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Noémi Petra1

1 Department of Applied Mathematics
University of California, Merced

Power of Diversity in Uncertainty Quantification
SISSA (International School for Advanced Studies), Italy

February 26, 2024



Acknowledgements

The US National Science Foundation (NSF), Office of Advanced
Cyberinfrastructure (OAC), for supporting the development and integration
of the MUQ/hIPPYlib software and tutorial materials through grants
ACI-1550487, ACI-1550547, and ACI-1550593. (PIs: Omar Ghattas (UT
Austin), Youssef Marzouk (MIT), Matthew Parno (Dartmouth), Noemi Petra
(UC Merced), Umberto Villa (UT Austin))

The 2018 Gene Golub SIAM Summer School on Inverse Problems
(www.g2s3.com): “Systematic Integration of Data with Models under
Uncertainty” Organizers: Omar Ghattas (UT Austin), Youssef Marzouk
(MIT), Matthew Parno (Dartmouth), Noemi Petra (UC Merced), Georg
Stadler (NYU), Umberto Villa (UT Austin). This talk is based on material
developed for the g2s3 summer school.

The US National Science Foundation (NSF), Division of Mathematical
Sciences (DMS), CAREER award #1654311

Noemi Petra (UC Merced) Inverse problems February 26, 2024 2 / 45

www.g2s3.com


Outline

1 Motivation and examples

2 Inverse problems: formulation

3 Calculus of variations, weak forms and computing derivatives via adjoints
Example 1: Energy minimization problem
Example 2: Coefficient field inversion in an elliptic PDE

4 hIPPYlib: Inverse Problem PYthon library

5 Summary, research directions and references

Noemi Petra (UC Merced) Inverse problems February 26, 2024 3 / 45



Motivation

Recent years have seen tremendous growth in the volumes of observational
and experimental data that are being collected, stored, processed, and
analyzed.

The central question that has emerged in the rapidly-growing field of big
data science is:

How do we extract knowledge and insight from all of this data?

When the data correspond to observations of (natural or engineered)
systems, and these systems can be represented by mathematical models this
knowledge-from-data problem is fundamentally a mathematical inverse
problem.

This inverse problem can we formulated as:

Given (possibly noisy) data and (a possibly uncertain) model, infer
parameters that characterize the model.
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Examples of inverse problems governed by PDEs

Inverse problems abound in all areas of science,
engineering, technology, and medicine.

For example we may infer:

ice sheet basal friction from satellite
observations of surface flow
inertia of the generators for power grid
earth structure from reflected seismic waves
3D bone structure from X-ray CT
measurements
subsurface contaminant plume spread from
crosswell electromagnetic measurements
ocean state from surface temperature
observations.

In general, any endeavor to infer cause from effect to extract knowledge from
data can be viewed as an inverse problem.
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Example I: Coefficient inversion in an elliptic PDE
Model for single phase flow, ground water filtration

−∇ · (m∇u) = f in Ω ⊂ Rd

+ boundary conditions

f : given source function

m: permeability, hydraulic permittivity

u: unknown pressure

d = 1, 2, or 3.

forward problem: the parameter-to-solution mapping m → u (i.e., solve the
PDE)

data/measurements: pressure u at points/parts of Ω

parameter field/image: m = m(x)

inverse problem: given (measurements of) u, find m
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Example I: Coefficient inversion in an elliptic PDE
Model for single phase flow, ground water filtration

−∇ · (m∇u) = f in Ω ⊂ Rd

+ boundary conditions

f : given source function

m: permeability, hydraulic permittivity

u: unknown pressure

d = 1, 2, or 3.

Details in:

N. Petra and G. Stadler. “Model Variational Inverse Problems Governed by Partial Differential
Equations”, ICES REPORT 11-05, 2011.

A. Alexanderian, N. Petra, G. Stadler, O. Ghattas. A Fast and Scalable Method for A-Optimal Design
of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems, SISC, 38(1), 2016.
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Example II: Inversion for the initial condition
in an advection-diffusion equation

ut − κ∆u+ v · ∇u = 0 in Ω× [0, T ],

κ∇u · n = 0 on ∂Ω× [0, T ],

u(0, x) = u0 in Ω.

v : given velocity field

u : concentration field

u0 : unknown initial condition

data/measurements: concentration u at
points/parts of ∂Ω

parameter field: u0(x)

inverse problem: given (measurements of)
u, find u0

Details in: U. Villa, N. Petra, and O. Ghattas, hIPPYlib: An Extensible Software Framework for
Large-Scale Deterministic and Linearized Bayesian Inverse Problems. Journal of Open Source Software,
30(3), 2018.
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Example III: Parameter estimation for power grid
Differential-algebraic equation (DAE) driven inverse problem

ẋ = h(x, y,m, t)

0 = g(x, y, t)

x(0) = x0

Estimate/infer model parameters m (e.g.,
inertia of the generators)

Observational data (e.g., bus voltages)

Goal: Enable real-time power grid operational tasks such as monitoring
fault-detection, dynamic stability assessment, etc.

Details in: Petra, N.; Petra, C.; Zhang, Z.; Constantinescu, E. and Anitescu, M. A Bayesian Approach
for Parameter Estimation with Uncertainty for Dynamic Power Systems. IEEE Transactions on Power
Systems, 32(4), (2017).
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Example IV: Inferring the basal boundary condition in ice
dynamics

data/measurements: surface ice flow velocity u

parameter field: basal sliding coefficient field β(x)

inverse problem: given (measurements of) u, find β

Details in: T. Isaac, N. Petra, G. Stadler, and O. Ghattas. “Scalable and efficient algorithms for the
propagation of uncertainty from data through inference to prediction for large-scale problems, with
application to flow of the Antarctic ice sheet”, Journal of Computational Physics, 296, 348-368 (2015).
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Anatomy of inverse problems governed by PDEs
The forward problem

Given some input parameter field (coefficient, right hand side, initial
condition, boundary condition, etc.) m solve

r(u,m) = 0,

for the observable u, where

r : V ×M → V∗ represents the PDE problem,
V and M are suitable spaces of functions.

Tipically we assume that the foward problem is well-posed (i.e., it has a
unique solution, is stable with respect to perturbation).
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Anatomy of inverse problems governed by PDEs
The inverse problem

Consists of using available observational data d to infer the values of the
unknown parameter field m that characterize a physical process modeled by
PDEs.

Mathematically this inverse relationship is expressed as

d = F(m) + η.

The map F : M → Rq is the so-called parameter-to-observable map.
Evaluations of F involve the solution of a PDE given m, followed by the
application of an observation operator B : V → Rq to extract the observations
from the state.
η accounts for noisy measurements and model errors and is modeled as
η ∼ N (0,Γnoise), i.e., a centered Gaussian at 0 with covariance Γnoise.
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Anatomy of inverse problems governed by PDEs
Deterministic inversion

Ill-posed: observations are usually sparse and the forward operator
smoothing; many different parameter values may be consistent with the
observations/data.

Occam’s approach to ill-posedness: employ regularization to penalize
unwanted solution features to guarantee unique solution:

min
m∈M

J (m) :=
1

2
∥F(m)− d∥2W +

α

2
∥m−mref∥2R

The first term in the cost functional, J (m), represents the misfit between the
observations, d, and that predicted by the parameter-to-observable map F(m)
(weighted by W ).
The second term is a regularization term which imposes regularity on the
inversion field m, such as smoothness; α is a regularization parameter.
For instance, one can use Tikhonov regularization, which penalizes oscillatory
components of the parameter m.
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Anatomy of inverse problems governed by PDEs
Deterministic inversion

Ill-posed: observations are usually sparse and the forward operator
smoothing; many different parameter values may be consistent with the
observations/data.

Occam’s approach to ill-posedness: employ regularization to penalize
unwanted solution features to guarantee unique solution:

min
m∈M

J (m) :=
1

2
∥F(m)− d∥2W +

α

2
∥m−mref∥2R

Remarks:

deterministic problem

large-scale (PDE-constrained) optimization

no quantification of uncertainty

influence of R(·) on m is unclear
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Anatomy of inverse problems governed by PDEs
Deterministic inversion

Ill-posed: observations are usually sparse and the forward operator
smoothing; many different parameter values may be consistent with the
observations/data.

Bayesian approach to ill-posedness: describe probability of all models that are
consistent with the observations/data and any prior knowledge about the
parameters:

dµpost ∝ exp
{
− 1

2
∥F(m)− d∥2

Γ−1
noise

− 1

2
∥m−mpr∥2C−1

prior

}
.

The first term in the exponential (πlike(d|m)) is the negative log-likelihood (the
likelihood represents the probability that a given set of parameters might give
rise to the observed data)
The second term represent the negative log-prior, e.g., a Gaussian prior, i.e.,
m ∼ N (mpr, Cprior).
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Anatomy of inverse problems governed by PDEs
Bayesian inversion

Describe probability of all models that are consistent with the
observations/data and any prior knowledge about the parameters:

dµpost ∝ exp
{
− 1

2
∥F(m)− d∥2

Γ−1
noise

− 1

2
∥m−mpr∥2C−1

prior

}
.

The first term in the exponential (πlike(d|m)) is the negative log-likelihood.
The second term represent the negative log-prior, e.g., a Gaussian prior, i.e.,
m ∼ N (mpr, Cprior).

Remarks:
systematic method to incorporate measurement and model errors and prior
knowledge

allows quantification of uncertainty and probabilistic predictions

related to regularization approach

high-dimensional probability density
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Anatomy of inverse problems governed by PDEs
Bayesian inversion

Describe probability of all models that are consistent with the
observations/data and any prior knowledge about the parameters:

dµpost ∝ exp
{
− 1

2
∥F(m)− d∥2

Γ−1
noise

− 1

2
∥m−mpr∥2C−1

prior

}
.

The first term in the exponential (πlike(d|m)) is the negative log-likelihood.
The second term represent the negative log-prior, e.g., a Gaussian prior, i.e.,
m ∼ N (mpr, Cprior).

Target:

characterize dµpost

for functions m (large vectors after discretization)

for expensive F
use connection to optimization
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Anatomy of inverse problems governed by PDEs
Bayesian inversion

The maximum a posteriori (MAP) point mMAP is defined as the parameter
field that maximizes the posterior distribution:

mMAP := argmin
m∈M

(− log dµpost(m)) = argmin
m∈M

1

2
∥F(m)−d∥2

Γ−1
noise

+
1

2
∥m−mpr∥2C−1

prior

.

When F is linear, due to the particular choice of prior and noise model, the
posterior measure is Gaussian, N (mMAP, Cpost)

Cpost = H−1 = (F∗Γ−1
noiseF + C−1

prior )
−1, mMAP = Cpost(F∗Γ−1

noised+ C−1
priormpr),

where F∗ : Rq → M is the adjoint of F .

In the general case of nonlinear parameter-to-observable map F the posterior
distribution is not Gaussian. In this case one would need to use sampling to
characterize the posterior.
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Approximation of the posterior distribution

Despite the explicit form of the posterior, its exploration is difficult due to:

the high/infinite dimension of m

the expensive PDE-based parameter-to-observable map F

µpost

Approximation I: MAP estimation

Finding the maximum a posteriori (MAP) point

requires solution of PDE-constrained optimization problem ∼ deterministic
inversion;

computation of derivatives using adjoint methods: 2(+) PDE solves per
gradient.
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Calculus of variations and weak forms
Energy minimization problem

Suppose we are interested in finding solutions u⋆ to the minimization
problem:

min
u∈H1

0 (Ω)
J (u)

where

J (u) :=
1

2

∫
Ω

k(u)∇u · ∇u dx−
∫
Ω

fu dx

u(x) ∈ H1
0 (Ω): e.g., the transverse deflection of a membrane at a point x ∈ Ω

H1
0 (Ω): is the Sobolev space of functions in L2(D) with square integrable

derivatives.
f ∈ L2(Ω): given (input) function
k(u) := k1 + k2u

2, k1 > 0 and k2 ≥ 0: e.g., the stiffness of the membrane
with square integrable derivatives that satisfy homogenous boundary conditions
Ω ⊂ R2: an open bounded domain with sufficiently smooth boundary Γ
u(x) ∈ V0: e.g., the transverse deflection of a membrane at a point x ∈ Ω
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Calculus of variations and weak forms
Energy minimization problem

A minimum u⋆ is characterized by

J (u⋆ + εũ) ≥ J (u⋆),∀ũ ∈ V0, and ε > 0 with u⋆ + εũ ∈ V0.

Thus, a minimum u⋆ must satisfy the Euler-Lagrange conditions for
stationarity, namely

Ju(u
∗, ũ) :=

dJ (u⋆ + εũ)

dε

∣∣∣∣
ε=0

= 0 for all ũ ∈ H1
0 (Ω).

Details in:

Jorge Nocedal and Stephen J. Wright, “Numerical Optimization”,
Springer-Verlag, 1999

I. M. Gelfand and S. V. Fomin, “Calculus of variations”, Dover, 2000

Peter J. Olver, “The Calculus of Variations”, Lecture notes, 2021
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Calculus of variations and weak forms
Energy minimization problem

The optimization problem (assume k2 = 0 for now):

min
u∈H1

0 (Ω)
J (u) :=

1

2

∫
Ω

k1∇u · ∇u dx−
∫
Ω

fu dx

The Euler-Lagrange equation:

Ju(u
∗)(ũ) :=

dJ (u⋆ + εũ)

dε

∣∣∣∣
ε=0

= 0 for all ũ ∈ H1
0 (Ω)

Differentiating with respect to ε we obtain

dJ (u⋆ + εũ)

dε
=

∫
Ω

k1∇(u⋆ + εũ) · ∇ũ dx−
∫
Ω

fũ dx

Setting ε = 0, we obtain the weak (or variational) form:

Find u⋆ ∈ H1
0 (Ω) s.t.

∫
Ω

k1∇u⋆ · ∇ũ dx =

∫
Ω

fũ dx, for all ũ ∈ H1
0 (Ω).
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Calculus of variations and weak forms
Linear elliptic model problem: weak-to-strong form

Use Green’s identity, which is a multidimensional version of
integration-by-parts. The identity states that for all u, v ∈ H1

0 (Ω) holds∫
Ω

k1∇u · ∇v dx = −
∫
Ω

u∇ · k1∇v) dx+

∫
∂Ω

(k1∇v · n)u ds

Using this identity for the first term in the weak form we obtain

0 = −
∫
Ω

∇ · (k1∇u⋆)ũ dx−
∫
Ω

fũ dx

=

∫
Ω

− [f +∇ · (k1∇u⋆)] ũ dx, for all ũ ∈ H1
0 (Ω).

Since ũ is arbitrary, this implies that the factors multiplying ũ must vanish.
(This is a very common argument in variational calculus.)
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Calculus of variations and weak forms
Linear elliptic model problem: weak-to-strong form

Since ũ is arbitrary in Ω

−∇ · (k1∇u⋆) = f on Ω.

Since u⋆ is in H1
0 (Ω), it satisfies the Dirichlet boundary condition

u⋆ = 0 on ∂Ω.

These equations are the strong form for the variational problem.
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Calculus of variations and weak forms
Nonlinear elliptic model problem

Note: the optimality conditions for this problem are nonlinear when k2 > 0,
hence in general an iterative “outer’ optimization procedure (e.g., gradient
descent or Newton’s method) must be applied to determine the
minimizer u∗.

The second variation:

Juu(u
⋆)(ũ, û) :=

dJu(u
⋆ + εû)(ũ)

dε

∣∣∣∣
ε=0

Newton’s method at iteration k:

Juu(uk)(ũ, û) = −Ju(uk)(ũ)

uk+1 = uk + αû,

where α is the step size (found via backtracking line search).
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Coefficient field inversion in an elliptic PDE
The elliptic equation in strong form

−∇ · (em∇u) = f in D
u = g on ΓD

em∇u · n = h on ΓN

u is the state variable (e.g., pressure field)

m ∈ M is the inversion parameter (e.g., the
log permeability field)

f ∈ L2(D) is a source term

g ∈ H1/2(ΓD) and h ∈ L2(ΓN ) are Dirichlet
and Neumann boundary data

D ⊂ R2 is an open bounded domain with
sufficiently smooth boundary Γ = ΓD ∪ ΓN ,
ΓD ∩ ΓN = ∅
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Coefficient field inversion in an elliptic PDE
The forward/state problem in weak form

Define the spaces

Vg = {v ∈ H1(D) : v
∣∣
ΓD

= g}

V0 = {v ∈ H1(D) : v
∣∣
ΓD

= 0},

where H1(D) is the Sobolev space of
functions in L2(D) with square integrable
derivatives.

The weak form: find u ∈ Vg such that

⟨em∇u,∇p⟩ = ⟨f, p⟩+ ⟨h, p⟩ΓN , ∀p ∈ V0,

where ⟨·, ·⟩ and ⟨·, ·⟩ΓN denote the standard

inner products in L2(D) and L2(ΓN ),
respectively.
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Coefficient field inversion in an elliptic PDE
The inverse problem governed by an elliptic PDE

min
m

J (m) :=
1

2
∥Bu(m)− d∥2Γ−1

noise
+

1

2
∥m−mpr∥2C−1

prior

where u solves the elliptic PDE for given parameter field m.

B is a linear observation operator that
extracts measurements from u

mpr is the mean of the log coefficient field

d ∈ Rq is a given data vector

Γ−1
noise and C−1

prior appropriately chosen weights
(to account for noise in measurements and
properties of the parameter)

We solve this optimization problem via
Newton’s method, therefore need to derive
gradient and Hessian of J (m) with respect
to the parameter m.
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Gradient computation
using standard variational approach

The Lagrangian functional:

L(u,m, p) := J (m) + ⟨em∇u,∇p⟩ − ⟨f, p⟩ − ⟨p, h⟩ΓN ,

where p ∈ V0 is the Lagrange multiplier.

Optimality system:

Lp(p̃) = ⟨em∇u,∇p̃⟩ − ⟨f, p̃⟩ − ⟨p̃, h⟩ΓN = 0 (state)

Lu(ũ) = ⟨em∇ũ,∇p⟩+
〈
B∗Γ−1

noise(Bu− d), ũ
〉
= 0 (adjoint)

Lm(m̃) = ⟨m−mpr, m̃⟩C−1
prior

+ ⟨m̃em∇u,∇p⟩ = 0 (gradient)

for all variations (ũ, p̃, m̃) ∈ V0 × V0 ×M.

The gradient (also in weak form):

(Ju(m)(m̃) :=) G(m)(m̃) = ⟨m−mpr, m̃⟩C−1
prior

+ ⟨m̃em∇u,∇p⟩,

where u and p are solutions to the state and adjoint equations, respectively.
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The action of the Hessian in a direction

The meta-Lagrangian functional

LG(u,m, p; û, m̂, p̂) := G(m)(m̂) (gradient)

+ ⟨em∇u,∇p̂⟩ − ⟨f, p̂⟩ − ⟨p̂, h⟩ΓN (state)

+ ⟨em∇û,∇p⟩+
〈
B∗Γ−1

noise(Bu− d), û
〉

(adjoint)

The Hessian in a direction m̂ as the variation of LG with respect to m:

(Juu(m)(m̃, m̂) :=) H(m)(m̃, m̂) = ⟨m̃em∇û,∇p⟩+⟨m̂, m̃⟩C−1
prior

+⟨m̃m̂em∇u,∇p⟩+⟨m̃em∇u,∇p̂⟩

u and p are the solutions of the state and adjoint equations

û, p̂ are the incremental state and adjoint variables
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The action of the Hessian in a direction
The incremental (“second order”) state and adjoint

The Hessian in a direction m̂ as the variation of LG with respect to m:

H(m)(m̃, m̂) = ⟨m̃em∇û,∇p⟩+⟨m̂, m̃⟩C−1
prior
+⟨m̃m̂em∇u,∇p⟩+⟨m̃em∇u,∇p̂⟩

u and p are the solutions of the state and adjoint equations

û, p̂ are the incremental state and adjoint variables, and are obtained by
taking variations of LG with respect to p and u:

⟨em∇û,∇p̃⟩+ ⟨m̂em∇u,∇p̃⟩ = 0, ∀p̃ ∈ V0 (inc. state)〈
B∗Γ−1

noiseBû, ũ
〉
+ ⟨m̂em∇ũ,∇p⟩+ ⟨em∇ũ,∇p̂⟩ = 0, ∀ũ ∈ V0 (inc. adjoint).
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The inexact Newton-conjugate gradient algorithm
To compute the maximum a posteriori (MAP) point
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hIPPYlib: Inverse Problem PYthon library
http://hippylib.github.io

Developed at UT Austin and UC Merced.

Authors: Umberto Villa (UT Austin), Noemi Petra (UC Merced) and Omar
Ghattas (UT Austin)

Supported by NSF-SSI2: Integrating Data with Complex Predictive Models
under Uncertainty: An Extensible Software Framework for Large-Scale
Bayesian Inversion

Joint with: Omar Ghattas (UT Austin), Umberto Villa (UT Austin), Youssef
Marzouk (MIT) and Matthew Parno (US Army Cold Regions Research and
Engineering Laboratory (CRREL))

Implements state-of-the-art scalable adjoint-based algorithms for PDE-based
deterministic and (linear) Bayesian inverse problems.

Builds on FEniCS for the discretization of the underlying PDEs and on
PETSc for scalable and efficient linear algebra operations and solvers.
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hIPPYlib: Inverse Problem PYthon library

Features:

Friendly, compact, near-mathematical FEniCS notation to express the PDE
and likelihood in weak form
Automatic generation of efficient code for the discretization of weak forms
using FEniCS
Symbolic differentiation of weak forms to generate derivatives and adjoint
information
Globalized inexact Newton-CG method to solve the inverse problem
Randomized algorithm for the generalized eigenvalue problem
Low rank representation of the posterior covariance using randomized
algorithms
Sampling from the prior and from the Gaussian approximation of the posterior
Extract pointwise variance of prior and posterior

Release:

hIPPYlib 3.1 is now available at: http://hippylib.github.io

Details in: U. Villa, N. Petra, and O. Ghattas, hIPPYlib: An Extensible Software Framework for
Large-Scale Inverse Problems Governed by PDEs: Part I: Deterministic Inversion and Linearized
Bayesian Inferences. ACM Transactions on Mathematical Software (TOMS), 47(2), 2018.
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Approximation of the posterior distribution

Despite the explicit form of µpost(m), its exploration is difficult due to:

the high/infinite dimension of m

the expensive PDE-based parameter-to-observable map F

µpost(m)

Approximation II: Gaussian around MAP point

Use a Gaussian approximation around the MAP point based on second derivatives
(Hessians) of J .

This requires the Hessian matrix which is not directly available for
PDE-constrained problems: but the Hessian can be applied to vectors by
solving 2(+) PDEs.
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Example 2: Coefficient field inversion in an elliptic PDE
Uncertainty quantification via Gaussian/Laplace approximation of the posterior

a) b) c) d)

e) f) g) h)

Top: Prior mean mpr (a), and samples drawn from the prior distribution (b)–(d).
Bottom: The MAP point (e) and samples drawn from the Laplace approximation

of posterior distribution (f)–(h).
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Approximation of the posterior distribution

Despite the explicit form of µpost(m), its exploration is difficult due to:

the high/infinite dimension of m

the expensive PDE-based parameter-to-observable map F

µpost(m)

Approximation III: Sampling

Use sampling (Metropolis Hastings/Markov chain Monte Carlo) to approximate
statistics.

Sampling in high dimensions is challenging, requires many evaluations of f
(and good proposal distributions).

Exploit low rank properties of update of distribution; “feels” the curse of the
effective dimensionality rather than the discretization dimension.
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hIPPYlib-MUQ

Features:

Friendly, compact, near-mathematical FEniCS notation to express the PDE
and likelihood in weak form
Builds on the MUQ: MIT Uncertainty Quantification library. It allows:

exact sampling of non-Gaussian distributions (e.g., Markov chain Monte Carlo
and importance sampling),
approximating computationally intensive forward models (e.g., polynomial chaos
expansions and Gaussian process regression),
characterizing predictive uncertainties, etc.
Details in: M. Parno, A. Davis, and L. Seelinger, MUQ: MUQ: The MIT
Uncertainty Quantification Library, Journal of Open Source Software, 6(68),
2021.

Release:

hIPPYlib2MUQ is available on github:
https://github.com/hippylib/hippylib2muq.git

Details in: K. Kim, U. Villa, M. Parno, Y. Marzouk, O. Ghattas, N. Petra, hIPPYlib-MUQ: A Bayesian
Inference Software Framework for Integration of Data with Complex Predictive Models under
Uncertainty. ACM Transactions on Mathematical Software (TOMS), 2023
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Example: Coefficient field inversion in an elliptic PDE
Uncertainty quantification via MCMC sampling of the posterior

Method AR (%) MPSRF Min. ESS (index) Max. ESS (index) Avg. ESS NPS/ES
pCN (5.0E-3) 24 2.629 25 (24) 225 (8) 84 5,952
MALA (6.0E-6) 48 2.642 26 (22) 874 (5) 148 10,135
∞-MALA (1.0E-5) 57 2.943 25 (23) 1,102 (5) 160 9,375
H-pCN (4.0E-1) 27 1.192 64 (1) 3,598 (15) 2,314 216
H-MALA (6.0E-2) 60 1.014 545 (1) 8,868 (19) 6,459 232
H-∞-MALA (1.0E-1) 71 1.016 582 (1) 8,417 (18) 5,905 254
DR (H-pCN (1.0E0), H-MALA (6.0E-2)) (4, 61) 1.013 641 (1) 12,522 (17) 9,222 215
DR (H-pCN (1.0E0), H-∞-MALA (2.0E-1)) (4, 48) 1.011 613 (1) 12,812 (17) 9,141 213
DILI-PRIOR (0.8, 0.1) (60, 33) 1.064 314 (1) 4,667 (13) 3,216 548
DILI-LA (0.8, 0.1) (83, 36) 1.017 562 (1) 10,882 (17) 7,192 245
DILI-MAP (0.8, 0.1) (77, 22) 1.006 1,675 (1) 10,271 (20) 8,692 202

MCMC convergence diagnostics

Comparison of the performance of several MCMC methods: pCN, MALA,
∞-MALA, DR, DILI, and their Hessian-informed versions.

AR: Acceptance rate, MPSRF: multivariate potential scale reduction factor,
ESS: effective sample sample size

Used 20 MCMC chains, 500,000 samples in total.
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Infinite-dimensional parameters

Inverse problems governed by PDEs are formulated as optimization
problems in function spaces and the inversion parameters are typically
functions.

Large-scale inverse problems governed by PDEs

Optimize-then-discretize (OTD) versus discretize-then-optimize (DTO)

Often bound constraints are needed, interior-point methods in
infinite-dimensions

Fast and scalable optimization methods require gradient and Hessian (of
the cost functional) information

Variational calculus and adjoint-based techniques provide efficient means for
deriving first and second order derivative information for PDE-constrained
inverse problems.

Mesh-independence (i.e., the cost measured in terms of the number of
required PDE solves does not scale with the dimension of the inversion
parameter).

Exploit low-dimensional structure (global and/or off diagonal low rank,
parameter and state dimension reduction, preconditioning for the Newton
system, etc.)
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Optimal experimental design (OED)

In many inverse problem one has access to only sparse
and noisy data, i.e., only a few measurements can be
collected.

This makes parameter estimation challenging.

One needs to strike a balance between the competing
goals of stabilizing the inverse problem via
regularization and extracting as much information as
possible from limited data.

Optimal data aquisition ploblem: find optimal sensor
locations that minimize the “posterior uncertainty”.

A-optimal design approach leads to the following optimization problem:

min
w∈[0,1]ns

tr(Cpost(w))

Details in: A. Alexanderian, N. Petra, G. Stadler, O. Ghattas. A Fast and Scalable Method for
A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems, SISC 38
(1), 2016
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Parameter estimation and optimal experimental design
under (additional) uncertainty

In practice, in addition to the inversion parameters, the PDEs governing an
inverse problem contain other parameters that might be uncertain.

Such parameters, which are referred to as auxiliary parameters, nuisance
parameters or secondary uncertain parameters are not being estimated,
but are needed to fully specify the governing model.

It is important to understand the impact of these parameters on the inverse
problem solution and to account for this additional model uncertainties.

Hyper-differential sensitivity analysis (HDSA), can point to sources of
modeling uncertainties that cannot be ignored.

Once one has identifies the key modeling uncertainties, it is important to
account for these uncertainties in both the parameter inference and
experimental design (OED) stages.

Details in:

J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer, 2005

A. Alexanderian, N. Petra, R. Nicholson. Optimal design of large-scale nonlinear Bayesian inverse
problems under model uncertainty, Under review. arXiv preprint arXiv:2211.03952
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