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Overview
Classical questions in algebraic geometry: counting problems.

What are counts of curves
in a space X?
▶ Gromov–Witten invariants.

X

What are counts of vector bundles,
or more generally coherent sheaves,
in a space X?
▶ Donaldson–Thomas (DT)

invariants.
X

Physics: relations with counts of particles in string theory.
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Overview

Algebraic geometry Theoretical Physics

DT invariants
Counts of coherent sheaves

Counts of particles
in string theory

Mathematical theorem:
Modularity of generating series

of “refined DT invariants”

Physics prediction:
Modularity of generating series
of “refined” counts of particles
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Plan of the talk

The notion of “modularity” of a generating series
Refined Donaldson–Thomas (DT) Invariants
▶ Betti numbers of moduli spaces of coherent sheaves

Main result:
Modularity of generating series of refined DT invariants

Proof: Scattering diagrams and Gromov–Witten invariants
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Modularity
(an): a sequence of numbers
Form a generating series (formal power series in a formal variable q)

∑
n

anqn q=e2iπτ

−−−−−→
∑

n
ane2iπnτ

Definition
f (τ) :=

∑
n ane2iπnτ is called a modular function of weight k for a

subroup G ⊂ SL(2,Z) if it satisfies
Convergence property: f (τ) is a holomorphic function on the upper
half-plane H := {τ ∈ C | Imτ > 0}
Symmetry property:

f
( aτ + b

cτ + d

)
= (cτ + d)k f (τ) for every

(
a b
c d

)
∈ G .
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Modularity =⇒ Symmetry

If f is modular, it is enough to know f (τ) for τ in the fundamental
domain, to recover f (τ) for any value of τ by symmetry.

Figure: Fundamental domains for the action of SL(2,Z) on the upper half-plane H
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Modular functions: Eisenstein series

Example
The Eisenstein series

E2k(τ) := 1 − 4k
B2k

∞∑
n=1

n2k−1qn

1 − qn =
∑

(m,n)∈Z2\{0}

1
(m + nτ)2k

where q = e2πiτ , is modular of weight 2k for 2k ≥ 4.

0

τ 1 + τ

1

m + nτ

Figure: The lattice Z + τZ
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Constructing modular functions

Consider the elliptic curve C/(Z + τZ) given by a cubic equation,

y2 = 4x3 − 4
3π4E4(τ)x − 8

27π6E6(τ) where E4, E6 : H → C

▶ The discriminant satisfies

∆(τ) = E4(τ)3 − 27E6(τ)2 = (2π)12η24(τ)

where η(τ) is the Dedekind eta function:

η(τ) := q
1
24

∞∏
n=1

(1 − qn) = q
1
24 (1 − q − q2 + q5 + q7 − q12 + . . . )

for q = e2πiτ .
▶ η(τ) is a modular function of weight 1/2 for SL(2,Z).
▶ We’ll construct further modular functions in terms of η(τ).
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Example: modular functions for Γ1(3)

Congruence subgroup G = Γ1(3) ⊂ SL(2,Z):

Γ1(3) :=
{(a b

c d

)
∈ SL(2,Z)|

(
a b
c d

)
=
(

1 ∗
0 1

)
mod 3

}
Modular of weight 1 for Γ1(3):

A(τ) :=
(

η(τ)9

η(3τ)3 + 27η(3τ)9

η(τ)3

) 1
3

= 1+6q+6q3+6q4+12q7+6q9+. . .

Modular of weight 3 for Γ1(3):

C(τ) := η(τ)9

η(3τ)3 = 1−9q+27q2−9q3−117q4+216q5+27q6−450q7+. . .

for q = e2πiτ .
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Quasimodularity
f (τ) =

∑
n ane2iπnτ is called quasimodular of weight k for G if the

symmetry property is satisfied up to a correction term of a specific
form.

Example
Eisenstein series

E2(τ) := 1−24
∑
n≥1

nqn

1 − qn = 1−24q−72q2−96q3−168q4−144q5+. . .

is quasimodular of weight 2 for SL(2,Z), but not modular:

(cτ + d)−2E2

( aτ + b
cτ + d

)
= E2(τ) + 6

iπ

( c
cτ + d

)
Quasimodular of weight 2 for Γ1(3):

B(τ) := 1
4
(
E2(τ) + 3E2(3τ)

)
= 1 − 6q − 18q2 − 42q3 − 42q4 + . . .
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Modular/Quasimodular Functions in Mathematics

Modular and quasimodular functions appear in many places in
mathematics (number theory, combinatorics, geometry, representation
theory, algebra,...).
To be modular/quasimodular is an extremely strong constraint: the
space of quasimodular functions of given weight (and with growth
condition at infinity) is finite dimensional. In particular, the entire
sequence (an) can be recovered from finitely many elements.

Main result: Express generating series of (refined) DT invariants,
defined geometrically, in terms of the modular functions A(τ),
C(τ) and the quasimodular function B(τ). Hence, obtain quasi-
modular functions for Γ1(3) from (refined) DT invariants.

Pierrick Bousseau Quasimodular functions from DT Invariants 11 / 30



Geometry: Donaldson-Thomas (DT) invariants

X : Calabi–Yau 3-fold
▶ Complex manifold of dimension 3 which admits a nowhere vanishing

holomorphic 3-form.
Coherent sheaves on X :
▶ Holomorphic vector bundles on X
▶ Holomorphic vector bundles supported on complex submanifolds of X .

DT invariants of X : counts of coherent sheaves on X
▶ Euler characteristics of the moduli spaces of coherent sheaves on X

Finitely many coherent sheaves
on X with fixed topology

How many? DT invariants.

String theory on R4 × X
Counts of particles determined

by the geometry of X .
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DT invariants of KP2

P2: complex projective plane, complex dimension 2. Coordinates:

[x0 : x1 : x2] ∼ [λx0, λx1, λx2].

X = KP2 : total space of the canonical line bundle on P2

▶ Non-compact Calabi-Yau 3-fold.
▶ Zero-section P2 ⊂ KP2 .

DT invariants of KP2

▶ Counts of coherent sheaves on KP2 supported on curves inside P2.
▶ Euler characteristic of the moduli spaces of coherent sheaves supported

on curves inside P2.
Refined DT invariants of KP2

▶ Betti numbers of the moduli spaces of coherent sheaves supported on
curves inside P2.
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Moduli spaces of coherent sheaves on P2

Md : moduli space of (stable)
coherent sheaves on P2 supported
on degree d curves.
▶ Variety of dimension d2 + 1,

classically studied (Simpson, Le
Potier, ∼ 1990).

X

There is a fibration of Md over the space Bd of degree d curves in P2.

π : Md → Bd = P
d(d+3)

2

F 7→ supp(F )

Example

For d = 1: a0x0 + a1x1 + a2x2 = 0 =⇒ B1 = P2 = P
1(1+3)

2

For d = 2: B2 = P5 = P
2(2+3)

2

For d = 3: B3 = P9 = P
3(3+3)

2
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Moduli spaces of coherent sheaves on P2

General fiber of π : Md → Bd over a point corresponding to a degree
d smooth curve C : all possible line bundles on C , i.e. Jac(C)
▶ Jac(C) is a compact torus of dimension g = (d−1)(d−2)

2 .
∃ singular fibers =⇒ challenging to compute Betti numbers of Md .

Figure: The fibration π : Md → Bd

Refined DT invariants of KP2 : Betti numbers bj(Md) := dim H j(Md ,Q).
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Examples of refined DT invariants of KP2

M1 = P2: moduli space of coherent sheaves over lines in P2.

4∑
j=0

bj(M1)y
j
2 = 1 + y + y2

M2 = P5: moduli space of coherent sheaves over conics in P2.

10∑
j=0

bj(M2)y
j
2 = 1 + y + y2 + y3 + y4 + y5

M3: moduli space of coherent sheaves over cubics in P2.
▶ M3 → B3 = P9 with generic fibers complex tori of dimension 1.

20∑
j=0

bj(M3)y
j
2 = 1+2y+3y2+3y3+3y4+3y5+3y6+3y7+3y8+2y9+y10
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Generating series of DT invariants of KP2

Generating series of DT invariants of KP2

∑
d≥1

dimRMd∑
j=0

bj(Md)y
j
2 qd .

We need a change of variables y = eℏ and expand in powers of ℏ:

y = eℏ =
∑
n≥0

ℏn

n!

Definition
Define generating series of refined DT invariants, Fg(q) ∈ Q[[q]] by the
change of variables y = eℏ:

∑
d≥1

dimRMd∑
j=0

bj(Md)y
j
2 qd =

∑
g≥0

Fg(q)ℏ2g−1 .
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Main result

Theorem [B., B.-Fan-Guo-Wu]
Let q = e2iπτ .

For every g ≥ 0, Fg(τ) is a quasimodular function of weight 0 for
Γ1(3). Moreover, for every g ≥ 2, we have

Fg ∈ C−(2g−2) · Q[A, B, C ]6g−6 .

This proves a conjecture from the physics of string theory on
R4 × KP2 (Huang-Klemm, 2010)

Example

F2 = 1
11520C2 (−37A6 + 5A4B + 48A3C − 16C2) .
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Outline of the proof

Relate DT invariants to Gromov–Witten (GW) invariants: counts
of degree d , genus g curves satisfying a given list of constraints.

DT invariants of KP2 Quasimodularity

Scattering diagram GW invariants of (P2, E )

1

2,3

4

1Scattering diagrams, stability conditions, and coherent sheaves on P2, Bousseau,
accepted for publication in the Journal of Algebraic Geometry.

2Refined tropical curve counting from higher genera and lambda classes, Bousseau,
Inventiones Mathematicae, 215(1), 1-79, 2019

3A proof of N.Takahashi’s conjecture for (P2, E) and a refined
sheaves/Gromov-Witten correspondence, Bousseau, Duke Mathematical Journal,
172.15 (2023): 2895-2955

4Holomorphic anomaly equation for (P2, E) and the Nekrasov-Shatashvili limit of
local P2, Bousseau, Fan, Guo, Wu, Forum of Mathematics, Pi, 9, E3, 2021
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Scattering diagrams in R2

G : a group.

Definition
A scattering diagram in R2 is a collection of pairs (d, fd) given by

d: rays/lines in R2, called walls
fd: an element of G , called wall-crossing transformations.

In the framework of mirror symmetry (Kontsevich-Soibelman,
Gross-Siebert): scattering diagrams with G group of formal
automorphisms of the torus (C∗)2

▶ Encode data of genus 0 Gromov–Witten invariants.
In our set-up I work with “quantum scattering diagrams”: G group
associated to a quantum torus Lie algebra.
▶ Encode data of DT invariants and higher genus Gromov–Witten

invariants.
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Example: the initial scattering diagram

Initial walls d: lines of slope n corresponding to line bundles O(n) on
P2.
Initial wall crossing automorphisms fd: power series with coefficients
DT invariants.

Figure: The initial scattering diagram for P2

To obtain the data of all DT invariants: need to construct a
consistent scattering diagram out of this initial scattering diagram.
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Consistent scattering diagram

Definition
A scattering diagram is called consistent if for any point where walls
intersect, the composition of wall-crossing transformations on all walls
passing through this point is the identity.

Algorithm: Systematically insert walls to complete the
initial scattering diagram to a consistent scattering diagram.

▶ This is a purely algebraic algorithm.
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The consistent scattering diagram

Figure: The consistent scattering diagram for P2

New walls : coherent sheaves on P2, attached wall-crossing
transformations encode refined DT invariants.
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Step 1: Refined DT invariants and scattering diagrams

Theorem [B.]1

Consider any wall inserted to the initial scattering diagram for P2 to
complete it to a consistent one. Then, the attached wall crossing
transformation is a power series with coefficients refined DT invariants.

All Betti numbers bj(Md) are computed algorithmically from the
consistent scattering diagram for P2.

Proof: Reconstruction of the consistent scattering diagram from the
initial walls is analogous to the reconstruction of general coherent
sheaves using resolution by a complex of direct sum of line bundles.

Example
L: line in P2, resolution:

0 → O(−1) → O → OL → 0
1Scattering diagrams, stability conditions, and coherent sheaves on P2, Bousseau,

accepted for publication in the Journal of Algebraic Geometry.
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Step 2: The scattering diagram for P2 and GW invariants

New geometry: fix a smooth cubic curve E in P2.
GWg ,d : count of genus g degree d curves in P2 intersecting E in a
single point.

Idea: Compute GWg ,d using tropical geometry (combinatorial tools
for enumerating curves using their piecewise-linear analogues)

Figure: A holomorphic cubic curve and its tropical analogue

• Notions of genus and degree for tropical analogues of holomorphic
curves.
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Step 2: The scattering diagram for P2 and GW invariants
Theorem [B.]12

The Gromov–Witten invariants GWg ,d of degree d genus g curves in P2

touching E ⊂ P2 at a single point equal to the count of tropical curves of
genus g , degree d .

Generalization of the tropical correspondence theorem between counts
of genus zero curves in toric situations (Mikhalkin, Nishinou-Siebert).

Theorem [B.]12

The Gromov–Witten invariant GWg ,d can be computed algorithmically
from the consistent scattering diagram for P2.

Proof: the consistent scattering diagram for P2 contains all tropical
curves of degree d and genus g .

1Refined tropical curve counting from higher genera and lambda classes, Inventiones
Mathematicae, 215(1), 1-79, 2019

2A proof of N.Takahashi’s conjecture for (P2, E) and a refined
sheaves/Gromov-Witten correspondence, Bousseau, Duke Mathematical Journal,
172.15 (2023): 2895-2955
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DT versus GW

Combining the first two steps we obtain:

Theorem [B.]1

For every g ≥ 0, we obtain the generating series Fg defined from refined
DT invariants for KP2

Fg =
∑
d≥1

GWg ,dqd .

1A proof of N.Takahashi’s conjecture for (P2, E) and a refined
sheaves/Gromov-Witten correspondence, Bousseau, Duke Mathematical Journal,
172.15 (2023): 2895-2955
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Step 3: Modularity from the Gromov-Witten side

Theorem [B.-Fan-Guo-Wu]2

For every g ≥ 0,
∑

d≥1 GWg ,dqd is quasimodular of weight 0 for Γ1(3).

Proof uses
Expressing GWg ,d in terms of GW invariants of the elliptic curve and
KP2 .
Modularity results for Gromov-Witten invariants of the elliptic curve
(Okounkov-Pandharipande, 2003).
Modularity results for Gromov-Witten invariants of KP2

(Lho-Pandharipande, Coates-Iritani, 2018).
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Conclusion

Theorem [B., B.-Fan-Guo-Wu]
For every g ≥ 0, the generating series Fg defined from the refined DT
invariants of KP2 using the change of variables y = eℏ is quasimodular of
weight 0 for Γ1(3).

New appearance of modular functions in DT theory.
Future questions:
▶ More general Calabi-Yau 3-folds X? Expectation: replace Γ1(3) with

Aut(DbCoh(X )).
▶ Further refinement Fg1,g2 using the perverse filtration on H⋆(Md ,Q)

induced by the fibration π : Md → Bd?
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Thank you for your attention !
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