TRIESTE 2024

Bi-flat F-manifolds, Frölicher-Nijenhuis bicomplexes and integrable systems

Paolo Lorenzoni

EDEGLI STUDI

Plan of the talk

1. Frölicher-Nijenhuis bicomplex and integrable systems of hydrodynamic type.
Based on a joint work with F. Magri (2005).
2. Frölicher-Nijenhuis bicomplex and Lauricella bi-flat F-maniflolds.
Based on a joint work with S. Perletti (2023).
3. Bi-flat F-manifolds, lifted Frölicher-Nijenhuis bicomplexes and Gauss-Manin connections. Based on a joint work with A. Arsie (2024).

PART I

Frölicher-Nijenhuis bicomplex and integrable systems of hydrodynamic type.

Based on a joint work with F. Magri (2005).

Nijenhuis operators and Frölicher-Nijenhuis bicomplex

Let L be a $(1,1)$ tensor field L with vanishing Nijenhuis torsion:

$$
[L X, L Y]-L[X, L Y]-L[L X, Y]+L^{2}[X, Y]=0
$$

Define d_{L} as

$$
\begin{aligned}
& \left(d_{L} \omega\right)\left(X_{0}, \ldots, X_{k}\right)=\sum_{i=0}^{k}(-1)^{i}\left(L X_{i}\right)\left(\omega\left(X_{0}, \ldots, \hat{X}_{i}, \ldots, X_{k}\right)\right)+ \\
& \quad+\sum_{0 \leqslant i<j \leqslant k}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right]_{L}, X_{0}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots X_{k}\right)
\end{aligned}
$$

where

$$
\left[X_{i}, X_{j}\right]_{L}=\left[L X_{i}, X_{j}\right]+\left[X_{i}, L X_{j}\right]-L\left[X_{i}, X_{j}\right] .
$$

Frölicher-Nijenhuis bicomplex

The Frolicher-Nijeenhuis bicomplex is $\left(d, d_{L}, \Omega(M)\right)$ where

- $\Omega(M)$ is the Grasmann algebra of differential forms on M.
- d is the usual de Rham differential,
- $d_{L}^{2}=0$ due to the vanishing of the Nijenhuis torsion.
- Since $L+I$ has vanishing Nijenhuis torsion we have

$$
d \cdot d_{L}+d_{L} \cdot d=0
$$

Classical Lenard-Magri recursion

Starting from a solution of

$$
d \cdot d_{L} a_{0}=0
$$

the recursion

$$
d a_{k+1}=d_{L} a_{k}
$$

is well defined. Indeed, due to anticommutativity of d and d_{L} at each step we have

$$
d \cdot d_{L} a_{k}=-d_{L} \cdot d a_{k}=-d_{L}^{2} a_{k-1}=0
$$

Generalized Lenard-Magri recursion

Starting from a solution of

$$
d \cdot d_{L} a_{0}=0
$$

it is not difficult to prove that also the recursion

$$
d a_{k+1}=d_{L} a_{k}-a_{k} d a_{0}
$$

is well defined. The sequence of functions $a_{0} \cdot a_{1}, a_{2}, \ldots$, obtained in this way satisfy the equation

$$
d \cdot d_{L} a_{k}=d a_{k} \wedge d a_{0}
$$

Similar recursion appears in the geometric theory of separation of variables (Falqui, Magri and Pedroni).

Generalized Lenard-Magri chains and integrable systems of hydrodynamic type

Theorem (P.L and F. Magri 2005)

Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of functions obtained applying generalized Lenard-Magri recursion and let V_{k} be the tensor fields of type $(1,1)$ defined recursively by

$$
V_{k+1}=V_{k} L-a_{k} l,
$$

starting from $V_{0}=I$, then the flows

$$
\boldsymbol{u}_{t_{k}}=V_{k} \boldsymbol{u}_{x} \quad k=0,1,2, \ldots
$$

commute. Moreover the densities of conservation laws h satisfy the equation

$$
d \cdot d_{L} h=d h \wedge d a_{0} .
$$

Generalized ε-system

The system of hydrodynamic type

$$
\left[\begin{array}{c}
u_{t_{1}}^{1} \\
\vdots \\
u_{t_{1}}^{n}
\end{array}\right]=\left[\begin{array}{ccc}
u^{1}-\sum_{k=1}^{n} \varepsilon_{k} u^{k} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & u^{n}-\sum_{k=1}^{n} \varepsilon_{k} u^{k}
\end{array}\right]\left[\begin{array}{c}
u_{x}^{1} \\
u_{x}^{2} \\
\vdots \\
u_{x}^{n}
\end{array}\right]
$$

has been obtained by Pavlov as finite component reduction of an infinite hydrodynamic chain. It can be written as

$$
\mathbf{u}_{t_{1}}=\left(L-a_{0} /\right) \mathbf{u}_{x}
$$

with $a_{0}=\sum_{k=1}^{n} \varepsilon_{k} u^{k}$ and $L=\operatorname{diag}\left(u^{1}, \ldots, u^{n}\right)$. The system for densities of conservation laws

$$
d \cdot d_{L} h=d h \wedge d a_{0}
$$

reduces to the Euler-Darboux-Poisson system that appears in the study of Whitham equations (F.R.Tian 1994, T Grava 2001).

Kodama-Konopelchenko system, 2015

The system of hydrodynamic type

$$
\left[\begin{array}{c}
u_{t_{1}}^{1} \tag{1}\\
u_{t_{1}}^{2} \\
\vdots \\
u_{t_{1}}^{n-1} \\
u_{t_{1}}^{n}
\end{array}\right]=\left[\begin{array}{ccccc}
u^{1} & 1 & 0 & \ldots & 0 \\
0 & u^{1} & 1 & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & u^{1} & 1 \\
0 & \ldots & 0 & 0 & u^{1}
\end{array}\right]\left[\begin{array}{c}
u_{x}^{1} \\
u_{x}^{2} \\
\vdots \\
u_{x}^{n-1} \\
u_{x}^{n}
\end{array}\right]
$$

can be written as $\mathbf{u}_{t_{1}}=\left(L-a_{0} I\right) \mathbf{u}_{x}$ with $a_{0}=-u^{1}$ and

$$
L=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & 0 & 1 \\
0 & \ldots & 0 & 0 & 0
\end{array}\right]
$$

(see also Konopelchenko-Ortenzi 2017)

Clearly L has vanishing Nijenhuis torsion and $d d_{L} a_{0}=0$. Applying the first step of the recursive procedure we have

$$
\begin{aligned}
& \partial_{1} a_{1}=-a_{0} \partial_{1} a_{0}=-u^{1} \\
& \partial_{2} a_{1}=\partial_{1} a_{0}-a_{0} \partial_{2} a_{0}=-1 \\
& \partial_{3} a_{1}=0 \\
& \vdots \\
& \partial_{n} a_{1}=0 .
\end{aligned}
$$

This implies (up to an inessential constant) $a_{1}=-u^{2}-\frac{\left(u^{1}\right)^{2}}{2}$. Therefore the first commuting flow

$$
\mathbf{u}_{t}=\left(L^{2}-a_{0} L-a_{1} I\right) \mathbf{u}_{x}
$$

PART II

Frölicher-Nijenhuis bicomplex and Lauricella bi-flat F-maniflolds.

Based on a joint work with S. Perletti (2023).

Flat F-manifolds (Manin)

Definition
A flat F-manifold ($M, \nabla, \circ, \boldsymbol{e}$) a manifold equipped with a product

$$
\circ: T M \times T M \rightarrow T M
$$

with structure functions $c_{j k}^{i}$, a connection ∇ with Christoffel symbols $a_{j k}^{i}$ and a distinguished vector field e s.t.

- the one parameter family of connections ∇_{λ}

$$
a_{j k}^{i}-\lambda c_{j k}^{i}
$$

is flat and torsionless for any λ.

- e is the unit of the product.
- e is flat: $\nabla e=0$.

For a given λ the torsion and the curvature are

$$
\begin{aligned}
T_{i j}^{(\lambda) k} & =a_{i j}^{k}-a_{j i}^{k}+\lambda\left(c_{i j}^{k}-c_{j i}^{k}\right) \\
R_{i j l}^{(\lambda) k} & =R_{i j l}^{k}+\lambda\left(\nabla_{i} c_{j l}^{k}-\nabla_{j} c_{i l}^{k}\right)+\lambda^{2}\left(c_{i m}^{k} c_{j l}^{m}-c_{j m}^{k} c_{i l}^{m}\right),
\end{aligned}
$$

We obtain

1. the connection ∇ is torsionless,
2. the product \circ is commutative,
3. the connection ∇ is flat,
4. the tensor field $\nabla_{l} c_{i j}^{k}$ is symmetric in the low indices,
5. the product \circ is associative.

The above conditions imply

$$
c_{j k}^{i}=\partial_{j} \partial_{k} F^{i}
$$

Bi-flat F manifolds (A. Arsie, P.L 2012)

Definition

A bi-flat F -manifold is a manifold M equipped with a pair of flat structures ($\nabla, \circ, \boldsymbol{e}$) and ($\nabla^{*}, *, E$) related by the following conditions:

- E is an Euler vector field for the first structure

$$
[e, E]=e, \quad \mathcal{L}_{E} \circ=0
$$

and at a generic point the operator $E \circ$ is assumed to be invertible.

- * is the product defined by E, i.e. $X * Y=(E \circ)^{-1} X \circ Y$.
- $\left(d_{\nabla}-d_{\nabla^{*}}\right)(X \circ)=0$, where d_{∇} is the exterior covariant derivative of vector-valued differential forms.

Regular bi-flat F-manifolds

Definition

A bi-flat F -manifold is called regular if at a generic point the Jordan canonical form of the operator $L=E \circ$ has n Jordan blocks of sizes m_{1}, \ldots, m_{n} with distinct eigenvalues.

Semisimple bi-flat F -manifolds are regular bi-flat F -manifolds where $m_{1}=\cdots=m_{n}=1$.
In semisimple case there exist local coordinates (called canonical coordinates) such that:

$$
e=\sum_{s=1}^{n} \frac{\partial}{\partial u^{s}}, \quad E=\sum_{s=1}^{n} u^{s} \frac{\partial}{\partial u^{s}}, \quad c_{j k}^{i}=\delta_{j}^{i} \delta_{k}^{i}
$$

David-Hertling canonical coordinates

Theorem
Let $\left(M, \nabla, \circ, e, \nabla^{*}, *, E\right)$ be a regular bi-flat F-manifold. Then there exists local coordinates such that

$$
\begin{aligned}
e & =\frac{\partial}{\partial u^{1}}+\frac{\partial}{\partial u^{m_{1}+1}}+\frac{\partial}{\partial u^{m_{1}+m_{2}+1}}+\cdots+\frac{\partial}{\partial u^{m_{1}+\cdots+m_{n-1}+1}}, \\
E & =\sum_{s=1}^{m_{1}+\cdots+m_{n}} u^{s} \frac{\partial}{\partial u^{s}}, \\
c_{i j}^{\prime} & =\delta_{i+j-1}^{\prime}, \quad i, j, I=m_{1}+\cdots+m_{k-1}+1, \ldots, m_{1}+\cdots+m_{k-1}+m_{k} \\
c_{i j}^{\prime} & =0, \quad \text { otherwise. }
\end{aligned}
$$

Remark: the result holds true under weaker assumptions.

Operator of multiplication by E

The tensor field $L=E \circ$ contains n blocks L_{1}, \ldots, L_{n} of dimension m_{1}, \ldots, m_{n} respectively. Each block has the form

$$
L_{k}=\left[\begin{array}{cccc}
u^{k, 1} & 0 & \cdots & 0 \\
u^{k, 2} & u^{k, 1} & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
u^{k, m_{k}} & \cdots & u^{k, 2} & u^{k, 1}
\end{array}\right]
$$

where $u^{k, l}=u^{m_{1}+\cdots+m_{k-1}+l}$.

Dubrovin-Frobenius manifolds

To define a Dubrovin-Frobenius manifold we need

- a metric η satisfying the conditions

$$
\eta_{i l} c_{j k}^{\prime}=\eta_{j l} c_{i k}^{\prime}, \quad \nabla \eta=0
$$

It turns out that $c_{j k}^{i}=\eta^{i l} \partial_{l} \partial_{j} \partial_{k} F$ where F is a solution of WDVV equations.

- Duality for Dubrovin-Frobenius manifold (almost-dual structure, Dubrovin 2004): it is defined by the data $(g, *, E)$ where E is the Euler vector field,

$$
g=(E \circ) \eta^{-1}, \quad X * Y=(E \circ)^{-1} X \circ Y
$$

Notice that $\nabla^{(g)} E \neq 0$ but there exists μ such that $\nabla^{(g)}-\nabla^{*}=\mu *$.

Integrable hierarchy associated with flat F-manifolds

Given a flat F-manifold (M, ∇, \circ, e) the flows of the associated integrable hierarchy have the form

$$
\boldsymbol{u}_{t}=X \circ \boldsymbol{u}_{x}
$$

where X is a solution of the equation

$$
d_{\nabla}(X \circ)=0
$$

A sequence of solutions of this equation can be obtained starting from flat vector fieds X_{0} by means of the following recursive relation

$$
d_{\nabla} X_{(\alpha+1)}=X_{(\alpha)} \circ
$$

This sequence is called principal hierarchy.

Some results on bi-flat F-manifolds

Bi-flat F-manifolds structures naturally appear:

- on the orbit space of reflection groups:
M. Kato, T. Mano, J. Sekiguchi (2015),
A. Arsie and P. L (2016),
Y.Konishi, S. Minabe and Y. Shiraishi (2016).
- in relation with Painlevé transcendents:
A.Arsie, P.L (2012 and 2015)
P.L (2013),
H. Kawakami and T. Mano (2017).
- as genus 0 part of F -cohomological field theories: A.Arsie, A. Buryak, P.L and P. Rossi (2020).

Problem

Given a bi-flat F-structure $\left(\nabla, \circ, e, \nabla^{*}, *, E\right)$ is well known that the operator

$$
L=E \circ
$$

has vanishing Nijenhuis torsion. In the regular case in
David-Hertling canonical coordinates L has block diagonal form and each block has lower triangular Toeplitz form. Consider

$$
V=L-a_{0} I, \quad d \cdot d_{L} a_{0}=0
$$

Question: there exists a bi-flat F-manifolds such that

$$
d_{\nabla} V=0, \quad ?
$$

Regular Lauricella bi-flat F-manifolds

Theorem (P. L, S. Perletti 2023)
For any choice of $\varepsilon_{1}, \ldots, \varepsilon_{r}$ there exists a unique regular bi-flat structure $\left(\nabla, \nabla^{*}, \circ, *, e, E\right)$ with canonical coordinates $\left\{u^{1}, \ldots, u^{n}\right\}$ such that $d_{\nabla}\left(E \circ-a_{0} I\right)=0$, where r is the number of the Jordan blocks (of sizes m_{1}, \ldots, m_{r}) of E○ and, set $m_{0}=0$,

$$
a_{0}=\sum_{\alpha=1}^{r} m_{\alpha} \varepsilon_{\alpha} u^{1(\alpha)}=\sum_{\alpha=1}^{r} m_{\alpha} \varepsilon_{\alpha} u^{m_{0}+m_{1}+\cdots+m_{\alpha-1}+1}
$$

The case of a 2×2 Jordan block

In this case

$$
L=\left[\begin{array}{cc}
u^{1} & 0 \\
u^{2} & u^{1}
\end{array}\right], \quad e=\frac{\partial}{\partial u^{1}} \quad a_{0}=2 \varepsilon_{1} u^{1} .
$$

The non vanishing Christoffel symbol of $\nabla^{(1)}$ is

$$
\Gamma_{22}^{2}=-\frac{2 \varepsilon_{1}}{u^{2}} .
$$

3×3 Jordan block

$$
L=\left[\begin{array}{ccc}
u^{1} & 0 & 0 \\
u^{2} & u^{1} & 0 \\
u^{3} & u^{2} & u^{1}
\end{array}\right], \quad e=\frac{\partial}{\partial u^{1}}, \quad a_{0}=3 \varepsilon_{1} u^{1}
$$

The non vanishing Christoffel symbols $\Gamma_{j k}^{i}$ (up to exchange of j with k) are

$$
\Gamma_{22}^{2}=\Gamma_{23}^{3}=-\frac{3 \varepsilon_{1}}{u^{2}}, \Gamma_{22}^{3}=\frac{3 \varepsilon_{1} u^{3}}{\left(u^{2}\right)^{2}}
$$

$2 \times 2+1 \times 1$ Jordan blocks

$$
L=\left[\begin{array}{ccc}
u^{1} & 0 & 0 \\
u^{2} & u^{1} & 0 \\
0 & 0 & u^{3}
\end{array}\right], \quad e=\frac{\partial}{\partial u^{1}}+\frac{\partial}{\partial u^{3}}, \quad a_{0}=2 \varepsilon_{1} u^{1}+\varepsilon_{3} u^{3}
$$

The non vanishing Christoffel symbols $\Gamma_{j k}^{i}$ (up to exchange of j with k) are

$$
\begin{aligned}
& \Gamma_{22}^{2}=-\frac{2 \varepsilon_{1}}{u^{2}}, \Gamma_{13}^{1}=\Gamma_{23}^{2}=-\Gamma_{11}^{1}=-\Gamma_{33}^{1}=-\Gamma_{12}^{2}=\frac{\varepsilon_{3}}{u^{1}-u^{3}} \\
& \Gamma_{11}^{3}=\Gamma_{33}^{3}=-\Gamma_{13}^{3}=\frac{2 \varepsilon_{1}}{u^{1}-u^{3}}, \Gamma_{11}^{2}=\Gamma_{33}^{2}=-\Gamma_{13}^{2}=\frac{\varepsilon_{3} u^{2}}{\left(u^{1}-u^{3}\right)^{2}}
\end{aligned}
$$

Work in progress

What happens for arbitrary solutions of the equation

$$
d \cdot d_{L} a_{0}=0 \quad ?
$$

Conjectural answer: $a_{0} \rightarrow(\nabla, \circ, e)$ where ∇ is still compatible with the product but the flatness condition is replaced by

$$
Z \circ R(W, Y)(X)+W \circ R(Y, Z)(X)+Y \circ R(Z, W)(X)=0
$$

Joint work with with S. Perletti and K. van Gemst.

PART III

Bi-flat F-manifolds, lifted Frölicher-Nijenhuis bicomplexes and Gauss-Manin connections.

Based on a joint work with A. Arsie (2024).

From bi-flat structures to a differential bicomplex

The bicomplex $\left(d_{\nabla}, d_{E \circ \nabla^{*}}, \mathcal{T}_{M} \otimes_{\mathcal{O}_{M}} \Omega_{M}^{\bullet}\right)$ can be thought as a "lift" of the Frölicher-Nijenhuis bicomplex on the space of vector valued forms.

Exterior covariant derivative

d_{∇} acts on $\mathcal{T}_{M} \otimes_{\mathcal{O}_{M}} \Omega_{M}^{k}$ as follows

$$
\begin{aligned}
& \left(d_{\nabla \omega}\right)\left(X_{0}, \ldots, X_{k}\right)=\sum_{i=0}^{k}(-1)^{i} \nabla_{X_{i}}\left(\omega\left(X_{0}, \ldots, \hat{X}_{i}, \ldots, X_{k}\right)\right)+ \\
& \quad+\sum_{0 \leqslant i<j \leqslant k}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], x_{0}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots X_{k}\right)
\end{aligned}
$$

On an open ball the cohomology (for $k \geqslant 1$) of d_{∇} is trivial this follows from the triviality of the usual de Rham cohomology).

It turns out $d_{\nabla}^{2}=0$ due to the flatness of ∇.

L-exterior covariant derivative (A. Arsie, P.L 2012)

Given a flat connection ∇ and a (1, 1)-tensor field with vanishing Nijenhuis torsion it is possible to define another differential on $\mathcal{T}_{M} \otimes \mathcal{O}_{M} \Omega_{M}^{k}$. $d_{L \nabla}$ acts as follows

$$
\begin{aligned}
& \left(d_{L \nabla} \omega\right)\left(X_{0}, \ldots, X_{k}\right)=\sum_{i=0}^{k}(-1)^{i} \nabla_{L X_{i}}\left(\omega\left(X_{0}, \ldots, \hat{X}_{i}, \ldots, X_{k}\right)\right)+ \\
& \quad+\sum_{0 \leqslant i<j \leqslant k}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right]_{L}, X_{0}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots X_{k}\right)
\end{aligned}
$$

It turns out $d_{L \nabla}^{2}=0$ due to the flatness of ∇ and the vanishing of the Nijenhuis torsion of L.

A differential bicomplex (A. Arsie, P.L 2024)

Theorem
On any bi-flat F-manifold M, d_{∇} and $d_{L \nabla *}$ determine a differential bicomplex structure on $\mathcal{T}_{M} \otimes_{\mathcal{O}_{M}} \Omega_{M}^{\circ}$.

Due to the previous results it remains to prove that d_{∇} and $d_{L \nabla^{*}}$ anticommute. We skip the proof since it is equivalent to the vanishing of the curvature of a family of connections we are going to introduce.

Lenard-Magri chains

Let $X_{(0)}$ be a local section of \mathcal{T}_{M} for ∇ satisfying the equation

$$
\begin{equation*}
d_{\nabla} \cdot d_{L \nabla *} X_{(0)}=0 \tag{2}
\end{equation*}
$$

Then we can define "higher" local sections of \mathcal{T}_{M} by using the following recurrence relations

$$
\begin{equation*}
d_{\nabla} X_{(\alpha+1)}=d_{L \nabla *} X_{(\alpha)}, \quad \alpha \in \mathbb{N} \tag{3}
\end{equation*}
$$

Indeed, equation (2) tell us that $d_{L \nabla^{*}} X_{(0)}$ is a $d_{\nabla-\text { cocycle in }}$ degree 1 . Therefore, there exists locally a vector field $X_{(1)}$ such that

$$
d_{\nabla} X_{(1)}=d_{L \nabla^{*}} X_{(0)}
$$

Since d_{∇} and $d_{L \nabla^{*}}$ anticommute we have

$$
d_{L \nabla^{*}} \cdot d_{\nabla} X_{(1)}=-d_{\nabla} \cdot d_{L \nabla^{*}} X_{(0)}=0
$$

and we can repeat the previous argument.

Gauss-Manin connections

The Gauss-Manin connections associated with a bi-flat structure are

$$
\nabla_{X}^{G M} Y=\nabla_{X}^{*} Y+\lambda\left(\nabla_{(E \circ-\lambda e \circ)^{-1} X}^{*} Y-\nabla_{(E \circ-\lambda e \circ)^{-1} X} Y\right)
$$

Denoting by $a_{j k}^{i}$ and $b_{j k}^{i}$ the Christoffel symbols of the connections ∇ and ∇^{*} respectively, the Christoffel symbols are

$$
\begin{equation*}
\Gamma_{h k}^{j}:=b_{h k}^{j}+\lambda\left(\left(L_{\lambda}\right)^{-1}\right)_{h}^{s}\left(b_{s k}^{j}-a_{s k}^{j}\right), \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\Gamma_{h k}^{j}=b_{h k}^{j}+\lambda\left(\left(L_{\lambda}\right)^{-1}\right)_{h}^{s} c_{s k}^{\prime} \nabla_{l}^{*} e^{j}, \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
\Gamma_{h k}^{j}=b_{h k}^{j}-\lambda\left(\left(L_{\lambda}\right)^{-1}\right)_{h}^{s} c_{s k}^{* /} \nabla_{l} E^{j}, \tag{6}
\end{equation*}
$$

Theorem

(A. Arsie, P.L 2024) The family of Gauss-Manin connections is flat and torsionless for any fixed λ on the open set where L_{λ} is invertible.

$$
\begin{aligned}
& \left(R^{G M}\right)_{l i k}^{j}\left(L_{\lambda}\right)_{h}^{\prime}\left(L_{\lambda}\right)_{t=}^{i}= \\
& \left(R_{\nabla *}\right)_{i l k}\left(L_{\lambda}\right)_{h}^{\prime}\left(L_{\lambda}\right)_{t}^{j}+\lambda^{2}\left(\left(R_{\nabla *}\right)_{h t k}^{j}-\left(R_{\nabla}\right)_{h t k}^{j}\right) \\
& +\lambda\left(L_{h}^{\prime}\left(\left(R_{\nabla *}\right)_{t k k}^{j}-\left(R_{\nabla}\right)_{t k k}^{j}\right)+L_{t}^{\prime}\left(\left(R_{\nabla *}\right)_{h l k}^{j}-\left(R_{\nabla}\right)_{h l k}^{j}\right)\right) \\
& -\lambda\left(\nabla_{t} c_{h k}^{s}-\nabla_{h} c_{t k}^{s}\right) \nabla_{s} E^{j}-\lambda\left(c_{h k}^{s} \nabla_{t} \nabla_{s} E^{j}-c_{t k}^{s} \nabla_{h} \nabla_{s} E^{j}\right) \\
& +\lambda\left(N_{L}\right)_{t h}^{m}\left(\left(L_{\lambda}\right)^{-1}\right)_{m}^{s}\left(L^{-1}\right)_{s}^{r} c_{r k}^{t} \nabla_{t} E^{j}=0 .
\end{aligned}
$$

From this formula it follows that ∇^{*} can be replaced with $\nabla^{*}+\mu *$. In the case of Dubrovin-Frobenius manifolds with a suitable choice of μ one gets the Levi-Civita connection of g_{λ}.

Theorem

Let X be a local section $X \in \mathcal{T}_{M}$ that is flat with respect to $\nabla_{G M}$. Then, viewing X is as an element of $\mathcal{T}_{M}\left[\left[\lambda^{-1}\right]\right]$, then the formal power series coefficients satisfy the Lenard-Magri recurrence relations (3).
From $\nabla^{G M} X=0$, using arbitrary sections $Y \in \mathcal{T}_{M}$, we have

$$
\begin{aligned}
\nabla_{L_{\lambda} Y}^{G M} X & =\nabla_{L_{\lambda} Y}^{*} X+\lambda\left(\nabla_{Y}^{*} X-\nabla_{Y} X\right) \\
& =\nabla_{L Y}^{*} X-\lambda \nabla_{Y}^{*} X+\lambda\left(\nabla_{Y}^{*} X-\nabla_{Y} X\right) \\
& =\nabla_{L Y}^{*} X-\lambda \nabla_{Y} X=0
\end{aligned}
$$

Substituting

$$
X=X_{(0)}+\frac{X_{(1)}}{\lambda}+\frac{X_{(2)}}{\lambda^{2}}+\cdots
$$

we get Lenard-Magri recurrence relations (3).

Extended Gauss-Manin system: dependence on λ

Proposition

Let $\left(t^{1}, \ldots, t^{n}\right)$ be flat coordinates of ∇ such that $e=\frac{\partial}{\partial t^{\dagger}}$. In such coordinates, the solutions of the system $\nabla^{G M} \theta=0$ have the form

$$
\theta=\theta\left(t^{1}-\lambda, t^{2}, \ldots, t^{n}\right)
$$

Moreover

$$
(L-\lambda I)_{i}^{j} \partial_{\lambda} \theta_{j}=-L_{i}^{l} b_{l 1}^{j} \theta_{j}
$$

Bibliography

1. P. Lorenzoni and F. Magri, A cohomological construction of integrable hierarchies of hydrodynamic type, IMRN 34 (2005).
2. P. Lorenzoni and S. Perletti, Integrable systems, Frölicher-Nijenhuis bicomplexes and Lauricella bi-flat structures, Nonlinearity 36 (2023).
3. A, Arsie and P. Lorenzoni, Bi-flat F-structures as differential bicomplexes and Gauss-Manin connections, arXiv:2405.12649 (2024).
