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The first two discrete Painlevé equations

The first and second discrete Painlevé equations are the second order nonlinear
discrete equations

dPI: yn(yn+1 + yn + yn−1) = c1 + c2n + c3yn

dPII: (1− y2
n )(yn+1 + yn−1) = (c1 + c2n)yn + c3, ci ∈ C

admitting as continuous limit (for different scaling limits) the classical first and second
Painlevé equations

PI: u′′(t) = 6u2(t) + t

PII: u′′(t) = 2u3(t) + tu(t) + α, α ∈ C.
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Their main properties (for this talk)

[Cresswell - Joshi, 1998] Both the first and second discrete Painlevé equations can be
extended to a hierarchy i.e. a sequence of higher order equations, as their continuous
versions.

The k -th equation of each hierarchy is encoded by discrete Lax pairs i.e. linear
systems of type

Φ
(k)
n+1(λ) = Ln (λ; yn)Φ

(k)
n (λ)

∂

∂λ
Φ

(k)
n (λ) = M(k)

n

(
λ; {yℓ}n+k

ℓ=n−k

)
Φ

(k)
n (λ)

where Ln,Mn are rational in λ (eventually matrix-valued) with coefficients depending on
yℓ. The compatibility condition of this system

∂

∂λ
Ln + LnM(k)

n −M(k)
n+1Ln = 0

corresponds to the k -th equation of the hierarchy.
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Random partitions models

For a given M ∈ N a partition of M is a sequence λ = (λ1 ≥ λ2 ≥ λ3 ≥ . . . ) with λi ∈ N∑
i≥1

λi = M (= |λ|).

We can represent a given partition λ via the Young diagram of shape λ

...

← λ1 boxes
← λ2 boxes
← λ3 boxes

...

And a standard Young tableau (SYT) of shape λ is obtained by filling in the boxes of the
Young diagram of shap λ with numbers 1, . . . , |λ| with increasing sequences in both
directions→ and ↓.

A random partition model is then given by the definition of a probability measure on the
set of partitions.
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Why? The Ulam problem

Consider the symmetric group SM taken with uniform distribution so that for any
πM ∈ SM we have

P(πM) =
1

M!

and denote ℓ(πM) the length of the longest increasing sub-sequence of πM .

Example π5 = 4 3 1 2 5 and ℓ(π5) = 3.

Ulam problem (1961)
Describe the behavior of ℓ(πM) for M →∞.
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The Poissonized Plancherel measure

Uniform random permutations of M elements are equivalent to a model of random
partitions of M thanks to the Robinson–Schensted correspondence, i.e. the bijection

RS : πM ∋ SM → RS(πM) ∈ {(P,Q) ∈ SYTM × SYTM , sh(P) = sh(Q)}.

↓

The uniform measure on SM corresponds on the set of partitions of M to the Plancherel
measure

PPl.(λ) =
F 2
λ

M!
, with Fλ = #{P ∈ SYTM , sh(P) = λ}.

↓

Its Poissonization consists of taking on the set of all partitions the measure

PP.Pl.(λ) = e−θ2
(
θ|λ|Fλ

|λ|!

)2

, where |λ| = weight(λ).

Remark [Schensted, 1961] Moreover, in the RS correspondence ℓ(πM) = λ1(πM).
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Distribution of first parts and Toeplitz determinants

In the Poissonized Plancherel model, the distributions of first parts are given by the
Gessel’s formula

PP.Pl. (λ1 ≤ k) = e−θ2
Dk−1(φ)

where Dk (φ) are Toeplitz determinants associated to the symbol φ = φ [θ] (z) = ew(z)

for w(z) = v(z) + v(z−1) and v(z) = θz. In particular

Dk := det(Tk (φ))

with Tk (φ) being the k -th Toeplitz matrix associated to the symbol φ(z)

Tk (φ)i,j := φi−j , i, j = 0, . . . , k

where for every ℓ ∈ Z, φℓ is the ℓ-th Fourier coefficient of φ(z), namely

φℓ =

∫ π

−π

e−iℓθφ(eiθ)
dθ
2π

, so that
∑
ℓ∈Z

φℓzℓ = φ(z).
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The Baik-Deift-Johansson result

[Baik - Deift - Johansson, 1999] The limiting behavior of the lenght of the longest
increasing subsequence of a random permutation is

lim
M→∞

P

(
ℓ(πM)− 2

√
M

M1/6 ≤ s

)
= F (s),

where F (s) is the (GUE) Tracy-Widom distribution
F (s) = exp

(
−
∫ +∞

s (r − s)u2(r)dr
)
,with

u′′(s) = su(s) + 2u3(s), u(s) ∼s→∞ Ai(s).

Remark The result of B–D–J was obtained by studying large k scaling limit behaviour
of the Toeplitz determinants and thereafter using a de-Poissonization procedure.
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More integrability result
[Borodin, Adler - Van Moerbeke, Baik, 2000] For every k ≥ 1 we have

Dk Dk−2

D2
k−1

− 1 = −x2
k

where xk solves the so called discrete Painlevé II equation, which corresponds to the
second order nonlinear difference equation

θ(xk+1 + xk−1)(1− x2
k ) + kxk = 0

with initial conditions x0 = −1, x1 = φ1/φ0.

In the limit for θ →∞ and for k = sθ1/3 + 2θ (or s = (k − 2θ)θ−1/3), then

Dk Dk−2

D2
k−1

− 1 = −x2
k , xk+1 + xk−1 = − kxk

θ(1− x2
k )

B–D–J
y xk = (−1)k θ

−1/3u(s)
y xk = (−1)k θ

−1/3u(s)

∂2
s log F (s) = −u2(s), u′′(s) = 2u3(s) + su(s)

Painlevé II equation
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Multicritical random partitions
[Okunkov, 2001] On the set of partitions consider the Schur measures (n parameters)

PSc.(λ) = Z−1sλ [θ1, . . . , θn]
2 ,

where sλ can be computed as

sλ [θ1, . . . , θn] = det
i,j

hλi−i+j [θ1, . . . , θn] ,

with
∑

k≥0 hk zk = ev(z), v(z) =
∑n

i=1
θi
i z i and Z = e

∑n
i=1

θ2
i
i .

Remark For n = 1 with PP.Pl.(λ) = PSc.(λ) with θ1 = θ.

The probability distribution of the first part of such a random partition is given again by
Toeplitz determinants

PSc. (λ1 ≤ k) = e−
∑n

i θ̂2
i /iDk−1

(
φ(n)

[
θ̂1, . . . , θ̂n

])
,

where the symbol is

φ(n)
[
θ̂1, . . . , θ̂n

]
(z) = ew(z), w(z) = v(z) + v(z−1), θi → θ̂i = (−1)i+1θi .

In the multicritical setting: θ̂1 = θ, θ̂i =
(n−1)!(n+1)!
(n−i)!(n+i)! θ, i = 2, . . . , n.
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Our main result

Theorem (Chouteau - T., 2023)
For any fixed n ≥ 1, for the Toeplitz determinants Dk , k ≥ 1, we have

Dk Dk−2

D2
k−1

− 1 = −x2
k

where now xk solves the 2n order nonlinear difference equation

kxk +
(

vk + vk Permk − 2xk∆
−1 (xk − (∆ + I)xk Permk )

)
Ln(0) = 0

where L is a discrete recursion operator that acts as follows

L(uk ) :=
(

xk+1

(
2∆−1 + I

)
((∆ + I) xk Permk − xk ) + vk+1 (∆ + I)− xk xk+1

)
uk ,

and L(0) = θnxk+1. Here vk := 1− x2
k , ∆ denotes the difference operator

∆ : uk → uk+1 − uk and Permk is the transformation

Permk : C
[
(xj)j∈[[0,2k ]]

]
−→ C

[
(xj)j∈[[0,2k ]]

]
P ((xk+j)−k⩽j⩽k ) 7−→ P ((xk−j)−k⩽j⩽k ) .
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The first equations of the hierarchy

n = 1 : kxk + θ1(xk+1 + xk−1)(1− x2
k ) = 0, ← discrete Painlevé II equation

n = 2 : kxk + θ1(1− x2
k ) (xk+1 + xk−1)

+ θ2(1− x2
k )
(

xk+2(1− x2
k+1) + xk−2(1− x2

k−1)− xk (xk+1 + xk−1)
2
)
= 0,

n = 3 : kxk + θ1(1− x2
k ) (xk+1 + xk−1)

+ θ2(1− x2
k )
(

xk+2(1− x2
k+1) + xk−2(1− x2

k−1)− xk (xk+1 + xk−1)
2
)

+ θ3(1− x2
k )
(

x2
k (xk+1 + xk−1)

3 + xk+3(1− x2
k+2)(1− x2

k+1) + xk−3(1− x2
k−2)(1− x2

k−1)
)

+ θ3(1− x2
k )
(
−2xk (xk+1 + xk−1)(xk+2(1− x2

k+1) + xk−2(1− x2
k−1))

)
+ θ3(1− x2

k )
(
−xk−1x2

k−2(1− x2
k−1)− xk+1x2

k+2(1− x2
k+1)

)
+ θ3(1− x2

k ) (−xk+1xk−1(xk+1 + xk−1)) = 0.

Remark Similar discrete equations appeared previously in [Periwal-Schewitz, 1990] in
the study of some unitary matrix integrals.
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The limiting behavior

[Betea–Bouttier–Walsh , 2021] For the θi , i = 1, . . . , n in the multicritical regime, then
the limiting behavior of the distribution of the first part is described, for certain
b = b(n), d = d(n), by

lim
θ→∞

PSc.

(
λ1 − bθ

(θd)
1

2n+1
< s

)
= Fn(s).

where now Fn(s) is the n-th order (GUE) Tracy-Widom distribution characterized by
[Cafasso - Claeys - Girotti, 2019] by the formula

d2

ds2 lnFn(s) = −u2((−1)n+1s)

here u solves the n-th member of the homogeneous Painlevé II hierarchy with
boundary condition u(s) ∼ Ain(s) for s → +∞.
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Continuous limit

Recall the B–B–W result for n = 2: limθ→∞ PSc.

(
λ1− 3

2 θ

(4−1θ)1/5 ≤ s
)

= F2(s).

In the limit for θ →∞, taking k = s
(
θ
4

)1/5
+ 3

2θ (or s =
(
k − 3

2θ
)
θ−

1
5 4

1
5 )

Dk Dk−2

D2
k−1

− 1 = −x2
k , kxk + θ1vk (xk+1 + xk−1)

+θ2vk

(
xk+2vk+1 + xk−2vk−1 − xk (xk+1 + xk−1)

2
)

= 0

B–B–W
y xk = (−1)k

(
θ

4

)−1/5
u(s)

y xk = (−1)k
(

θ

4

)−1/5
u(s) θ1 = θ, θ2 =

θ

4

∂2
s log F2(s) = −u2(s), u′′′′ − 10u(u′)2 − 10u2u′′ + 6u5 = −su

2nd eq. of the Painlevé II hierarchy

which recovers the generalized Tracy-Widom formula for n = 2
[Cafasso–Claeys–Girotti, 2019]. And so on ...
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Idea of the proof

1 We consider the family {pk (z) = κk zk + . . . }k∈N of orthogonal polynomials on the
unit circle (OPUC) w.r.t. the measure

dµ(α) = φ(eiα)
dα
2π

= ew(eiα) dα
2π

.

2 This family of orthogonal polynomials {pk (z)} can be characterized by a 2× 2
matrix-valued Riemann–Hilbert problem (part of Baik-Deift-Johansson’s results for
the generalized weight).

3 From the explicit form of the solution of the Riemann–Hilbert problem, one can
easly deduce the formula

Dk Dk−2

D2
k−1

− 1 = −x2
k

where xk = 1
κk

pk (0).

4 The solution to the Riemann–Hilbert problem allows to construct a Lax pair (sort
of linear representation) for the discrete Painlevé II hierarchy for xk .

5 This Lax pair is mapped into the original Lax pair obtained by Cresswell and Joshi
in 1998 which first introduced the discrete Painlevé II hierarchy.
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Two-point function for planar quadrangulations

= ̸=

3
2

4

1

3

2
1

4

4

2

3

1

5

2 5
3

2

3

3

3
4

A planar map is a connected graph embedded in
the sphere, so

#{vertices} −#{edges}+#{faces} = 2,

considered up to continuous deformation.

A quadrangulation is a map in which all faces have degree 4.

The 2-point function is the generating function for maps with two
marked points at given distance ℓ⇝ the integrated two-point function
is the generating function Rℓ for maps with two marked points at
distance at most ℓ.

Remark The analogue question is: what is the average distance
between two points chosen uniformly on a random (uniform) planar
map?

v1

v2

d12 = 2
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dPI and planar quadrangulations

[Bouttier - Di Francesco - Guitter (2003)] By using bijective combinatorics methods, it
is shown that Rℓ, in the case of quadrangulations, satisfies the recursion

Rℓ = 1 + gRℓ(Rℓ+1 + Rℓ + Rℓ−1), ℓ ≥ 1, R0 = 0.

with limℓ→∞ Rℓ = R and 3gR2 + 1 = R.

• The scaling limit of Rℓ when ℓ→ +∞, and g = 1
12 e−ϵλ, ϵ→ 0 at fixed rate

r = ℓϵ1/4 was computed by continuous limit of the discrete equation for Rℓ, with an
appropriate ansatz.

• In the case of general bipartite planar maps other higher order equations are
satisfied by Rℓ.

Remark[Bessis - Itzykson - Zuber (1980)] . . . [Bleher - Gharakhloo - McLaughlin (2022)]
while studying the expansion of matrix integrals (of size N) using orthogonal
polynomials on the real line with mesure e−N(x2/2+gx4/4)dx , a similar equation was found

xℓ + gxℓ(xℓ+1 + xℓ + xℓ−1) =
ℓ

N
,

in relation with the generating function of 4-valent planar maps .
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Two-point function characterization in terms of Hankel determinants

[Bouttier - Guitter (2010)] Rℓ is written as

Rℓ =
DℓDℓ−2

D2
ℓ−1

where Dℓ are the Hankel determinants Dℓ = detℓi,j=0 Fi+j . The entries of the Hankel
matrices Fℓ, in the case of quadrangulations, are computed as

Fℓ =

{
R(1− 2Rg)catk Rk − Rgcatk+1Rk+1, ℓ = 2k ,
0, otherwise.

Remark The result is true also in the general case of bipartite planar maps, by
replacing the formula for Fℓ with a more convoluted expression. Moreover
[Bergère - Eynard - Guitter - Oukassi (2023)] recently generalized this type of result in
the case of hypermaps.
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Catalan numbers as moments of the Wigner semi-circle law

The Wigner semicircle law defined over the interval [−s, s] , s > 0 is denoted by

fs(x) =
2

πs2

√
s2 − x2.

Property For every k ≥ 0 the k -th moment of the measure fs(x)dx is

m(fs)
k =


( s

2

)2n catn for k = 2n

0 otherwise.

Consequence Using this property of the Catalan’s numbers, we deduce that

Fℓ =

{
m(R,4)

2k ℓ = 2k
0, otherwise

where m(R,4)
2k denotes the 2k -th moment of the measure µ(R,4)(x)dx with

µ(R,4)(x) =
1

2π

√
4R − x2

(
1− 2gR − gx2

)
− 2
√

R ≤ x ≤ 2
√

R.
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Connection with orthogonal polynomials
• The (integrated) two-point function for planar quadrangulations was written in

terms of Hankel determinants

Rℓ =
DℓDℓ−2

D2
ℓ−1

, Dℓ =
ℓ

det
i,j=0

Fi+j

and Fi+j is the i + j-th moment of the measure µ(R,4)(x)dx .

• Scaling by 2
√

R we obtain the normalized measure on [−1, 1] given by

ρ(R,4)(x) =
2
π

√
1− x2R

(
1− 2gR − 4gRx2

)
.

The family of orthogonal polynomials associated to it, satisfies a three terms
recurrence relation of type xπℓ(x) = πℓ+1(x) + rℓπℓ−1(x) where

rℓ =
Hℓ−2Hℓ

H2
ℓ−1

, Hℓ =
ℓ

det
i,j=0

m (ρ(R,4))
i+j =⇒ 4R rℓ = Rℓ.

• We can see this family of orthogonal polynomials as a deformation of Jacobi
polynomials since

ρ(R,4)(x) = (1− x2)1/2(t2 − x2)k(t), t2 =
R + 2

4(R − 1)
.
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Ongoing work (with J. Bouttier)

• Analytical proof of the discrete equation satisfied by Rℓ

Rℓ = 1 + gRℓ(Rℓ+1 + Rℓ + Rℓ−1)

using the relation 4Rrℓ = Rℓ and the techniques from orthogonal polynomials. In
particular these are semi-classical orthogonal polynomials and derivation of
Laguerre-Freud equation for rℓ was developed in many works.

• Computation of the scaling limit for ℓ→ +∞ and t = 1 + k/ℓ2 of the coefficients of
the three terms recurrence relation rℓ(t) of the family of orthogonal polynomials
w.r.t. ρ(R,4)(x)dx = (1− x2)1/2(t2 − x2)k(t) to confirm the one known for Rℓ by
continuous limit of the discrete equation.

• Extension of these results to the case of general bipartite maps with bounded
degree face. Indeed the connection with orthogonal polynomials still holds, by
replacing µ(R,4)(x) by

µ(R,2N)(x) =
1

2π

√
4R − x2P2N(x ;R, g = g4, . . . , g2N).
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Conclusion

1. We can compute the distributions of first parts of multicritical random partitions via
solutions of the discrete Painlevé II hierarchy.

2. We can count bipartite planar maps with fixed graph distance between two
vertices with a deformed version of the discrete Painlevé I hierarchy.

3. Orthogonal polynomials are always behind the scene.

Thank you!
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