A class of integral kernels

Examples in RMT 000 Multiplicative statististics

Examples in polymers

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusions 00

Biorthogonal measures, polymer partition functions, and random matrices

Mattia Cafasso

Laboratoire Angevin de REcherche en MAthématiques (LAREMA), Angers.

Integrable Systems: Geometrical and Analytical Approaches 04/06/2024

Motivations	A class	of integral	kernels
0000	000		

Multiplicative statististics

Examples in polymers

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusions 00

Plan of the seminar

- A motivating example : KPZ & the Airy₂ process
- A relevant class of integral kernels
- Applications to random matrix theory
- Multiplicative statistics
- Applications to polymers and their small temperature limit

"Biorthogonal measures, polymer partition functions, and random matrices." with T. Claeys arXiv : 2401.10130.

A class of integral kernels

Examples in RMT 000 Multiplicative statististics

Examples in polymers

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions 00

KPZ and the Airy₂ point process

$$\mathbb{E}_{\mathrm{KPZ}}\left[\mathrm{e}^{-\mathrm{e}^{\mathcal{H}(2T,X)-\frac{X^2}{4T}+\frac{T}{12}+sT^{1/3}}}\right] = \mathbb{E}_{\mathrm{Ai}_2}\left[\prod_{j\geq 1}\left(1-\sigma\left(T^{1/3}(\zeta_j+s)\right)\right)\right]$$

Amir-Corwin-Quastel, Calabrese-Le Doussal-Rosso, Dotsenko, Sasamoto-Spohn, (2010). Motivations A class of • 000 000

A class of integral kernels

Examples in RMT

Multiplicative statististics

Examples in polymers

Conclusions 00

KPZ and the Airy₂ point process

$$\mathbb{E}_{\text{KPZ}}\left[e^{-e^{\mathcal{H}(2T,X)-\frac{X^{2}}{4T}+\frac{T}{12}+sT^{1/3}}}\right] = \mathbb{E}_{\text{Ai}_{2}}\left[\prod_{j\geq 1}\left(1-\sigma\left(T^{1/3}(\zeta_{j}+s)\right)\right)\right]$$

$\mathcal{H}(T,X)$ narrow wedge solution of the KPZ equation

$$\frac{\partial}{\partial T}\mathcal{H}(T,X) = \frac{1}{2}\frac{\partial^2}{\partial X^2}\mathcal{H}(T,X) + \frac{1}{2}\left(\frac{\partial}{\partial X}\mathcal{H}(T,X)\right)^2 + \xi(T,X)$$

 $\{\zeta_j\}_{j\geq 1}$ realization of the ${\rm Airy}_2$ determinantal point process with kernel

$$K(x, y) = \int_0^\infty \operatorname{Ai}(x+z)\operatorname{Ai}(y+z)dz,$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Amir-Corwin-Quastel, Calabrese-Le Doussal-Rosso, Dotsenko, Sasamoto-Spohn, (2010).

A class of integral kernels 000

Examples in RMT 000 Multiplicative statististics

Examples in polymers

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusions

Determinants and integrability

$$Q(s,T) := \mathbb{E}_{\operatorname{Ai}_2}\left[\prod_{j\geq 1} \left(1 - \sigma\left(T^{1/3}(\zeta_j + s)\right)\right)\right]$$

is a Fredholm determinant, it can be studied through the lens of integrability.

$$U(x,t) := \partial_x^2 \log Q(x,t) + \frac{x}{2t}, \quad x := sT^{-1/6}, \ t := T^{-1/2}$$

is a solution of the KdV equation

$$U_t + 2UU_x + \frac{1}{6}U_{xxx} = 0,$$

A class of integral kernels 000

Examples in RMT 000 Multiplicative statististics

Examples in polymers

Conclusions 00

Determinants and integrability

$$Q(s,T) := \mathbb{E}_{\operatorname{Ai}_2}\left[\prod_{j\geq 1} \left(1 - \sigma\left(T^{1/3}(\zeta_j + s)\right)\right)\right]$$

is a Fredholm determinant, it can be studied through the lens of *integrability*.

$$U(x,t) := \partial_x^2 \log Q(x,t) + \frac{x}{2t}, \quad x := sT^{-1/6}, \ t := T^{-1/2}$$

is a solution of the KdV equation

$$U_t + 2UU_x + \frac{1}{6}U_{xxx} = 0,$$

As such, it is amenable to asymptotics analysis, yielding information about *large deviations* of Q(s, T).

$$\log Q(s,T) = -T^2 \phi(sT^{-2/3}) - \frac{1}{6}\sqrt{1 + \frac{\pi^2 s}{T^{2/3}}} + \mathcal{O}(\log^2 s) + \mathcal{O}(T^{1/3}), \ s \to +\infty$$
$$\phi(y) := \frac{4}{15\pi^6} (1 + \pi^2 y)^{5/2} - \frac{4}{15\pi^6} - \frac{2}{3\pi^4} y - \frac{1}{2\pi^2} y^2.$$
$$m^{-1} \le t \le m^{3/2},$$

C.-Claeys, C.-Claeys-Ruzza, (2021).

A class of integral kernels 000

Examples in RMT 000 Multiplicative statististics

Examples in polymers

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions 00

Other instances (incomplete list)

Similar formulas relating stochastic models to determinantal point process are available for :

- O'Connel-Yor directected random polymer (relation to a signed bi-orthogonal measure) (Imamura-Sasamoto, 2016)
- Asymmetric Exclusion Process (relation to the discrete Laguerre Ensemble) (Borodin-Olshanski, 2017)
- Stochastic higher spin six vertex model (relation to MacDonald measure) (Borodin, 2018)
- Deformed PNG model and Poissonized Plancherel measure (Aggarwal-Borodin-Wheeler, 2018, Imamura-Mucciconi-Sasamoto, 2022)

. ...

Motivations 000●	A class of integral kernels	Examples in RMT	Multiplicative statististics	Examples in polymers	Conclusions 00
Our aim					

Single out and study a large class of (signed) biorthogonal measures, and apply them to the study of random matrices, polymer models and their relations.

$$\frac{1}{Z_N} \det (f_m(x_k))_{k,m=1}^N \det (g_m(x_k))_{m,k=1}^N \prod_{k=1}^N \mathrm{d} x_k.$$

For a first application to the Log-Gamma polymer and its large deviations, see Tom's talk !

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Votivations	A class of integral
0000	●OO

kernels

Examples in RMT

Multiplicative statististics

Examples in polymers

Conclusions

A class of integral kernels

$$L_N(x,x') := \frac{1}{(2\pi i)^2} \int_{\Sigma_N} du \int_{\ell_N} dv \ \frac{W_N(v)}{W_N(u)} \frac{e^{-vx+ux'}}{v-u}$$

lotivations	A class of int
0000	● 00

class of integral kernels

Examples in RMT

Multiplicative statististics

Examples in polymers

ヘロト 人間 とく ヨン 人 ヨン

æ

Conclusions 00

A class of integral kernels

$$L_N(x,x') := \frac{1}{(2\pi i)^2} \int_{\Sigma_N} du \int_{\ell_N} dv \; \frac{W_N(v)}{W_N(u)} \frac{e^{-vx+ux'}}{v-u}$$

• W_N analytical for $\alpha_N < \Re z < \beta_N$

$$W_N(z) = \mathcal{O}(|z|^{-\epsilon}), \ |z| \to \infty$$

 $\cdot a_1, \ldots, a_N$ zeros of W.

lotivations	A class of integ
0000	● ○○

ass of integral kernels O Examples in RMT

Multiplicative statististics

Examples in polymers

Conclusions 00

A class of integral kernels

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣|||の��

A class of integral kernels

Examples in RMT

Multiplicative statististics

Examples in polymers

Conclusions 00

Bi-orthogonal structure of $d\mu_N$

Theorem (M.C., T. Claeys)

1. When a_1, \dots, a_N are all distinct,

$$L_N(x,x') = \sum_{m=1}^N e^{a_m x'} \psi_m(e^x), \quad \text{where} \quad \psi_m(y) := \frac{1}{2\pi i W_N'(a_m)} \int_{\ell_N} \frac{W_N(y) y^{-v}}{v - a_m} dv,$$
$$\int_{\mathbb{R}} e^{a_m x} \psi_k(e^x) dx = \delta_{k,m}, \quad k, m = 1, \dots, N.$$

 $d\mu_N$ is then given explicitly by

$$d\mu_N(\vec{x}) = \frac{1}{N!} \det (e^{a_m x_k})_{k,m=1}^N \det (\psi_m(e^{x_k}))_{m,k=1}^N$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

A class of integral kernels

Examples in RMT 000 Multiplicative statististics

Examples in polymers

Conclusions 00

Bi-orthogonal structure of $d\mu_N$

Theorem (M.C., T. Claeys)

1. When a_1, \dots, a_N are all distinct,

$$L_N(x,x') = \sum_{m=1}^N e^{a_m x'} \psi_m(e^x), \quad \text{where} \quad \psi_m(y) := \frac{1}{2\pi i W_N'(a_m)} \int_{\ell_N} \frac{W_N(y) y^{-v}}{v - a_m} dv,$$
$$\int_{\mathbb{R}} e^{a_m x} \psi_k(e^x) dx = \delta_{k,m}, \quad k, m = 1, \dots, N.$$

 $d\mu_N$ is then given explicitly by

$$d\mu_N(\vec{x}) = \frac{1}{N!} \det (e^{a_m x_k})_{k,m=1}^N \det (\psi_m(e^{x_k}))_{m,k=1}^N$$

2. In the completely confluent case $a_1 = a_2 = \ldots = a_N \equiv a$,

$$d\mu_N(\vec{x}) = \frac{1}{Z_N} \Delta(\vec{x}) \det \left(\phi_m(e^{x_k})\right)_{m,k=1}^N \prod_{k=1}^N dx_k$$

where $\phi_m(y) := \frac{y^a}{2\pi i} \int_{\ell_N} \frac{W_N(v)y^{-v}}{(v-a)^{N-m+1}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Motivations	A class of integral ke
0000	000

ernels

Examples in RMT

Multiplicative statististics

Examples in polymers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Conclusions

Comments on the proof

Step 1:

$$L(x,x') := \frac{1}{(2\pi i)^2} \int_{\Sigma_N} du \int_{\ell_N} dv \; \frac{W_N(v)}{W_N(u)} \frac{e^{-vx+ux'}}{v-u} = \sum_{m=1}^N e^{a_m x'} \psi_m(e^x)$$

simply using the residue theorem.

Recall that a_1, \dots, a_m are the zeros of W inside Σ_N , and that

$$\psi_m(y) = \frac{1}{2\pi i W_N'(a_m)} \int_{\ell_N} \frac{W_N(y)y^{-\nu}}{\nu - a_m} \mathrm{d}\nu$$

Votivations	A class of integral k
0000	000

ernels

Examples in RMT

Multiplicative statististics

Examples in polymers

Conclusions

Comments on the proof

Step 1:

$$L(x,x') := \frac{1}{(2\pi i)^2} \int_{\Sigma_N} du \int_{\ell_N} dv \; \frac{W_N(v)}{W_N(u)} \frac{e^{-vx+ux'}}{v-u} = \sum_{m=1}^N e^{a_m x'} \psi_m(e^x)$$

simply using the residue theorem.

Step 2 :

Using inverse and direct Mellin transform

$$\begin{split} \mathcal{M}[g](v) &:= \int_0^\infty y^{v-1} g(y) \mathrm{d} y, \qquad \mathcal{M}^{-1}[G](y) := \frac{1}{2\pi \mathrm{i}} \int_\ell G(v) y^{-v} \mathrm{d} v \\ \text{you find out that } \psi_m \text{ is the inverse Mellin transform of } \frac{W_N(v)}{W'_N(a_m)(v-a_m)}. \end{split}$$
Consequently,

$$\int_{-\infty}^{\infty} e^{a_k x} \psi_m(e^x) dx = \int_0^{\infty} s^{a_k - 1} \psi_m(s) ds = \frac{1}{W'(a_k)} (\mathcal{M} \circ \mathcal{M}^{-1}) \left[\frac{W_N(\cdot)}{\cdot - a_m} \right] (a_k) = \delta_{k,m}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Motivations	A class of integral kernels
0000	000

Multiplicative statististics

Examples in polymers

Conclusions 00

Comments on the proof

Step 1 :

$$L(x, x') := \frac{1}{(2\pi i)^2} \int_{\Sigma_N} du \int_{\ell_N} dv \; \frac{W_N(v)}{W_N(u)} \frac{e^{-vx + ux'}}{v - u} = \sum_{m=1}^N e^{a_m x'} \psi_m(e^x)$$

simply using the residue theorem.

Step 2 :

$$\int_{-\infty}^{\infty} e^{a_k x} \psi_m(e^x) dx = \int_0^{\infty} s^{a_k - 1} \psi_m(s) ds = \frac{1}{W'(a_k)} (\mathcal{M} \circ \mathcal{M}^{-1}) \left[\frac{W_N(\cdot)}{\cdot - a_m} \right] (a_k) = \delta_{k,m}.$$

Step 3 :

The rest of the proof exploits the bi-orthogonality condition above. In particular, the kernel L_N is self-reproducing and

$$\int_{\mathbb{R}} L_N(x,x) \mathrm{d}x = N.$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

<i>Aotivations</i>	A class of integral k
0000	000

ernels

Examples in RMT .00

Multiplicative statististics

Examples in polymers

Conclusions

LUE with external potential

 $N \times N$ positive-definite Hermitian matrix with probability distribution

$$\frac{1}{Z_N} (\det M)^{\nu} \mathrm{e}^{-\mathrm{Tr}((I-B)M)} \mathrm{d}M, \quad \nu \ge 0, \quad B = \mathrm{diag}(b_1, \ldots, b_N).$$

 $M = \frac{1}{-HH^*}$, with H a $N \times (N + \nu)$ matrix whose columns are Gaussian distributed with covariance matrix $(I - B)^{-1}$.

Motivations	
0000	

Multiplicative statististics

Examples in polymers

Conclusions 00

LUE with external potential

 $N \times N$ positive-definite Hermitian matrix with probability distribution

$$\frac{1}{Z_N} (\det M)^{\nu} \mathrm{e}^{-\mathrm{Tr}((I-B)M)} \mathrm{d}M, \quad \nu \ge 0, \quad B = \mathrm{diag}(b_1, \ldots, b_N).$$

The eigenvalues of M realize a determinantal point process with kernel

$$L_N(x,x') = \frac{1}{(2\pi i)^2} \int_{\Sigma_N} \mathrm{d}u \int_{\ell_N} \mathrm{d}v \; \frac{W_N^{\text{LUE}+}(v)}{W_N^{\text{LUE}+}(u)} \frac{\mathrm{e}^{-vx+ux'}}{v-u}, \quad W_N^{\text{LUE}+}(v) := \frac{\prod_{j=1}^N (z-b_j)}{(z-1)^{N+\nu}}$$

(Baik-Ben Arous-Péché, '04)

Distribution of the eigenvalues of a LUE matrix of size 2×10^3 without (blue) and with (orange) external potential.

Motivations	A class of integral kernels
0000	000

Multiplicative statististics

Examples in polymers

Conclusions 00

GUE with external potential

 $N \times N$ Hermitian matrix with probability distribution

$$\frac{1}{Z_N} e^{-\operatorname{Tr}\left(\frac{M^2}{2\tau} - AM\right)} dM, \quad A = \operatorname{diag}(a_1, \ldots, a_N).$$

 $M = \frac{1}{2}(H + H^*) + A$, with H a $N \times N$ matrix whose columns are Gaussian distributed.

Motivations	A class of integral kernels
0000	000

Multiplicative statististics

Examples in polymers

Conclusions 00

= √Q (~

GUE with external potential

 $N \times N$ Hermitian matrix with probability distribution

$$\frac{1}{Z_N} e^{-\operatorname{Tr}\left(\frac{M^2}{2\tau} - AM\right)} dM, \quad A = \operatorname{diag}(a_1, \ldots, a_N).$$

The eigenvalues of M realize a determinantal point process with kernel

$$L_N(x,x') = \frac{1}{(2\pi i)^2} \int_{\Sigma_N} du \int_{\ell_N} dv \; \frac{W_N^{\text{GUE}+}(v)}{W_N^{\text{GUE}+}(u)} \frac{e^{-vx+ux'}}{v-u}, \quad W_N^{\text{GUE}+}(v) := \prod_{j=1}^N (z-a_j) e^{\tau z^2/2}$$

(Brezin-Hikami, '97)

Distribution of the eigenvalues of a LUE matrix of size 10⁴ without (blue) and with (orange) external potential.

A class of integral kernels Motivations

Examples in RMT 000

Multiplicative statististics

Examples in polymers

Conclusions

LUE with external potential plus GUE

We consider M_1 a LUE matrix with external potential $B = \text{diag}(b_1, \ldots, b_N)$ and $\nu = 0$, M_2 a GUE matrix; and

$$Q:=M_1+\sqrt{\tau N}M_2.$$

Proposition (M.C., T. Claevs)

The eigenvalues of Q realize a determinantal point process with kernel

 $L_N(x,x') = \frac{1}{(2\pi i)^2} \int_{\Sigma_{12}} du \int_{\ell_{12}} dv \frac{W_N^{GLUE+}(v)}{W_N^{GLUE+}(u)} \frac{e^{-vx+ux'}}{v-u}, \quad W_N^{GLUE+}(v) := \frac{z^N e^{\tau z^2/2}}{\prod_{k=1}^N (z-1+b_k)}.$

This is Dyson diffusion applied to the eigenvalues of the Laguerre Unitary Ensemble with external potential!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A class of integral kernels Motivations

Examples in RMT

Multiplicative statististics 000

Examples in polymers

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conclusions

Multiplicative statistics associated to $d\mu$

Given a function $\sigma : \mathbb{R} \longrightarrow \mathbb{R}$, we now define

$$\mu_N[\sigma] := \int_{\mathbb{R}^N} \prod_{k=1}^N \left(1 - \sigma(x_k)\right) \mathrm{d}\mu(x_1, \dots, x_N).$$

All the examples will be related to the function

$$\sigma(x) = \sigma_t(x) = \frac{1}{1 + e^{-x-t}}$$

If $d\mu_N$ is positive-valued, i.e. associated to a point process with realization $\{\zeta_1, \ldots, \zeta_N\}$, then

$$\mu_N[\sigma] = \mathbb{E}\left[\prod_{k=1}^N (1 - \sigma(\zeta_k))\right].$$

<i>Aotivations</i>	A class of integral k
0000	000

ernels

Examples in RMT

Multiplicative statististics 000

Examples in polymers

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Conclusions

Three different Fredholm identities

$$L_N(x,x') = \frac{1}{(2\pi i)^2} \int_{\Sigma_N} du \int_{\ell_N} dv \, \frac{W_N(v)}{W_N(u)} \frac{e^{-vx+ux'}}{v-u}, \quad d\mu_N(\vec{x}) = \frac{1}{N!} \det \left(L_N(x_m, x_k)\right)_{m,k=1}^N \prod_{k=1}^N dx_k,$$
$$\mu_N[\sigma] = \int_{\mathbb{R}^N} \prod_{k=1}^N (1-\sigma(x_k)) d\mu(x_1, \dots, x_N).$$

We suppose that

- $\cdot \sigma = \sigma_t$
- $W_N(v) = \mathcal{O}(|v|^{-1-\epsilon}), v \to \infty, v \in S_N$
- $\cdot a_{\max} a_{\min} < 1$

A class of integral kernels 000

Examples in RMT

Multiplicative statististics

Examples in polymers

Conclusions 00

Three different Fredholm identities

Theorem (M.C., Tom Claeys)

Under the hypothesis above, we can write $\mu_N[\sigma]$ as Fredholm determinant in three different ways :

- 1) $\mu_N[\sigma] = \det(1 \sigma L_N)_{L^2(\mathbb{R})}$
- 2) $\mu_N[\sigma] = \det(1 H_N^{\sigma})_{L^2(0,\infty)}$ ("finite temperature kernel"), where

$$\begin{aligned} H_N^{\sigma}(y,y') &:= \int_{\mathbb{R}} \sigma(x) \Psi_1(\mathrm{e}^{y+x}) \Psi_2(\mathrm{e}^{y'+x}) \mathrm{d}x, \ y,y' > 0, \\ \text{with} \quad \Psi_1(s) &:= \int_{\Sigma_N} \frac{s^u \mathrm{d}u}{W_N(u)} \quad \text{and} \quad \Psi_2(s) = \mathcal{M}^{-1}[W_N](s) \end{aligned}$$

3) $\mu_N[\sigma] = \det(1 - K_N)_{L^2(\Sigma_N)}$

with
$$K_N(u, u') = \frac{1}{2\pi i} \int_{\ell_N} \frac{\pi e^{t(v-u)}}{\sin \pi (u-v)} \frac{W_N(v)}{W_N(u)} \frac{dv}{v-u'}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

A class of integral kernels

Examples in RMT 000 Multiplicative statististics

Examples in polymers •00000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions 00

Connecting to polymers

General strategy :

We use the Fredholm determinant representation of polymer partition functions, existing in the literature, to connect to one of the three representations shown above.

Examples in RMT 000 Multiplicative statististics

Examples in polymers

Conclusions 00

The Log Gamma polymer (a random walk in a random environment)

Seppäläinen, (2012)

$$n, N > 0,$$

$$(\alpha_j)_{j=1}^n, \ (a_k)_{k=1}^N \quad \text{s.t.} \quad \alpha_j - a_k > 0$$

$$\mathbb{P}(d_{j,k} \le y) = \frac{1}{\Gamma(\alpha_j - a_k)} \int_0^y x^{-\alpha_j + a_k - 1} e^{-1/x} dx$$

(a)

ъ

$$Z_{n,N}^{\mathsf{Log}\Gamma}(\vec{\alpha},\vec{a}) := \sum_{\pi:(1,1)\nearrow(n,N)} \prod_{(j,k)\in\pi} d_{j,k}$$

A class of integral kernels 000

Examples in RMT

Multiplicative statististics

Examples in polymers

Conclusions 00

The biorthogonal structure of the Log Gamma polymer

Corollary (M.C., T. Claeys, using Borodin-Corwin-Remenik, (2013))

Take

$$L_N(x,x') = \frac{1}{(2\pi i)^2} \int_{\Sigma_N} du \int_{\ell_N} dv \; \frac{W_{n,N}^{\text{Log}\Gamma}(v)}{W_{n,N}^{\text{Log}\Gamma}(u)} \frac{e^{-vx+ux'}}{v-u}, \quad W_{n,N}^{\text{Log}\Gamma}(z) := \frac{\prod_{j=1}^n \Gamma(\alpha_j - z)}{\prod_{k=1}^N \Gamma(z - a_k)}$$

Then

$$\mathbb{E}\left[e^{-e^{t}Z_{n,N}^{\operatorname{Log}\Gamma}(\vec{\alpha},\vec{d})}\right] = \mu_{N}[\sigma_{t}], \quad \sigma_{t}(x) = \frac{1}{1 + e^{-x-t}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A class of integral kernels

Examples in RMT

Multiplicative statististics

Examples in polymers

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusions 00

.

The biorthogonal structure of the Log Gamma polymer

Corollary (M.C., T. Claeys, using Borodin-Corwin-Remenik, (2013))

Take

$$L_N(x,x') = \frac{1}{(2\pi i)^2} \int_{\Sigma_N} du \int_{\ell_N} dv \; \frac{W_{n,N}^{\text{Log}\Gamma}(v)}{W_{n,N}^{\text{Log}\Gamma}(u)} \frac{e^{-vx+ux'}}{v-u}, \quad W_{n,N}^{\text{Log}\Gamma}(z) := \frac{\prod_{j=1}^n \Gamma(\alpha_j-z)}{\prod_{k=1}^N \Gamma(z-a_k)}$$

Then

$$\mathbb{E}\left[e^{-e^{t}Z_{n,N}^{\log\Gamma}(\vec{\alpha},\vec{a})}\right] = \mu_{N}[\sigma_{t}], \quad \sigma_{t}(x) = \frac{1}{1 + e^{-x-t}}.$$

The biorthogonal structure of the measure is given explicitly by

$$d\mu_{n,N}^{\text{Log}\Gamma}(\vec{x};\vec{\alpha},\vec{a}) = \frac{1}{Z_N} \det \left(e^{a_m x_k} \right)_{k,m=1}^N \det \left(G_{0,n+N}^{n,0} \left(\begin{array}{c} -\\ \vec{\alpha}; [1]_m + \vec{a} - \vec{e}_m \end{array} \middle| e^{-x_k} \right) \right)_{m,k=1}^N \prod_{k=1}^N dx_k.$$

A class of integral kernels

Examples in RMT

Multiplicative statististics

Examples in polymers

Conclusions 00

.

The biorthogonal structure of the Log Gamma polymer

Corollary (M.C., T. Claeys, using Borodin-Corwin-Remenik, (2013))

Take

$$L_{N}(x,x') = \frac{1}{(2\pi i)^{2}} \int_{\Sigma_{N}} du \int_{\ell_{N}} dv \; \frac{W_{n,N}^{\log\Gamma}(v)}{W_{n,N}^{\log\Gamma}(u)} \frac{e^{-vx+ux'}}{v-u}, \quad W_{n,N}^{\log\Gamma}(z) := \frac{\prod_{j=1}^{n} \Gamma(\alpha_{j}-z)}{\prod_{k=1}^{N} \Gamma(z-a_{k})}$$

Then

$$\mathbb{E}\left[e^{-e^{t}Z_{n,N}^{\log\Gamma}(\vec{\alpha},\vec{a})}\right] = \mu_{N}[\sigma_{t}], \quad \sigma_{t}(x) = \frac{1}{1 + e^{-x-t}}.$$

The biorthogonal structure of the measure is given explicitly by

$$\mathrm{d}\mu_{n,N}^{\mathrm{Log}\Gamma}(\vec{x};\vec{\alpha},\vec{a}) = \frac{1}{Z_N} \det \left(\mathrm{e}^{a_m x_k} \right)_{k,m=1}^N \det \left(G_{0,n+N}^{n,0} \left(\begin{array}{c} -\\ \alpha; [1]_m + \vec{a} - \vec{e}_m \end{array} \right| \mathrm{e}^{-x_k} \right) \right)_{m,k=1}^N \prod_{k=1}^N \mathrm{d}x_k.$$

In the confluent case :

$$\mathrm{d}\mu_{n,N}^{\mathrm{Log}\Gamma}(\vec{x};\vec{\alpha},\vec{0}) = \frac{1}{Z_N} \Delta(\vec{x}) \det \left(G_{0,n+N}^{n,0} \Big(\begin{array}{c} -\\ \vec{\alpha}; [0]_{N-m+1}; [1]_{m-1} \end{array} \middle| e^{-x_k} \right) \right)_{m,k=1}^N \prod_{k=1}^N \mathrm{d}x_k$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

37

A class of integral kernels

Examples in RMT

Multiplicative statististics

Examples in polymers

Conclusions 00

Reminder, Meijer G-Functions

$$G_{p,q}^{m,n} \begin{pmatrix} a_1, \dots, a_p \\ b_1, \dots, b_q \end{pmatrix} | z = \frac{1}{2\pi i} \int_{L} \frac{\prod_{\ell=1}^{m} \Gamma(b_{\ell} - s) \prod_{\ell=1}^{n} \Gamma(1 - a_{\ell} + s)}{\prod_{\ell=m}^{q-1} \Gamma(1 - b_{\ell+1} + s) \prod_{\ell=n}^{p-1} \Gamma(a_{\ell+1} - s)} z^s ds$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

A class of integral kernels

Examples in RMT 000 Multiplicative statististics

Examples in polymers

・ ロ ト ・ 雪 ト ・ 目 ト ・

э

Conclusions 00

The O'Connel-Yor polymer

O'Connel-Yor, (2001)

$$Z_N^{OY}(\vec{a},\tau) := \int_{0 < s_1 < \ldots < s_{N-1} < \tau} \mathrm{e}^{E(\phi)} \mathrm{d} s_1 \cdots \mathrm{d} s_{N-1}$$

A class of integral kernels

Examples in RMT

Multiplicative statististics

Examples in polymers

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conclusions 00

The biorthogonal structure of the O'Connel-Yor polymer

Corollary (Imamura - Sasamoto, M.C. - T. Claeys, using Borodin-Corwin (2014))

Take

$$L_N(x,x') = \frac{1}{(2\pi i)^2} \int_{\Sigma_N} du \int_{\ell_N} dv \; \frac{W_N^{OY}(v)}{W_N^{OY}(u)} \frac{e^{-vx+ux'}}{v-u}, \quad W_N^{OY}(z) := \frac{e^{\frac{\pi z^2}{2}}}{\prod_{k=1}^N \Gamma(z-a_k)}.$$

Then

$$\mathbb{E}\left[e^{-e^{t}Z_{N}^{\mathrm{OY}}(\vec{a},\tau)}\right] = \mu_{N}[\sigma_{t}], \quad \sigma_{t}(x) = \frac{1}{1+e^{-x-t}}.$$

Examples in RMT

Multiplicative statististics

Examples in polymers

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusions 00

The biorthogonal structure of the O'Connel-Yor polymer

Corollary (Imamura - Sasamoto, M.C. - T. Claeys, using Borodin-Corwin (2014))

Take

$$L_N(x,x') = \frac{1}{(2\pi i)^2} \int_{\Sigma_N} du \int_{\ell_N} dv \; \frac{W_N^{OY}(v)}{W_N^{OY}(u)} \frac{e^{-vx+ux'}}{v-u}, \quad W_N^{OY}(z) := \frac{e^{\frac{\pi z^2}{2}}}{\prod_{k=1}^N \Gamma(z-a_k)}.$$

Then

$$\mathbb{E}\left[e^{-e^{t}Z_{N}^{\mathrm{OY}}(\vec{a},\tau)}\right] = \mu_{N}[\sigma_{t}], \quad \sigma_{t}(x) = \frac{1}{1+e^{-x-t}}.$$

The biorthogonal structure is given explicitly in terms of contour integrals of exponential and Gamma functions. The case a = 0 was already found by Imamura and Sasamoto.

Motivations	
0000	

A class of integral kernels

Examples in RMT 000 Multiplicative statististics

Examples in polymers

Conclusions 00

The mixed polymer

Borodin-Corwin-Ferrari-Vető, (2015)

$$n, N \in \mathbb{Z}_{>0}, \quad \tau \in \mathbb{R}_{>0}, \quad \{\alpha_1, \dots, \alpha_n\}, \quad \{a_1, \dots, a_N\} \quad \text{s.t.} \quad \alpha_j - a_k > 0.$$
$$Z_{n,N}^{\text{Mixed}}(\vec{\alpha}, \vec{a}, \tau) = \sum_{k=1}^{N} Z_{k,N}^{\text{Log}\Gamma}(\vec{\alpha}, a_1, \dots, a_k) Z_{N-k}^{\text{OY}}(a_{k+1}, \dots, a_N, \tau).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

A class of integral kernels

Examples in RMT

Multiplicative statististics

Examples in polymers

Conclusions

The biorthogonal structure of the mixed polymer

Corollary (M.C. - T. Claeys, using Imamura-Sasamoto (2017))

Take

$$L_N(x,x') = \frac{1}{(2\pi i)^2} \int_{\Sigma_N} \mathrm{d}u \int_{\ell_N} \mathrm{d}v \; \frac{W_N^{\mathrm{Mixed}}(v)}{W_N^{\mathrm{Mixed}}(u)} \frac{\mathrm{e}^{-vx+ux'}}{v-u},$$

$$W_N^{\text{Mixed}}(z) := \frac{e^{\frac{\tau z^2}{2}} \prod_{k=1}^N \Gamma(\alpha_j - z)}{\prod_{k=1}^N \Gamma(z - a_k)}.$$

Then

$$\mathbb{E}\left[e^{-e^{t}Z_{N}^{\text{Mixed}}(\vec{\alpha},\vec{\sigma},\tau)}\right] = \mu_{N}[\sigma_{t}], \quad \sigma_{t}(x) = \frac{1}{1 + e^{-x-t}}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

A class of integral kernels

Examples in RMT 000 Multiplicative statististics

Examples in polymers

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusions 00

The biorthogonal structure of the mixed polymer

Corollary (M.C. - T. Claeys, using Imamura-Sasamoto (2017))

Take

$$L_N(x,x') = \frac{1}{(2\pi i)^2} \int_{\Sigma_N} \mathrm{d}u \int_{\ell_N} \mathrm{d}v \; \frac{W_N^{\mathrm{Mixed}}(v)}{W_N^{\mathrm{Mixed}}(u)} \frac{\mathrm{e}^{-vx+ux'}}{v-u},$$

$$W_N^{\text{Mixed}}(z) := \frac{e^{\frac{\tau z^2}{2}} \prod_{k=1}^N \Gamma(\alpha_j - z)}{\prod_{k=1}^N \Gamma(z - a_k)}.$$

Then

$$\mathbb{E}\left[e^{-e^{t}Z_{N}^{\text{Mixed}}(\vec{\alpha},\vec{\sigma},\tau)}\right] = \mu_{N}[\sigma_{t}], \quad \sigma_{t}(x) = \frac{1}{1 + e^{-x-t}}.$$

The biorthogonal structure is given explicitly in terms of contour integrals of exponential and Gamma functions.

A class of integral kernels 000

Examples in RMT 000 Multiplicative statististics

Examples in polymers

Conclusions 00

Small temperature polymers and RMT

Tuning appropriately their parameters with a rescaling by $T \rightarrow 0$, the partition functions of polymers are described by last particle distribution of RMT :

Corollary (M.C., T. Claeys)

$$\mathbb{E}\left[e^{-e^{t/T}Z_{n,N}^{\text{Log}\Gamma}([T]_n,T\vec{b})}\right] \longrightarrow \mathbb{P}_{\text{LUE}+}\left(\max\{x_1,\ldots,x_N\} \le -t; \vec{b}, \nu = n - N\right)$$
$$\mathbb{E}\left[e^{-e^{t/T}Z_{n,N}^{\text{OY}}(T\vec{a},\tau/T^2)}\right] \longrightarrow \mathbb{P}_{\text{GUE}+}\left(\max\{x_1,\ldots,x_N\} \le -t; \vec{a},\tau\right)$$
$$\mathbb{E}\left[e^{-e^{t/T}Z_{N,N}^{\text{Mixed}}([T]_N - T\vec{b},[0]_N,\tau/T^2)}\right] \longrightarrow \mathbb{P}_{\text{GLUE}+}\left(\max\{x_1,\ldots,x_N\} \le -t; \vec{b},\tau\right).$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

A class of integral kernels 000

Examples in RMT 000 Multiplicative statististics

Examples in polymers

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions 00

Small temperature polymers and RMT

Tuning appropriately their parameters with a rescaling by $T \rightarrow 0$, the partition functions of polymers are described by last particle distribution of RMT :

Corollary (M.C., T. Claeys)

$$\mathbb{E}\left[e^{-e^{t/T}Z_{n,N}^{\text{Log}\Gamma}([T]_n,T\vec{b})}\right] \longrightarrow \mathbb{P}_{\text{LUE}+}\left(\max\{x_1,\ldots,x_N\} \leq -t; \vec{b}, \nu = n - N\right)$$
$$\mathbb{E}\left[e^{-e^{t/T}Z_{n,N}^{\text{OY}}(T\vec{a},\tau/T^2)}\right] \longrightarrow \mathbb{P}_{\text{GUE}+}\left(\max\{x_1,\ldots,x_N\} \leq -t; \vec{a},\tau\right)$$
$$\left[e^{-e^{t/T}Z_{N,N}^{\text{Mixed}}([T]_N - T\vec{b},[0]_N,\tau/T^2)}\right] \longrightarrow \mathbb{P}_{\text{GLUE}+}\left(\max\{x_1,\ldots,x_N\} \leq -t; \vec{b},\tau\right).$$

Remark

Æ

The first two limits are known in the literature (last passage percolation models). For the mixed polymer, the appearance of LUE with external source plus GUE seems new.

A class of integral kernels

Examples in RMT

Multiplicative statististics

Examples in polymers

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conclusions 00

Sketch of the proof (Log Gamma polymer)

and then you integrate over \mathbb{R}^N , using dominated convergence.

Motivations	A class of integral kernels	Examples in RMT
0000	000	000

Multiplicative statististics

Examples in polymers

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions •O

Conclusions

- Polymers and random matrices (with external sources) share a common *biorthogonal structure*, which can be used to compare them more easily.
- It is also useful, combined with marking and conditioning of point processes [Thm 1.10 and (Claeys-Glesner, 2023)], to study asymptotics (Tom's talk).

What's next

- · Use the three different Fredholm determinant representation to give a RH approach to the study of the polymers.
- · Connect them to inverse scattering theory in integrable PDEs.

A class of integral kernels

Examples in RMT 000 Multiplicative statististics

Examples in polymers

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Conclusions O

Thanks!