Full Bargmann gas solutions of the mKdV equation

Manuela Girotti
joint with Bob Jenkins (UCF) and Ken T-R McLaughlin (Tulane U.)

(EMORY UNIVERSITY

Integrable Systems: Geometrical and Analytical approaches, June 6th, 2024

The mighty "wave of translation"

- KdV equation
[Scott-Russell, 1834; Korteweg, de Vries, 1895]

$$
q_{t}-6 q q_{x}+q_{x x x}=0
$$

Shallow-water waves, internal waves in the ocean, ion acoustic waves in plasma, acoustic waves on a crystal lattice, ...

The Spirited Horse, the Engineer, and the Mathematician: Water Waves in Nineteenth-Century Hydrodynamics

Olivier Darrigol
Communicated by J.Z. BuchwaLD
Once upon a time, a spirited borse was drazging a boat along a peasefut canal af Northern Soodland. Suddenty, a ferceious dog charged from the bushes. The borse took himb asd ran off. draming the boan after him. To be hoss's surprise, the box offered ness the seene, pursued the mater through wumercus experiments and confirmed the

 of water motion, mosked this amatrourish atitempt There wis nothing in the engineer's equations 10 jusifify his reasoning, and much to cocondemn ic. Yet for a few years Scoulish

 he possibility of vanishize ship ressseecece emerect ss if thy nagic. At last, the wise man oping horse.
This tible is an imaginary simplification of a real story of wivich be enginece Joon Soot Russell, and the mastemmaticins (in a broad sense) George Biddell Airy, Geopeo

 knowne equationstecame mach moce easily accesssidic. The main purpose of top present anicle is to analyze the nature and the wazer waxe cicicumstances of this transformation.
 The latter matkerstician himself wrote the basic equations of weer waves, and solved
 co water waves was found in be nimeternth century: the celerity of small, plane, mono
ctromatic waves on waite of conssam deph, the pulter of waves created a a hoal acticn on the waner surface, the shape of ocsillatary or selitry waves of finite size, the effec of finction, wind, and a variable bollon on the size and shape of the wares. TBene mest of these ugpies, sad the loes. difificult struggles of nimetecenth century physicists

Classical solutions

Travelling wave ansatz:

$$
q(x, t)=\varphi(x-v t)
$$

the PDE becomes an ODE in the variable $\xi=x-v t:-v \varphi^{\prime}-6 \varphi \varphi^{\prime}+\varphi^{\prime \prime \prime}=0$.
(1) rapidly decreasing, localized travelling wave (soliton):

$$
q_{\mathrm{sol}}(x, t)= \pm \kappa \operatorname{sech}\left(2 \kappa\left(x-4 \kappa^{2} t-x_{0}\right)\right)
$$

with $\kappa>0$.

(2) periodic travelling wave solutions: $q_{\mathrm{ell}}(x, t)=$

Classical solutions

Travelling wave ansatz:

$$
q(x, t)=\varphi(x-v t)
$$

the PDE becomes an ODE in the variable $\xi=x-v t:-v \varphi^{\prime}-6 \varphi \varphi^{\prime}+\varphi^{\prime \prime \prime}=0$.
(1) rapidly decreasing, localized travelling wave (soliton):

$$
q_{\mathrm{sol}}(x, t)= \pm \kappa \operatorname{sech}\left(2 \kappa\left(x-4 \kappa^{2} t-x_{0}\right)\right)
$$

with $\kappa>0$.

(2) periodic travelling wave solutions: $q_{\mathrm{ell}}(x, t)=$

$$
-\beta_{1}-\beta_{2}-\beta_{3}+2 \frac{\left(\beta_{2}+\beta_{3}\right)\left(\beta_{1}+\beta_{3}\right)}{\beta_{2}+\beta_{3}-\left(\beta_{2}-\beta_{1}\right) \mathrm{cn}^{2}\left(\sqrt{\beta_{3}^{2}-\beta_{1}^{2}}\left(x-2\left(\beta_{1}^{2}+\beta_{2}^{2}+\beta_{3}^{2}\right) t\right)+x_{0} \mid m\right)}
$$

with wave parameters $\left\{\beta_{j}\right\}$ and $\mathrm{cn}(z \mid m)$ Jacobi elliptic function of modulus $m \in(0,1)$.

The general solution

$\underline{\text { Recipe (for fast decaying or step-like IC): }}$
Physical world

Hyperuranion

Integrable PDEs

The procedure applies to a vast class of PDEs (KdV, Boussinesq, mKdV, cubic NLS, etc.) that are integrable:
the equation arises as the compatibility condition between two linear differential operators - Lax pair [Tanaka, '72; Wadati, '73]:

$$
\begin{gathered}
\dot{\mathcal{L}}=[\mathcal{L}, \mathcal{B}] \\
\mathcal{L}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] D-\mathrm{i}\left[\begin{array}{ll}
0 & q \\
q & 0
\end{array}\right] \quad D:=\partial_{x} \\
\mathcal{B}=-4\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] D^{3}+3 D\left[\begin{array}{cc}
-q^{2} & \mathrm{i} q_{x} \\
\mathrm{i} q_{x} & -q^{2}
\end{array}\right]+3\left[\begin{array}{cc}
-q^{2} & \mathrm{i} q_{x} \\
\mathrm{i} q_{x} & -q^{2}
\end{array}\right] D .
\end{gathered}
$$

Equivalently, the compatibility condition can be presented as the existence of simultaneous solutions to

$$
\mathcal{L} \psi=\lambda \psi, \quad \psi_{t}=\mathcal{B} \psi .
$$

The Direct Scattering

Consider the Lax pair with initial profile $q(x, t=0)$.

From the equation

$$
\mathcal{L} \psi=\lambda \psi
$$

solving the eigenvalue-eigenfunction problem means to find the

scattering data,

which describe the solution space of the Schrödinger/Dirac operator:

$$
\begin{aligned}
\mathcal{S}_{0}=\{- & \kappa_{1}^{2}, \ldots,-\kappa_{n}^{2} \text { eigenvalues (discrete spectrum) } \\
& \chi_{1}, \ldots, \chi_{n} \text { norming constants of the eigenfunctions, } \\
& \rho(k) \text { reflection coefficient (continuum spectrum) }\}
\end{aligned}
$$

Turning on time

If $q(x, t)$ depends on a parameter t, one expects \mathcal{S}_{t} to vary with t as well.
If the t dependence of $q(x, t)$ is given in terms of the mKdV equation:

$$
q_{t}=-6 q^{2} q_{x}-q_{x x x}
$$

- the discrete eigenvalues are constant of motion: $-\kappa_{j}^{2}$;
- the norming constants satisfies: $\chi_{j}(t)=\chi_{j}(0) e^{A \kappa_{j}^{3} t}, A \in \mathbb{R}$;
- the reflection coefficient satisfies $\rho(k ; t)=\rho(k ; 0) e^{\mathrm{i} B k^{3} t}, B \in \mathbb{R}$.

Turning on time

If $q(x, t)$ depends on a parameter t, one expects \mathcal{S}_{t} to vary with t as well.
If the t dependence of $q(x, t)$ is given in terms of the mKdV equation:

$$
q_{t}=-6 q^{2} q_{x}-q_{x x x}
$$

- the discrete eigenvalues are constant of motion: $-\kappa_{j}^{2}$;
- the norming constants satisfies: $\chi_{j}(t)=\chi_{j}(0) e^{A \kappa_{j}^{3} t}, A \in \mathbb{R}$;
- the reflection coefficient satisfies $\rho(k ; t)=\rho(k ; 0) e^{\mathrm{i} B k^{3} t}, B \in \mathbb{R}$.

Finally, there exist standard spectral theory techniques to reconstruct the potential $q(x, t)$ from \mathcal{S}_{t} (we'll be using a Riemann-Hilbert problem).

Where is the soliton?

If $q(x, 0)$ yields only one eigenvalue $\lambda=-\kappa^{2}$ and no reflection coefficient $\rho(k) \equiv 0$ for the Schrödinger equation.
The solution $q(x, t)$ is a 1 -soliton solution:

$$
q_{\mathrm{sol}}(x, t)= \pm \kappa \operatorname{sech}\left(2 \kappa\left(x-4 \kappa^{2} t-x_{0}\right)\right)
$$

with phase shift

$$
x_{0}=\frac{1}{2 \kappa} \log \frac{2 \kappa}{|\chi|}
$$

In general,
(1) Multi-soliton solutions correspond to the discrete eigenvalues $\left\{-\kappa_{j}^{2}\right\}$ of the operator \mathcal{L}.
(2) The reflection coefficient $\rho(k)$ corresponds to a radiative part that propagates to the left and decays at rate t^{-1}.

What's so special about solitons?

- Solitons $=$ localized travelling wave solutions.
- Solitons $=$ discrete eigenvalues of the \mathcal{L} operator; they arise in the long-time behaviour.
- Soliton interaction is elastic: they "survive" collisions [Zabusky-Kruskal, '65]

$$
q(x, t)=\sum_{j=1}^{N} q_{\mathrm{sol}, \mathrm{j}}\left(x+\delta_{j}^{ \pm}, t\right)+o(1) \quad \text { as } t \rightarrow \pm \infty
$$

Figure: VIDEO

What's so special about solitons?

- Solitons $=$ localized travelling wave solutions.
- Solitons $=$ discrete eigenvalues of the \mathcal{L} operator; they arise in the long-time behaviour.
- Soliton interaction is elastic: they "survive" collisions [Zabusky-Kruskal, '65]

$$
q(x, t)=\sum_{j=1}^{N} q_{\mathrm{sol}, \mathrm{j}}\left(x+\delta_{j}^{ \pm}, t\right)+o(1) \quad \text { as } t \rightarrow \pm \infty
$$

Figure: VIDEO
pairwise interaction yields logarithmic phase shifts $\delta_{j}^{+}-\delta_{j}^{-} \sim \log \left|\frac{\kappa_{j}+\kappa_{i}}{\kappa_{j}-\kappa_{i}}\right|$

What is a soliton gas?

Definition (informal)

A soliton gas/ensemble is a -random- configuration of a large number of solitons.

Figure: Initial distribution of the soliton gas (left). (t, x)-diagram of soliton field (right). From [Shurgalina, Pelinovski, '16].

Several numerical experiments: [Gelash, Agafontsev, '18]. [Bonnemain, Congy, El, Roberti et al., '18-'24], [Pelinovsky, Didenkulova et al., '16-'24], etc.

Soliton gasses have been observed experimentally
in water waves [Costa et al., '14; Redor et al., '19; Suret et al., '20; ...] and in optics [Marcucci et al., '19; ...]

Experiments in optical fibers and in water tank


```
\checkmark Measurement of statistical properties (physical space)
Measurement of the density of state (nonlinear spectra)
```

[^0]From Suret's talk at INI in Summer 2022, and [Suret et al., '20].

A soliton gas:

(1) Continuum limit of solitons: gas solutions belong to the closure of the set of multisoliton potentials [Marchenko '88-'91], [Zaitsev, Whitham, '83], [Boyd, '84], [Gesztesy, Karwowski, Zhao, '92]
(2) Kinetic theory: soliton gas as a special large genus (thermodynamic) limit of a finite gap (N-phase nonlinear wave) solution to the PDE

[Zakharov, El, Tovbis, etc.]

A soliton gas:

(1) Continuum limit of solitons: gas solutions belong to the closure of the set of multisoliton potentials
[Marchenko '88-'91], [Zaitsev, Whitham, '83], [Boyd, '84], [Gesztesy,
Karwowski, Zhao, '92]
(2) Kinetic theory: soliton gas as a special large genus (thermodynamic) limit of a finite gap (N-phase nonlinear wave) solution to the PDE and a trial soliton velocity satisfies kinetic+continuity equations (nonlinear dispersive relations)

$$
v(\kappa)=4 \kappa^{2}+\frac{1}{\kappa} \int_{0}^{\infty} \ln \left|\frac{s+\kappa}{s-\kappa}\right|(v(\kappa)-v(s)) \varrho(s ; x, t) \mathrm{d} s, \quad \varrho_{t}+(v \varrho)_{x}=0
$$

[Zakharov, El, Tovbis, etc.]

A soliton gas:

(1) Continuum limit of solitons: gas solutions belong to the closure of the set of multisoliton potentials
[Marchenko '88-'91], [Zaitsev, Whitham, '83], [Boyd, '84], [Gesztesy,
Karwowski, Zhao, '92]
(2) Kinetic theory: soliton gas as a special large genus (thermodynamic) limit of a finite gap (N-phase nonlinear wave) solution to the PDE and a trial soliton velocity satisfies kinetic+continuity equations (nonlinear dispersive relations)

$$
v(\kappa)=4 \kappa^{2}+\frac{1}{\kappa} \int_{0}^{\infty} \ln \left|\frac{s+\kappa}{s-\kappa}\right|(v(\kappa)-v(s)) \varrho(s ; x, t) \mathrm{d} s, \quad \varrho_{t}+(v \varrho)_{x}=0
$$

[Zakharov, El, Tovbis, etc.]

- These two approaches are equivalent [Jenkins, '24+].
- We focus on the former approach.

Results

(1) construct a limiting $2 N$-soliton solution to the (m)KdV equation as $N \rightarrow \infty$, via RH problem
(2) analyze its asymptotic profile at $t=0$ for $x \rightarrow \pm \infty$ and at $t \gg 1$ for $x \in \mathbb{R}$

$$
q(x, t)=q_{\text {lead }}(x, t)+\{\text { error }\}
$$

Multi-soliton potential

Given the scattering data for $q_{t}+6 q^{2} q_{x}+q_{x x x}=0$

$$
\mathcal{S}=\left\{\left\{\mathrm{i} \kappa_{j}\right\}_{j=1}^{2 N},\left\{c_{j}\right\}_{j=1}^{2 N}, \rho(k)\right\}
$$

the solution [Wadati, '72; Deift-Zhou, '93]

$$
q_{2 N}(x, t)=\lim _{k \rightarrow \infty} 2 \mathrm{i} k \boldsymbol{M}_{12}(k ; x, t)
$$

$$
\theta=4 t k^{3}+x k
$$

Blaschke factor trick

Define:

$$
\widetilde{\boldsymbol{M}}(k):=\boldsymbol{M}(k)\left(\prod_{j=1}^{N} \frac{k-\mathrm{i} \mu_{j}}{k+\mathrm{i} \mu_{j}}\right)^{\sigma_{3}}
$$

the same $2 N$-solitons solution:

$$
q_{2 N}(x, t)=\lim _{k \rightarrow \infty} 2 \mathrm{i} k \widetilde{\boldsymbol{M}}_{12}(k ; x, t)
$$

Intuition: at $t=0$, the λ_{j}-bumps are located "on the right" and the μ_{j}-bumps are located "on the left".

Assume the eigenvalues are accumulating uniformly within a bounded interval $\Sigma:=\left[\mathrm{i} \eta_{1}, \mathrm{i} \eta_{2}\right]$:

- Rescale

$$
c_{j} \mapsto \frac{c_{j}}{N^{\gamma}} \quad \text { and } \quad \chi_{j} \mapsto \frac{\chi_{j}}{N^{\gamma}}
$$

where $\gamma=1$ in the bulk and $\gamma=\frac{3}{2}$ at the edges.

- The norming constants c_{j}, χ_{j} are discretization of smooth functions $r_{1}(k), r_{2}(k)$ (positive-valued, sufficiently regular, $r_{1}(k) r_{2}(k)<1$ on Σ).
- Take the limit $N \rightarrow+\infty \ldots$

This $2 N$-soliton solution has very broad support. For $N \gg 1$, it decays only for $|x|>C N$ for some $C \in \mathbb{R}_{+}$.

The limit RH problem

Theorem

The limiting RH problem has a unique solution and the corresponding $m K d V$ (classical) solution

$$
q(x, t):=\lim _{k \rightarrow \infty} 2 \mathrm{i} k \boldsymbol{X}_{12}(k ; x, t)
$$

is the uniform limit of the $2 N$-soliton solution $q_{2 N}(x, t)$ for $(x, t) \in \mathbb{R} \times \mathbb{R}_{+}$.

Sketch of the proof:

- Existence and uniqueness of the solution to the limiting RHP follows from the Vanishing Lemma [Zhou, '89].
- Uniform limit follows from standard Stirling formula expansion.

Properties:

- this gas is an instance of a condensate gas [El, Tovbis, '20];
- this gas is smooth and dense (due to the scaling of the norming constants);
- and deterministic.

The dispersionless gas

In the case where the reflection coefficient $\rho \equiv 0$, we recover a primitive/Bargmann potential.
[Dyachenko, Nabelek, Zakharov, Zakharov, '16-'20].
These potentials are constructed via formal limiting procedure from a scalar $\bar{\partial}$-problem with dressing operator [Zakharov, Manakov, '85] and they are encoded in the solution of a scalar nonlocal RH problem.

Figure: (left) periodic potential $r_{1}=r_{2}=\frac{1}{\pi}$; (right) one-sided dressing $r_{2}=0$.

Conjecture

All primitive/Bargmann potentials are regular, dense soliton gasses.

The half-gas

The case where $\rho \equiv 0$ and one of the limiting norming constant $r_{2} \equiv 0$ has already been analyzed in [Girotti, Grava, Jenkins, McLaughlin, Minakov, '23].

(1) Long-time asymptotic analysis:

$$
\begin{aligned}
\begin{array}{l}
q_{\mathrm{ell}}(x, t)= \\
\\
\\
\\
\text { modulating region } \mathcal{S}_{M} \\
\text { quiescent region } \mathcal{S}_{Q}: \\
\mathcal{O}\left(e^{-c t}\right)
\end{array} \\
\text { elliptic region } \mathcal{S}_{E}
\end{aligned}
$$

(3) gas-soliton interaction and derivation of the kinetic equations

and

(1) Long-time asymptotic analysis:

$$
\begin{gathered}
\begin{array}{l}
q_{\mathrm{ell}}(x, t)= \\
\\
\\
\\
\text { modulating region } \mathcal{S}_{M} \\
\text { quiescent region } \mathcal{S}_{Q}: \\
\mathcal{O}\left(e^{-c t}\right)
\end{array} \\
\text { elliptic region } \mathcal{S}_{E}
\end{gathered}
$$

(2) gas-soliton interaction and derivation of the kinetic equations:

$$
\dot{x}_{\text {peak }}=-\left.\frac{2 \varphi_{t}\left(\mathrm{i} \kappa_{0}\right)-\partial_{t} \ln \Psi\left(x, t ; \kappa_{0}, \eta_{1}\right)}{2 \varphi_{x}\left(\mathrm{i} \kappa_{0}\right)-\partial_{x} \ln \Psi\left(x, t ; \kappa_{0}, \eta_{1}\right)}\right|_{x=x_{\text {peak }}(t)}+\mathcal{O}\left(t^{-1}\right)
$$

and

$$
\bar{v}_{\text {sol }}\left(\kappa_{0}\right)=4 \kappa_{0}^{2}+\frac{1}{\kappa_{0}} \int_{\eta_{1}}^{\alpha} \ln \left|\frac{\kappa_{0}-s}{\kappa_{0}+s}\right|\left(v_{\text {group }}(s)-\bar{v}_{\text {sol }}\left(\kappa_{0}\right)\right) \partial_{x} \varrho(\mathrm{i} s) \mathrm{d} s
$$

where $\bar{v}_{\text {sol }}$ is the average velocity of the soliton peak over one period of the background.

Asymptotic analysis

Physical world

The full gas

- $q(x, 0)$ has elliptic behaviour at both $\pm \infty$:
$q(x, t)=\left(\eta_{1}+\eta_{2}\right) \operatorname{dn}\left(\left(\eta_{1}+\eta_{2}\right)\left(x-x_{0, \pm}\right) \mid m_{1}\right)+\mathcal{O}\left(x^{-\infty}\right)$ as $x \rightarrow \pm \infty$
- as $t \rightarrow+\infty, q(x, t)$ looks like a genus- 1 solution at both $x \rightarrow \pm \infty$, with a connecting region that is phase-modulating.

connecting region $\mathcal{S}_{C} \quad$ elliptic region $\mathcal{S}_{E_{+}}$

$$
q(x, t)=\left(\eta_{1}+\eta_{2}\right) \operatorname{dn}\left(\left.\left(\eta_{1}+\eta_{2}\right)\left(x-2\left(\eta_{1}^{2}+\eta_{2}^{2}\right) t-x_{0}\left(\frac{x}{t}\right)\right) \right\rvert\, m_{1}\right)+\mathcal{O}\left(t^{-\frac{1}{4}+\epsilon}\right)
$$

The limit RH problem

The core of the RH problem analysis relies on
(1) Small Norm Theorem: if we have a RHP of the type

$$
\boldsymbol{X}_{+}(k)=\boldsymbol{X}_{-}(k) \underbrace{(\boldsymbol{I}+\{\text { small terms }\})}_{\text {(almost) no jumps }}
$$

on the contours

$$
\boldsymbol{X}(k)=\boldsymbol{I}+\mathcal{O}\left(k^{-1}\right)
$$

$$
k \rightarrow \infty .
$$

then, the solution is $\boldsymbol{X}=\boldsymbol{I}+\{$ small terms $\}$ (the approximation can be explicitly estimated!).

Deift-Zhou Steepest Descent method: perform a sequence of invertible transformations of the original RH problem \boldsymbol{X}
\qquad in such away that, in the appropriate regime, the final RH problem S can be solved by an approximating solution W (the "model problem"):

The core of the RH problem analysis relies on
(1) Small Norm Theorem: if we have a RHP of the type

$$
\begin{array}{lr}
\boldsymbol{X}_{+}(k)=\boldsymbol{X}_{-}(k) \underbrace{(\boldsymbol{I}+\{\text { small terms }\})}_{\text {(almost) no jumps }} & \text { on the contours } \\
\boldsymbol{X}(k)=\boldsymbol{I}+\mathcal{O}\left(k^{-1}\right) & k \rightarrow \infty .
\end{array}
$$

then, the solution is $\boldsymbol{X}=\boldsymbol{I}+\{$ small terms $\}$ (the approximation can be explicitly estimated!).
(2) Deift-Zhou Steepest Descent method: perform a sequence of invertible transformations of the original RH problem \boldsymbol{X}

$$
\boldsymbol{X} \mapsto \boldsymbol{T} \mapsto \boldsymbol{U} \mapsto \ldots \mapsto \boldsymbol{S}
$$

in such away that, in the appropriate regime, the final RH problem \boldsymbol{S} can be solved by an approximating solution \boldsymbol{W} (the "model problem"):

$$
S \sim W
$$

(i.e. $\mathcal{E}=\boldsymbol{S}^{-1} \boldsymbol{W}$ fits into the Small Norm theorem setting).

A closer look at the jumps

The jump on the bands and the phase:

$$
\begin{aligned}
\boldsymbol{X}_{+}(k) \boldsymbol{X}_{-}^{-1}(k) & =\frac{1}{1+r_{1}(k) r_{2}(k)}\left[\begin{array}{cc}
1-r_{1}(k) r_{2}(k) & 2 \mathrm{i} r_{2}(k) e^{-2 \mathrm{i} \theta(k ; x, t)} \\
2 \mathrm{i} r_{1}(k) e^{2 \mathrm{i} \theta(k ; x, t)} & 1-r_{1}(k) r_{2}(k)
\end{array}\right] \\
\theta(k ; x, t) & =4 k^{3} t+k x=4 t k\left(k^{2}+\frac{x}{4 t}\right)
\end{aligned}
$$

At each point along Σ, and for any value of $\xi:=\frac{x}{t}$,
we always have one of the two exponentials $e^{ \pm 2 \mathrm{i} \theta(k ; x, t)}$ asymptotically large ...

The DZ steepest descent business

Massage the RH problem [Deift, Zhou, '92]:

$$
\boldsymbol{T}(k)=\boldsymbol{X}(k) e^{-\mathrm{i} g(k) \sigma_{3}} f(k)^{\sigma_{3}}
$$

The dynamic is driven by the g-function

$$
g(k ; x, t)=\int_{\Sigma \cup \bar{\Sigma}} \log (k-s) \varrho(s ; x, t) \mathrm{d} s, \quad \Sigma=\left[\mathrm{i} \eta_{1}, \mathrm{i} \eta_{2}\right] .
$$

The measure $\rho(s) \mathrm{d} s$ is given explicitly

$$
\varrho(s ; x, t) \mathrm{d} s=-\frac{1}{\pi \mathrm{i}} \frac{12 t\left(s^{4}+\frac{1}{2}\left(\eta_{1}^{2}+\eta_{2}^{2}\right) s^{2}+c_{2}\right)+x\left(s^{2}+c_{0}\right)}{\sqrt{\left(s^{2}+\eta_{2}^{2}\right)\left(s^{2}+\eta_{1}^{2}\right)}} \mathrm{d} s
$$

for some constants c_{0}, c_{2} depending on η_{1}, η_{2}, uniquely determined by a suitable normalization.

Remark

This is the same g-function that was constructed in [Girotti, Grava, Jenkins, McLaughlin, Minakov, '23].

- for $\frac{x}{t}<v_{1}$ and $\frac{x}{t}>v_{2}$:
$q(x, t)$ is a periodic travelling wave with fixed parameters (elliptic regions \mathcal{S}_{E}).
- $v_{1}<\frac{x}{t}<v_{2}$:
$q(x, t)$ is a periodic travelling wave with fixed parameters, but with slowly varying phase (connecting region \mathcal{S}_{C}).
- for $\frac{x}{t}<v_{0}$: contribution of the dispersive tails is present.

Case (ii): $v_{0} t<x<v_{1} t$

Case (iii): $v_{1} t<x<v_{2} t$

Case (iv): $x>v_{2} t$

The model problem

(1) Construct the outer parametric \boldsymbol{W} with ϑ_{3}-function associated to the genus-1 Riemann surface $\mathfrak{X}=\left\{(k, \eta) \in \mathbb{C}^{2} \mid \eta^{2}=\left(k^{2}+\eta_{1}^{2}\right)\left(k^{2}+\eta_{2}^{2}\right)\right\}$

(2) Construct local parametrices at the endpoints $P_{ \pm \eta_{j}}$ and at the inflection points $P_{+\ldots}\left(\right.$ and $\left.P_{+\nu}\right)$:

The model problem

(1) Construct the outer parametric \boldsymbol{W} with ϑ_{3}-function associated to the genus-1 Riemann surface $\mathfrak{X}=\left\{(k, \eta) \in \mathbb{C}^{2} \mid \eta^{2}=\left(k^{2}+\eta_{1}^{2}\right)\left(k^{2}+\eta_{2}^{2}\right)\right\}$

(2) Construct local parametrices at the endpoints $\boldsymbol{P}_{ \pm \eta_{j}}$ and at the inflection points $\boldsymbol{P}_{ \pm \mu}\left(\right.$ and $\left.\boldsymbol{P}_{ \pm \nu}\right)$:

Theorem (large time asymptotics)

The mKdV full gas has the following asymptotic behaviour:

$$
\begin{gathered}
q(x, t)=\left(\eta_{1}+\eta_{2}\right) \operatorname{dn}\left(\left.\left(\eta_{1}+\eta_{2}\right)\left(x-2\left(\eta_{1}^{2}+\eta_{2}^{2}\right) t-x_{0}\left(\frac{x}{t}\right)\right) \right\rvert\, m_{1}\right)+\mathcal{O}\left(t^{-\frac{1}{4}+\epsilon}\right) \\
x_{0}\left(\frac{x}{t}\right)=\frac{K\left(m_{1}\right)}{\eta_{1}+\eta_{2}}\left(\Delta\left(\frac{x}{t}\right)-1\right)
\end{gathered}
$$

for any $\epsilon>0$, where $\operatorname{dn}\left(x \mid m_{1}\right)$ is the Jacobi elliptic function with modulus $m_{1}=\frac{4 \eta_{1} \eta_{2}}{\left(\eta_{1}+\eta_{2}\right)^{2}}, K(m)=\int_{0}^{\frac{\pi}{2}} \frac{\mathrm{~d} \theta}{\sqrt{1-m \sin ^{2}(\theta)}}$ is the complete elliptic integral of first kind, and $\Delta(\xi)$ is an explicit modulation term:

$$
\begin{aligned}
& \Delta(\xi)=\frac{\eta_{2}}{K(m)}\left[\int_{\Sigma_{1}^{+}(\xi)} \frac{\log \left(\frac{2 r_{2}(z)}{1+r_{1}(z) r_{2}(z)}\right)}{R_{+}(z)} \mathrm{d} z-\int_{\Sigma_{1}^{-}(\xi)} \frac{\log \left(\frac{2 r_{1}(z)}{1+r_{1}(z) r_{2}(z)}\right)}{R_{+}(z)} \mathrm{d} z\right. \\
&\left.+\int_{\mathcal{L}^{0}(\xi)} \frac{\log \left(1+|\rho(z)|^{2}\right)}{R(z)} \mathrm{d} z\right]
\end{aligned}
$$

Remarks:

(1) The solution is equivalent to the elliptic solution

$$
\begin{aligned}
& q_{\mathrm{ell}}(x, t)= \\
& -\beta_{1}-\beta_{2}-\beta_{3}+\frac{2\left(\beta_{2}+\beta_{3}\right)\left(\beta_{1}+\beta_{3}\right)}{\beta_{2}+\beta_{3}-\left(\beta_{2}-\beta_{1}\right) \mathrm{cn}^{2}\left(\sqrt{\beta_{3}^{2}-\beta_{1}^{2}}\left(x-2\left(\beta_{1}^{2}+\beta_{2}^{2}+\beta_{3}^{2}\right) t\right)+x_{0} \mid m\right)}
\end{aligned}
$$

here $\beta_{1}=0, \beta_{2}=\eta_{1}$ and $\beta_{3}=\eta_{2}$.
(2) The error term $\mathcal{O}\left(t^{-\frac{1}{4}+\epsilon}\right)$ is due to the hyperbolic cylinder parametrix -when present-.
Otherwise, the error term is $\mathcal{O}\left(t^{-1 / 2}\right) / \mathcal{O}\left(e^{-t}\right)$ (resp. when $\rho \neq 0 / \rho=0$).
Indeed, in our construction we have $r_{j}(k) \sim\left|k-\mathrm{i} \eta_{j}\right|^{1 / 2}$ and the local parametrices near the fixed end points are not needed.

Figure: VIDEO: $\eta_{1}=0.95$ and $\eta_{2}=1 ; \frac{2 r_{1}}{1+r_{1} r_{2}}=e^{\mathrm{i} z}$ and $\frac{2 r_{2}}{1+r_{1} r_{2}}=e^{4 \mathrm{i} z}$.
$\mathrm{t}=7.46652$

Figure: VIDEO: $\eta_{1}=0.2$ and $\eta_{2}=1 ; \frac{2 r_{1}}{1+r_{1} r_{2}}=e^{\mathrm{i} z}$ and $\frac{2 r_{2}}{1+r_{1} r_{2}}=e^{4 \mathrm{i} z}$.

Conclusive overlook

What we have so far:

- We constructed a new class of solutions to the mKdV equation.

This gas is

- regular
- dense (condensate)
- deterministic
- Description of the full soliton gas in the large time regime, over the whole spatial domain.

Figure: Snapshot of the Bargmann gas asymptotics

Conclusive overlook

What would be cool to analyze:

- Interaction of the full gas with a big soliton: long time behaviour, kinetic equations, phase shifts, etc.
- conjecture: we'll get kinetic equations for a condensate...
- problem: where do we "initialize" the soliton?
- construct new gasses from soliton+antisoliton limit (i.e. r_{1}, r_{2} may have zeros)
- construct new (full) gasses from different scaling limits as $N \rightarrow \infty$ (e.g. reflection coefficients do not scale like $\mathcal{O}\left(N^{-1}\right)$)
- conjecture: we may be able to recover gasses that are not condensate

$$
\begin{aligned}
& \int_{\Sigma} \ln \left|\frac{s+\kappa}{s-\kappa}\right| u(s)|\mathrm{d} s|+\sigma(k) u(k)=\frac{\pi}{2} \\
& \int_{\Sigma} \ln \left|\frac{s+\kappa}{s-\kappa}\right| v(s)|\mathrm{d} s|+\sigma(k) v(k)=-2 \pi \kappa^{2}
\end{aligned}
$$

where u is the density of states, v is the density of velocities.

- asymptotic behaviour (a.k.a. g-function) will be different
- adding randomness to reflection coefficients/position of the poles (see Ken's talk!)

Conclusive overlook

What would be cool to analyze:

- Interaction of the full gas with a big soliton: long time behaviour, kinetic equations, phase shifts, etc.
- conjecture: we'll get kinetic equations for a condensate...
- problem: where do we "initialize" the soliton?
- construct new gasses from soliton+antisoliton limit (i.e. r_{1}, r_{2} may have zeros)
- construct new (full) gasses from different scaling limits as $N \rightarrow \infty$ (e.g. reflection coefficients do not scale like $\mathcal{O}\left(N^{-1}\right)$)
- conjecture: we may be able to recover gasses that are not condensate

$$
\begin{aligned}
& \int_{\Sigma} \ln \left|\frac{s+\kappa}{s-\kappa}\right| u(s)|\mathrm{d} s|+\sigma(k) u(k)=\frac{\pi}{2} \\
& \int_{\Sigma} \ln \left|\frac{s+\kappa}{s-\kappa}\right| v(s)|\mathrm{d} s|+\sigma(k) v(k)=-2 \pi \kappa^{2}
\end{aligned}
$$

where u is the density of states, v is the density of velocities.

- asymptotic behaviour (a.k.a. g-function) will be different
- adding randomness to reflection coefficients/position of the poles (see Ken's talk!)

Thank you! - Questions?

[^0]: \checkmark Measurement of statistical properties (physical space)
 \checkmark Measurement of the density of state (nonlinear spectra)

