) and cumulative fraction of variance explained
(FVE) (bottom) with varying K for the O2 (left), WCO2 (middle), and SCO2

(right) bands, respectively.
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Results

For d = 2, 3, . . . , 6, we perform gKDR and obtain the corresponding
projection matrices.

We select d such that the resulting GP emulator gives the smallest
RMSPE for FPC scores in cross validation: d = 4, 4, 5 for O2, WCO2,
and SCO2, respectively.

We build the GP emulator with the nearest neighbor Gaussian process
(NNGP) and the local approximate Gaussian process (laGP),
respectively.
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Results

GP Results

We calculate root mean squared prediction error (RMSPE), the
empirical coverage probability of 95% credible/confidence interval and
the continuous-rank-probability score for both NNGP and laGP for
this OCO-2 data set.

NNGP laGP
Band RMSPE PCI (95%) CRPS RMSPE PCI (95%) CRPS

O2 FPC1 0.0050 0.994 0.0028 0.0117 0.895 0.006
FPC2 0.0019 1 0.0018 0.0018 0.826 0.0019

WCO2 FPC1 0.0076 0.987 0.0039 0.0114 0.922 0.0060
FPC2 0.0054 1 0.0024 0.0083 0.934 0.0047

SCO2 FPC1 0.0170 0.936 0.0089 0.0338 0.979 0.0195
FPC2 0.0015 0.946 0.0008 0.0035 0.922 0.0014

FPC3 0.0008 0.931 0.0005 0.0013 0.947 0.0009
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Results

Comparing with Active-Subspace-based Emulator (AS-E)

We compare our emulator, referred to as gKDR-E, with the
Active-Subspace-based emulator from Ma et al. (2021), referred to as
AS-E.

The main difference is that AS-E achieves dimension reduction of
inputs via the active subspace method (Constantine et al., 2014)

requiring the gradient function of F (·)
performing dimension reduction for all the three bands together

In Ma et al. (2021) they show that AS-E outperforms the surrogate
model in Hobbs et al. (2017), a model formulated by simplifying the
relationships between geophysical variables and radiances.
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Results

RMSPEs are calculated for each spectrum band. Our emulator
outperforms AS-E.

Table: Numerical comparison of prediction performance based on AS-E and
gKDR-E approaches. The predictions are obtained at n∗ = 1, 000 new input
values. For each spectrum band, we compared RMSPE, PCI (95%), and CRPS.
The following results are reported for log-radiance.

AS-E gKDR-E

RMSPE PCI (95%) CRPS RMSPE PCI (95%) CRPS

O2 0.2307 0.9186 0.1255 0.0753 0.9153 0.0305
WCO2 0.2507 0.9500 0.1332 0.0633 0.9450 0.0307
SCO2 0.4184 0.9346 0.2254 0.1503 0.8344 0.0765
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Results

RMSPE at Different Steps

Table: Numerical comparison of prediction performance in terms of RMSPE in
Step 1 (FPCA) and Steps 2-3 (Input Dimension Reduction & GP Fitting).

AS-E gKDR-E

FPCA AS-GP RMSPE FPCA gKDR-GP RMSPE

O2 0.0736 0.2187 0.2307 0.0570 0.0474 0.0753
WCO2 0.0213 0.2489 0.2507 0.0215 0.0596 0.0633
SCO2 0.1272 0.3986 0.4184 0.1246 0.0841 0.1503
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Results

Figure: Comparison of pointwise RMSPE of predicted log-radiance based on
gKDR-E and AS-E, respectively, for O2(left), WCO2(middle), and SCO2(right).
The x-axis represents wavelength and the y-axis represents the RMSPE averaged
over 1, 000 held-out samples.
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Results

Figure: Maps of RMSPEAS-E − RMSPEgKDR-E at the corresponding locations for
the 1000 held-out samples for O2 band (top), WCO2 band (bottom left) and
SCO2 band (bottom right), respectively.
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Results

Discussion

Can the emulator be further developed to improve the retrieval
algorithm, i.e., solving the inverse problem?

For example, using an emulator in the calibration-emulation-sampling
(CES) approach to UQ for inverse problems:

Cleary et al. Calibrate, Emulate, Sample, Journal of Computational
Physics, Vol. 424, 2021,109716.
Lan et al. Scaling Up Bayesian Uncertainty Quantification for Inverse
Problems Using Deep Neural Networks, SIAM/ASA J. Uncertainty
Quantification, Vol. 10, 2022, 1684-1713.

Hybrid approaches can be used in these components:

Calibration/Simulation: conditional simulation, ensemble Kalman
filtering, etc.
Emulation: GP, convolutional neural networks (CNN), etc.
Sampling: Metropolis-Hastings algorithms, Hamiltonian Monte Carlo,
normalizing flow, etc.
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Discussion

Additional Remarks

There are some common challenges:

curse of dimensionality: univariate → multivariate →
highly-multivariate → infinite-dimensional (function)
scalable for large data
theoretical justifications

Dive in and being open-minded: The increased diversity of viewpoints
and approaches will empower UQ in scientific studies and benefit us
to build an impactful community.
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Thank you!
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