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Motivations

Reduced Order Model (ROM) for parameterized Optimal Flow Control Problems (OFCP(µµµ))

based on data

(noisy, scattered, di�cult to interpret...)

several simulations for di�erent values of physical and/or geometrical parameter µµµ
(uncertainty quanti�cation, parameter estimation problems...)

ROM: fast and reliable tool to solve several parametric instances;
OCP(µ): classical mathematical tool to add data information in the model.

PDE(µ)

Control

Data(µ), µ

Cost Functional

Minimization
Optimal Solution

If µ changes

M. Strazzullo, w-ROM for OCP, 3/24



ROMs for Uncertainty Quanti�cation

PDE(µ)

Control

Data(µ), µ

Uncertainty Quanti�cation (UQ)

Cost Functional

Minimization
Optimal Solution

If µ changes

parameter is a random variable with given probability distribution ρ

evaluation of some statistics on the optimal solution (expected
solution) [Monte Carlo, a lot of realizations]

using Weighted-ROM models to accelerate Monte Carlo methods

weight solutions during the construction of the ROM,
sample the parameter space during the construction of the ROM.
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Problem Formulation
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Continuous Problem Formulation

Problem: given µ ∈ D ⊂ Rd , �nd (y(µ), u(µ)) ∈ Y × U which solves

min
(y ,u)∈Y×U

J(y , u;µ) := min
(y ,u)∈Y×U

1

2
∥y(µµµ)− yd(µµµ)∥2Y (ΩOBS)

+
α

2
∥u(µµµ)∥2U(Ωu)

such that L((y , u),w ;µ) = ⟨f (µ),w⟩ ∀w ∈ Y ,

Ω is our domain,

Y ,U are Hilbert Spaces,

ΩOBS ⊆ Ω is the observation domain,

Ωu ⊆ Ω̄ is the control domain,

yd(µµµ) ∈ Y (ΩOBS) is our given data in observation space,

α > 0 is a penalization parameter.
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Problem: given µ ∈ D ⊂ Rd , �nd (y(µ), u(µ)) ∈ Y × U which solves
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(y ,u)∈Y×U

J(y , u;µ) := min
(y ,u)∈Y×U

1

2
∥y(µµµ)− yd(µµµ)∥2Y (ΩOBS)

+
α

2
∥u(µµµ)∥2U(Ωu)

such that L((y , u),w ;µ) = ⟨f (µ),w⟩ ∀w ∈ Y ,

Lagrangian Approach [p adjoint variable]

1) de�ne L(y , u, p;µ) = J(y , u;µ) + L((y , u), p;µ)− ⟨f (µ), p⟩

2) given µ ∈ D ⊂ Rp, �nd (y , u, p) ∈ Y × U × Y

s.t.


DyL(y , u, p;µ)[z ] = 0 ∀z ∈ Y ,

DuL(y , u, p;µ)[v ] = 0 ∀v ∈ U,

DpL(y , u, p;µ)[κ] = 0 ∀κ ∈ Y .
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Discretized Problem

Truth Problem: Spatial Discretization (FE) + Time Discretization (Euler)︸ ︷︷ ︸
N=Nh·Nt

One-shot unsteady systemMy 0 BT

0 αMu −CT

B −C 0

yyyuuu
ppp

 =

∆tMyyd
0

∆tf


yyy = [y1, . . . , yNt ]
uuu = [u1, . . . , uNt ]
ppp = [p1, . . . , pNt ]

y , u, p FE discretization (dim 3N )
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yyy = [y1, . . . , yNt ]
uuu = [u1, . . . , uNt ]
ppp = [p1, . . . , pNt ]

y , u, p FE discretization (dim 3N )

What is the real structure of the matrix?
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Discretized Problem

Truth Problem: Spatial Discretization (FE) + Time Discretization (Euler)︸ ︷︷ ︸
N=Nh·NtFor example...(state equation)

B =


M+∆tD(µ)

−M M+∆tD(µ)
−M M+∆tD(µ)

. . .
. . .

−M M+∆tD(µ)



C =


Cu(µ)

Cu(µ)
. . .

Cu(µ)


Reduction could be very e�ective: space-time formulation is unfeasible for real-time applications.
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Methodology
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Reduced Order Modelling for OCP(µ)s

Goal: to achieve the accuracy of the truth solution δN = yN , uN , pN but at greatly reduced
cost of a low order model.

Strategy: δ(µ)
Space-Time(dim=N )−−−−−−−−−−−−→ δN (µ)

ROM (dimN)−−−−−−−−−−−→
∥δ(µ)−δN (µ)∥→0

δN(µ).

Proper Orthogonal Decomposition (POD):
choose Nmax ⊂ D �nite,
pick δN (µµµ1), . . . , δN (µµµNmax ),
solve an eigenvalue problem on
Cij =

1
Nmax

(δN (µµµi )δN (µµµj)) for i , j = 1, . . . ,Nmax ,
basis = eigenvectors associated to the largest N
eigenvalues (aggragated spaces).

Important: N ≪ N

δ(µNmax
)

δ(µi )

δ(µ2)

δ(µ1)
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Weighted Reduced Strategies

Standard POD algorithm results in the optimal N-dimensional subspace of the variable space
which minimizes ∫

D
∥δ(µ)− δN(µ)∥2dµ ≈ 1

Nmax

Nmax∑
i=1

∥δ(µi )− δN(µ
i )∥2,

Idea: use a more general quadrature rules of the form U(f ) =
∑M

i=1 ω
i f (µi ) for every

integrable function f : D → R, where µ1, . . . ,µN
max ∈ D are the nodes of the quadrature and

ω1, . . . , ωN
maxare the respective weights.

This results in the following approximation:

E
[
∥δ − δN∥2

]
≈ 1

Nmax

Nmax∑
i=1

ωiρ(µ
i )︸ ︷︷ ︸

w(µi )

∥δ(µi )− δN(µ
i )∥2

How does it work? Cij =
1

Nmax
(δN (µi ), δN (µj)) → Cw

ij = w(µi )
Nmax

(δN (µi ), δN (µj))
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Some Examples of Nodes

Figure: Nodes for di�erent quadrature rules

M. Strazzullo, w-ROM for OCP, 11/24



Some Examples of Distributions

Figure: Di�erent distributions
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Applications and Numerical Results
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Pollutant Control on the Gulf of Trieste
Motivations: monitor, manage and predict dangerous marine phenomena in a fast way

Aim: pollutant loss y ∈ H1
ΓD
(Ω) under a safeguard threshold yd

Given µ ∈ [0.5, 1]× [−1, 1]× [−1, 1], �nd (y(µ), u(µ)) ∈ Y ×U which
solves

min
(y,u)

1

2

∫
ΩOBS

(y − yd)
2 dΩy +

α

2

∫
Ωu

u2 dΩu

s.t.


µ1∆y + [µ2, µ3] · ∇y dΩ = uχΩu in Ω
∂y
∂n

= 0 on ΓN

y = 0 on ΓD

Boundaries:
ΓD = coasts, ΓN = Adriatic Sea.
Subdomains:
ΩOBS = Natural area of Miramare;
Ωu = Source of pollutant (in front of the city of Trieste).
µ1,µ2,µ3: wind action, α: 10−5, yd : 0.2
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Numerical Results

Figure: Relative Error for the state (left), control (middle), adjoint (right), using
ordinary POD (blue), Beta(0.5, 0.5)-Weighted-POD (green), Beta(75, 75)-Weighted-POD

(orange). Three di�erent quadrature rules for Beta(75, 75).

[Carere, Strazzullo, Ballarin, Rozza, Stevenson. Weighted POD-reduction for parametrized

PDE-constrained Optimal Control Problems with random inputs and its applications to

environmental sciences, Computers & Mathematics with Applications, 2021.]
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Stabilized State Equation

We deal with Advection-Di�usion Problem (High Péclet→ Stabilization (SUPG) ):

L(µ)y := yt − ε(µ)∆y + b(µ) · ∇y + boundary conditions.

Questions

Is OCP(µ) able to avoid instabilities? (Do I still need stabilization? For the adjoint too?)
Is consistent FOM-ROM model convenient?
How can I introduce stochastic knowledge in model order reduction?

[Zoccolan, Strazzullo, Rozza, �A Streamline upwind Petrov-Galerkin Reduced Order Method for

Advection-Dominated Partial Di�erential Equations under Optimal Control�, submitted, 2023.]

[Zoccolan, Strazzullo, Rozza, �Stabilized Reduced Order Method for Advection-Dominated Partial Di�erential

Equations under Optimal Control with random inputs�, submitted, 2023.]
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The SUPG stabilization for the whole system
[Collis, Heinkenschloss, Analysis of the Streamline Upwind/Petrov Galerkin method applied to the solution of
optimal control problems. CAAM TR02-01, 108, 2002.]

Controlled state equation

a
(
yN , qN ;µ

)
+

∑
K∈Th

δK

(
LyN ,

hK
|b|LSSq

N
)

K

−
∫
Ω

uNqN −
∑
K∈Th

δK

(
uN ,

hK
|b|LSSq

N
)

K

= f
(
qN ;µ

)
+

∑
K∈Th

δK
(
f , hK

|b|LSSq
N
)
K

∀qN ∈ YN .

Gradient equation (not a�ected) α

∫
Ω

uN vN
dx =

∫
Ω

pN vN
dx ∀vN ∈ UN

Adjoint equation

a∗
(
zN , pN

)
+

∑
K∈Th

δK

(
L∗pN ,

hK
|b| (−LSS) z

N
)

K

+

∫
Ωobs

(yN − yd)z
N

dx+
∑

K∈Th|Ωobs

δK

(
yN − yd ,

hK
|b| (−LSS) z

N
)

K

= 0 ∀zN ∈ YN
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Numerical Results

Given µ ∈ P �nd min
(y ,u)∈H(0,T ;H1(Ω))×L2(0,T :L2(Ω))

1

2
∥y − yd∥2L2(0,T ;L2(Ωobs ))

+
α

2
∥u∥2U such that


y(µ)t −

1

µ1
∆y(µ) + (cosµ2, sinµ2) · ∇y(µ) = u, in Ω× (0,T ),

y(µ) = 1 on Γ1 ∪ Γ2 × (0,T ),

y(µ) = 0 on Γ3 ∪ Γ4 ∪ Γ5 × (0,T ),

y(µ)(0) = 0 in Ω.

Γ1
Γ2

Γ3

Γ4

Γ5
Ωobs

Ω

Data

Ω = (0, 1)2, T = 3, ∆t = 0.1, Nt = 30, N = 362610,
yd = 0.5, h = 0.036, δk = 1., P = [102, 105] × [0, 1.57],
α = 0.01, Nmax = 100, N = 30.
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Numerical Results (Deterministic)

Figure: Only-O�ine stabilized, Online-O�ine vs FEM
(bottom), µ = (2 · 102, 1.2) at the �nal time.

Figure: Relative errors between FEM and reduced
solutions

Performances (FOM-ROM Stabilization is preferable)

Relative errors over time and parameters (Ptrain = 100) ∼ 10−2, 10−3. Speedup ∼ 5000
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Numerical Results (Random Inputs)

Figure: Only-O�ine stabilized, Online-O�ine vs FEM
(bottom), µ = (2 · 102, 1.2) at the �nal time.

Figure: Relative errors between FEM and reduced
solutions POD and w-POD (Beta(3,4), Beta(4,2))

At �rst we tried a steady case with di�erent quadrature rules, but it was always better to
sample as the distribution
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Numerical Results (Random Inputs)

Figure: Only-O�ine stabilized, Online-O�ine vs FEM
(bottom), µ = (2 · 102, 1.2) at the �nal time.

Figure: (Steady case) Relative errors between FEM
and reduced solutions w-POD (Beta(10,10),
Beta(10,10) and di�erent quadrature points)

Performances (no sparse grids for time dependent)

The error value 10−3 is reached for N = 30 (and not 50).
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Future Directions
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Multi-�delity Statistical POD for OCP

Goal: accelerate the o�ine phase

Dirichlet control

Part of the snapshots collected by
optimal control problems

Part of the snapshots collected by
uncontrolled system with random
Dirichlet inputs

Results: fast construction + not loosing accuracy
Collaborator: Enrique Delgado (University of Seville)

[Dolgov, Kalise, Saluzzi, �Statistical Proper Orthogonal Decomposition for model reduction in feedback control�,

arxiv preprint, 2023.]
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Dynamical Orthogonal Reduced Basis for Feedback Control

Given a set of initial conditions �nd the state solution Y ∈ C1((0,∞),RNh×p) such that{
δY(t) = AY(t) + Bu(Y(t)) for t ∈ (0,∞)

Y(t0) = Y0(µ).
(1)

The main objective is to represent Y(t) in a dynamical reduced space

Y(t) ≈ Y(t) = U(t)ZT (t) =
n∑

i=1

Ui (t)Zi (t;µ), (2)

Results: more accurate results and more comprehensive view of the optimality system
Collaborators: Cecilia Pagliantini (University of Pisa) and Luca Saluzzi (Scuola Normale
Superiore di Pisa)

[Sapsis, Lermusiaux, �Dynamically orthogonal �eld equations for continuous stochastic dynamical systems�,

Physica D, 2009.]
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Conclusions and Perspectives

Optimal Control in UQ,

w-ROM,

munerical results in environmental science and convection-dominated regime.

... More to be done

Boundary Control,

deeper analysis of the role of the control and di�erent techniques,

data-driven and non-intrusive techniques,
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