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The mighty “wave of translation”

o KdV equation
[Scott-Russell, 1834; Korteweg, de Vries, 1895]
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Classical solutions

Travelling wave ansatz:
4@ 1) = o (2 — vt)
the PDE becomes an ODE in the variable £ = z — vt: —v¢’ — 6’ + ¢’ = 0.

@ rapidly decreasing, localized travelling wave (soliton):

gsol(z,t) = £k sech (2/@(1 —4r%t — zo)>

with k > 0.
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Classical solutions

Travelling wave ansatz:
4@ 1) = o (2 — vt)
the PDE becomes an ODE in the variable £ = z — vt: —v¢’ — 6’ + ¢’ = 0.

@ rapidly decreasing, localized travelling wave (soliton):

gsol(z,t) = £k sech (2/@(1 —4r%t — zo)>

with k > 0.

@ periodic travelling wave solutions: gey(z,t) =

—B1— Ba— B3 +2 (B2 + B3)(B1 + B3)
B2 + B3 — (B2 = f1) cn? ( B3 — Bt (z — 2(BF + B3 + B5)t) + wo | m)

with wave parameters {3;} and cn (z | m) Jacobi elliptic function of modulus
m € (0,1).
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The general solution

Recipe (for fast decaying or step-like IC):

Direct Scattering:
Lax pair £, B

q(z,0)

qt + 6‘12‘11)“1’ Qzaz =0

evolve the scattering data

q(z,t)

Inverse Scattering:
Marchenko eq.,
RH problem
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Integrable PDEs

The procedure applies to a vast class of PDEs (KdV, Boussinesq, mKdV, cubic
NLS, etc.) that are integrable:

the equation arises as the compatibility condition between two linear differential
operators — Lax pair [Tanaka, '72; Wadati, *73]:
L=[L,B]
{1 0 .0 ¢ L
c=f} Soif ] bea

9 9
B=-4|l Opsysp |70 0= 3|79 lz|p
0 1 igz  —q igz  —q

Equivalently, the compatibility condition can be presented as the existence of
simultaneous solutions to

Lap = Aip, Yy =By .
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The Direct Scattering

Consider the Lax pair with initial profile ¢(z,¢ = 0).

From the equation
L=y
solving the eigenvalue-eigenfunction problem means to find the
scattering data,
which describe the solution space of the Schrédinger/Dirac operator:
Sp = {—n%, R —n% eigenvalues (discrete spectrum),
X1, - --,Xn norming constants of the eigenfunctions,

p(k) reflection coeflicient (continuum spectrum) }
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Turning on time

If g(x,t) depends on a parameter ¢, one expects S; to vary with ¢ as well.
If the t dependence of g(z,t) is given in terms of the mKdV equation:
_ 2
qt = 76q 4z — qzzx
o the discrete eigenvalues are constant of motion: fni;

3
o the norming constants satisfies: x;(t) = x; (O)eAnﬂ't, AeR;

o the reflection coefficient satisfies p(k;t) = p(k; O)einSt7 B eR.
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Turning on time

If g(x,t) depends on a parameter ¢, one expects S; to vary with ¢ as well.
If the t dependence of g(z,t) is given in terms of the mKdV equation:
_ 2
qt = 76q 4z — qzzx
o the discrete eigenvalues are constant of motion: fni;

3
o the norming constants satisfies: x;(t) = x; (O)eAnﬂ't, AeR;

o the reflection coefficient satisfies p(k;t) = p(k; O)einSt7 B eR.

Finally, there exist standard spectral theory techniques to reconstruct the
potential g(z,t) from S¢ (we’ll be using a Riemann—Hilbert problem).

7/37



Intro
00000080

Where is the soliton?

If q(z, 0) yields only one eigenvalue A = —x2 and no reflection coefficient p(k) = 0
for the Schrédinger equation.

The solution g(z,t) is a 1-soliton —
solution:

gsol(z,t) = £rsech (2&(:5 —4Kk%t— :vo)>

with phase shift

1 2K
g = — log — .
2% % x| B

In general,

@ Multi-soliton solutions correspond to the discrete eigenvalues {—m?} of the
operator L.

@ The reflection coefficient p(k) corresponds to a radiative part that propagates
to the left and decays at rate t— 1.
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What’s so special about solitons?

e Solitons = localized travelling wave solutions.

e Solitons = discrete eigenvalues of the £ operator; they arise in the long-time
behaviour.

e Soliton interaction is elastic: they “survive” collisions [Zabusky-Kruskal, ’65]

N
q(z,t) = Z gsol,j(x + (5?:,t) + o(1) ast — too
j=1

20f

n
T
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Figure: VIDEO
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e Solitons = discrete eigenvalues of the £ operator; they arise in the long-time
behaviour.

e Soliton interaction is elastic: they “survive” collisions [Zabusky-Kruskal, ’65]
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Kjtki
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pairwise interaction yields logarithmic phase shifts 5;.’ - 5; ~ log
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What is a soliton gas?

A soliton gas/ensemble is a -random- configuration of a large number of
solitons.

% 500 1000 1500 2000 40 60
X time

Figure: Initial distribution of the soliton gas (left). (t,z)-diagram of soliton field (right). From
[Shurgalina, Pelinovski, '16].

Several numerical experiments: [Gelash, Agafontsev, ’18]. [Bonnemain, Congy, El,
Roberti et al., ’18-24], [Pelinovsky, Didenkulova et al., ’16-'24], etc.
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Soliton gasses have been observed experimentally
in water waves [Costa et al., '14; Redor et al., ’19; Suret et al., '20; ...]| and in
optics [Marcucci et al., ’19; .. .]
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Experiments in optical fibers and in water tank
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A soliton gas:

@ Continuum limit of solitons: gas solutions belong to the closure of the set
of multisoliton potentials
[Marchenko ’88-'91], [Zaitsev, Whitham, '83], [Boyd, '84], [Gesztesy,
Karwowski, Zhao, ’'92]

@ Kinetic theory: soliton gas as a special large genus (thermodynamic) limit
of a finite gap (IN-phase nonlinear wave) solution to the PDE

[Zakharov, El, Tovbis, etc.]
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A soliton gas:

@ Continuum limit of solitons: gas solutions belong to the closure of the set
of multisoliton potentials

[Marchenko ’88-'91], [Zaitsev, Whitham, '83], [Boyd, '84], [Gesztesy,
Karwowski, Zhao, '92]

@ Kinetic theory: soliton gas as a special large genus (thermodynamic) limit
of a finite gap (IN-phase nonlinear wave) solution to the PDE

and a trial soliton velocity satisfies kinetic+continuity equations (nonlinear
dispersive relations)

()*454‘ /

[Zakharov, El, Tovbis, etc.]

(v(k) —v(s)) e(s;m, t)ds , o1 + (vo), =
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From [Carbone, Dutyk, El, ’16].
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A soliton gas:

@ Continuum limit of solitons: gas solutions belong to the closure of the set
of multisoliton potentials

[Marchenko ’88-'91], [Zaitsev, Whitham, '83], [Boyd, '84], [Gesztesy,
Karwowski, Zhao, '92]

@ Kinetic theory: soliton gas as a special large genus (thermodynamic) limit
of a finite gap (IN-phase nonlinear wave) solution to the PDE

and a trial soliton velocity satisfies kinetic+continuity equations (nonlinear
dispersive relations)

()*4n+ /

[Zakharov, El, Tovbis, etc.]

(v(k) —v(s)) e(s;m, t)ds , o1 + (vo), =

f,=0.048; n, =0.65 1, =0.30

2
—— I g
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From [Carbone, Dutyk, El, ’16].
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Results

@ construct a limiting 2/N-soliton solution to the (m)KdV equation as N — oo,

via RH problem

@ analyze its asymptotic profile at t = 0 for £ — oo and at ¢t > 1 for z € R
t=7.46652

0 20 40 60 80 100 120 140

q(z,t) = Qread (@, t) + {error}
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Multi-soliton potential

Given the scattering data for gt + 6¢%qz + qzzz =0

(o5 M =
s 2N 2N ) 0
s = {{in; 1320 {32 o)} i M0 [ e
the solution [Wadati, ’72; Deift-Zhou, *93] 2
@n(z,t) = lim 2ikMi2(k;x,t) .
k—oc0
L]
mx
30
” —mx
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10 °
5 .
o — —n2X
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0 = 4tk® 4 zk
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Blaschke factor trick

Define: res M =

N o3 k=iX;
M(k):==M(k) [ ]]
j=1

k—ip;
k+ip;

. ~ 0 0
kL“&] M (k) —icj eX0Usm) 0

the same 2N-solitons solution: X

@ (z,t) = kli)n;o 2ik1’\;I/12(l~c;ac7 t)

5
0 I

-100 -7.5 =50 -25 00 25 50 75 100

Intuition: at ¢ = 0, the \;j-bumps are located “on the res M —
right” and the p;-bumps are located “on the left”. k=in _
m M) [0 NG

k—ipj

—2i0(k;z,t)
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Assume the eigenvalues are accumulating uniformly within a bounded interval
5= [iny, in2:

o Rescale i
AJ

cj = —— and Xj = N7

)

where v = 1 in the bulk and v = % at the edges.

e The norming constants c;, x; are discretization of smooth functions
r1(k), r2(k) (positive-valued, sufficiently regular, 71 (k)r2(k) < 1 on X).

o Take the limit N — 400 ...

70

60

50

40

30

10

-100 -75 =50 -25 00 25 50 75 100

This 2N-soliton solution has very broad support. For N > 1, it decays only for
|z] > CN for some C € R4
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The limit RH problem

in2
1—r1 (k)ra (k) 2iry (k) __ ,—2i0(kszt) 1 —p(k)e—210(k;x.t)
1471 (k)ra(k) 1+ry(k)ra(k) _p(k>€2i0(k';:c,r,) 14 \p(k)\z
2iry (k) 2i0(kse,t)  1=ri(k)ra(k)
Ttry (k)r2(k) THry (k)r2(k)
in
—im
1—r1(=k)ra(=k) 2iry (—k) e—2i0(ksw,t)
T+ri(=k)ra(—k) 1+ri(=k)ra(—k)
2irg (—k) £2i0(k;,t) k)
THri (—k)ra(—k) T+ry (—k)r2(—k)
—inz

O(k; x,t) = 4tk® + xk
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The limiting RH problem has a unique solution and the corresponding mKdV
(classical) solution

q(z,t) := klgr;o 2ikX12(k; z, t)

is the uniform limit of the 2N-soliton solution gan (z,t) for (z,t) € R X R4.

Sketch of the proof:
o Existence and uniqueness of the solution to the limiting RHP follows from the
Vanishing Lemma [Zhou, ’89].

@ Uniform limit follows from standard Stirling formula expansion.

Properties:
- this gas is an instance of a condensate gas [El, Tovbis, "20];
- this gas is smooth and dense (due to the scaling of the norming constants);

- and deterministic.
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The dispersionless gas
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In the case where the reflection coefficient p = 0, we recover a
primitive/Bargmann potential.
[Dyachenko, Nabelek, Zakharov, Zakharov, ’16—20].

These potentials are constructed via formal limiting procedure from a scalar
O-problem with dressing operator [Zakharov, Manakov, '85]
and they are encoded in the solution of a scalar nonlocal RH problem.

20

22

24

Figure: (left) periodic potential ry = ro =
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; (right) one-sided dressing r2 = 0.

All primitive/Bargmann potentials are regular, dense soliton gasses.
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The half-gas

The case where p = 0 and one of the limiting norming constant ro = 0 has already
been analyzed in [Girotti, Grava, Jenkins, McLaughlin, Minakov, ’23].

in2

1 0

ir(k)e—2i0(kizt) |
in

,,,,,,,,,,,,,,,,,,, >
—im
1 i7’(k’) ezie(k-;a;.t)
0 1

—inz

0 = 4tk® + zk
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© Long-time asymptotic analysis:

gen(z,t) = (e +mn1)dn ((oz +n)(z — 2(77% + a2)t —x0) | ma) + O(til)

modulating region Sy elliptic region Sp
\4
quiescent region S¢: af
O(e=¢t)
\ 1 f/\/\/\/\/\/\/\I\N\/\/\/\I\/\/\A
e i 20 20 40 60
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© Long-time asymptotic analysis:

gen(z,t) = (e +mn1)dn ((oz +n)(z — 2(77% + a2)t —x0) | ma) + O(til)

modulating region Sy elliptic region Sp
\4
quiescent region S¢: af
O(e=¢t)
\ 1 f/\/\/\/\/\/\/\I\N\/\/\/\I\/\/\A
e i 20 20 40 60

@ gas-soliton interaction and derivation of the kinetic equations:

_ 2¢p4(iko) — Oy In ¥(z, t; ko, M)
204 (iko) — Oz In U (z, t; Ko, M)

+0 (™)

T=Tpeak (t)

:tpcak =

and

Ko — S

(vgroup(s) — Vsol (K0)) Dz o(is) ds

2 Lre
Usol(Ko) = 4K§ + :‘?0 / In
m

Ko + 8

where g0 is the average velocity of the soliton peak over one period of the
background.
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Asymptotic analysis

qt + 6‘12‘11‘ + Gzze =0

q(,0) [T777777°7 >ToTTTTT q(=,1)
Riemann—Hilbert
problem
(large t’s)
5(0) S(t)

HAVAVAVAVAVAVAVAVAVAVAVAVAVA S

continuum limit of solitons
with a spectral gap
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The full gas

o ¢(z,0) has elliptic behaviour at both Foo:
a(z,t) = (m +n2) dn ((n +n2) (¢ — zo,+) | m1) + O (7>°) as z — +oo
e as t — +00, q(x,t) looks like a genus-1 solution at both z — +oo, with a
connecting region that is phase-modulating.

t=7.46652
20

elliptic region Sp_ 15

(+dispersion)

60 80 100 120 140

connecting region S¢ elliptic region Sg

N _14.
q(z,t) = (m +n2) dn ((n1 +n2)(x — 2(n7 +n3)t —z0(L)) | m1) + O (t at )
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elliptic wave

elliptic wave
+ dispersion

elliptic wave
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The limit RH problem

in2
1—r1 (k)ra (k) 2iry (k) __ ,—2i0(kszt) 1 —p(k)e—210(k;x.t)
1471 (k)ra(k) 1+ry(k)ra(k) _p(k>€2i0(k';:c,r,) 14 \p(k)\z
2iry (k) 2i0(kse,t)  1=ri(k)ra(k)
Ttry (k)r2(k) THry (k)r2(k)
in
—im
1—r1(=k)ra(=k) 2iry (—k) e—2i0(ksw,t)
T+ri(=k)ra(—k) 1+ri(=k)ra(—k)
2irg (—k) £2i0(k;,t) k)
THri (—k)ra(—k) T+ry (—k)r2(—k)
—inz

O(k; x,t) = 4tk® + xk
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The core of the RH problem analysis relies on
© Small Norm Theorem: if we have a RHP of the type

X1 (k) =X_(k) (I + ) on the contours

(almost) no jumps

X(k)y=I+0 (k") k — oco.

then, the solution is X = I +
(the approximation can be explicitly estimated!).
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The core of the RH problem analysis relies on

© Small Norm Theorem: if we have a RHP of the type

X1 (k) =X_(k) (I + ) on the contours

(almost) no jumps
X(k)=I+0 (k™) k — oo.

then, the solution is X = I +
(the approximation can be explicitly estimated!).

@ Deift—Zhou Steepest Descent method: perform a sequence of invertible
transformations of the original RH problem X

X—>T—Uw—...~>8S

in such away that, in the appropriate regime, the final RH problem S can be
solved by an approximating solution W (the “model problem”):

S~W

(i.e. €= S~1W fits into the Small Norm theorem setting).
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A closer look at the jumps

The jump on the bands and the phase:

Xi(R)X"'(k) =

1 [ 1—ri(k)ro(k)  2irg(k)e—2i0(kiz,t)
- 1+ ri(k)ra(k)

2iry (k)e2i0(k;:t) 1 —ri(k)ra(k)

O(k;z,t) = AkSt+ kx = 4tk (k2 + i)

At each point along X, and for any value of £ := §,
we always have one of the two exponentials e¥219(%:@:t) gsymptotically large . . .
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The DZ steepest descent business

Massage the RH problem [Deift, Zhou, "92]:
T(k) = X (k)e 9875 f (k)3

The dynamic is driven by the g-function

o(kz,t) = / log(k - s)e(s;z, t)ds , S = [ina, ina]
ux

The measure p(s)ds is given explicitly

1 12t(s* + %(n% +n3)s% +c2) + (s + Co)ds

m (2 +n3)(s* + i)

o(s;x, t)ds =

for some constants cg, c2 depending on 71,72, uniquely determined by a suitable
normalization.

This is the same g-function that was constructed in [Girotti, Grava, Jenkins,
McLaughlin, Minakov, "23].
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° for%<v1 and%>v2:
q(z,t) is a periodic travelling wave with fixed parameters (elliptic regions Sg).

0 v1 < § <wa
q(z,t) is a periodic travelling wave with fixed parameters, but with slowly
varying phase (connecting region Sc).

o for % < vg: contribution of the dispersive tails is present.

ARaTma
G v v
7\ A )y
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Case (ii): vot <o < vt

t Case (iv): @

—ing —iny
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The model problem

© Construct the outer parametric W with ¢3-function associated to the genus-1
Riemann surface X = {(k,n) € C? | n? = (k% + n3)(k* + n3)}

> B

S
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The model problem

© Construct the outer parametric W with ¢3-function associated to the genus-1
Riemann surface X = {(k,n) € C? | n? = (k% + n3)(k* + n3)}

A ——]
o I +
pd °X°
ing o \uim ing

x@

© Construct local parametrices at the endpoints Piy; and at the inflection
points P, (and P4,):

Bessel Par.Cil Bessel

Bessel Par.Cil Bessel
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Theorem (large time asymptotics)

The mKdV full gas has the following asymptotic behaviour:
1
a(@,t) = (m +n2) dn (. + 12) (@ — 2(nF +n3)t — 20(%)) [ ma) + 0 (£75+)

zy _ K(m) zy _
GUO(,g)an_772 (AE)-1),

™

for any € > 0, where dn(z | m1) is the Jacobi elliptic function with modulus

_ _4mmn — (2 dé
el = (m+n2)2”’ K(m) - fO V/1—msin2(6)

kind, and A(§) is an explicit modulation term:

is the complete elliptic integral of first

log ( rEm® log (o)
A() n2 /+ <1+ 1()2())dz/ <1+ 1()2())dz
279 21 (©)

K (m) Ry (2) Ry (2)

log (1 + p(2)2)
+/z:°<s) Rz ] '
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Remarks:

@ The solution is equivalent to the elliptic solution
qell(xv t) =

—B1— P2 —Bs + 2(B2 + B3)(B1 + B3)

B2 + Bz — (B2 — B1) cn? (\/Bg — Bi(z —2(B2 + B3 + B2)t) + zo | m)

here 81 = 0, B2 = m and B3 = n2.

@ The error term O(t_%"'e) is due to the hyperbolic cylinder parametrix -when
present-.
Otherwise, the error term is O(t~1/2)/O(e~*) (resp. when p # 0/ p = 0).

|1/2 and the local

Indeed, in our construction we have r;(k) ~ |k — in;
parametrices near the fixed end points are not needed.
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t=8.24771
14

: o 1
1 1
1 1
1 0.6 1
1 1
! 1
| 04 i
1 1
! 1
, 0.2 H
1 1
1 1
\ L " \
-100 -50 0 50 100
Figure: VIDEO: 5y = 0.95 and 72 = 1; 11— = ¢'* and _2r2 iz

’ 1+r1r2
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t=7.46652

| U

80 100 120 140
Figure: VIDEO: n; = 0.2 and n2 = 1; W = ¢!* and % = 4z,
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To be continu
[ 1]

Conclusive overlook

What we have so far:
@ We constructed a new class of solutions to the mKdV equation.
This gas is
e regular

o dense (condensate)
o deterministic

o Description of the full soliton gas in the large time regime, over the whole
spatial domain.

=7.46652
20

Y

60 80 100 120 140

Figure: Snapshot of the Bargmann gas asymptotics
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(o] J

Conclusive overlook

What would be cool to analyze:
o Interaction of the full gas with a big soliton: long time behaviour, kinetic
equations, phase shifts, etc.
o congjecture: we’ll get kinetic equations for a condensate...
o problem: where do we “initialize” the soliton?

e construct new gasses from soliton+antisoliton limit
(i.e. 71,72 may have zeros)

e construct new (full) gasses from different scaling limits as N — oo (e.g.
reflection coefficients do not scale like O(N~1))
e conjecture: we may be able to recover gasses that are not condensate

/lns+
= _
/ln
=

where u is the density of states, v is the density of velocities.
e asymptotic behaviour (a.k.a. g-function) will be different

T

2

u(s)|ds| + o (k)u(k)

K
K

R v(s)|ds| + o(k)v(k) = —2mk>

— K

e adding randomness to reflection coefficients/position of the poles
(see Ken’s talk!)
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where u is the density of states, v is the density of velocities.
e asymptotic behaviour (a.k.a. g-function) will be different

e adding randomness to reflection coefficients/position of the poles
(see Ken’s talk!)

Thank you! — Questions?
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