Survival analysis:

a tool for timing semantic and formal effects on derived and compound word recognition

Victor Kuperman, Daniel Schmidtke, Kazunaga Matsuki

MOPROC: June 23 rd 2017

Typical analyses of the mean RTs

Distributional analyses

- How do distributions of RTs change across the timecourse?
- How early do RT distributions diverge across conditions?
- Vincentile analysis: Vincent (1910), Heathcote (1995), Balota and Abrams (1995), etc.
- Survival analysis: Rueckl and Galantucci (2005); Reingold et al. (2012); Reingold and Sheridan (2014; Frontiers)

Survival analysis

Beginning of split between two distributions indicates the onset of an effect.

Density function

Survival function

Reference

- Present analyses reported in Schmidtke, Matsuki, \& Kuperman (2017). Surviving blind decomposition: A distributional analysis of the time-course of complex word recognition. JEP:LMC.
- A minimal demo of survival analysis in \mathbf{R} user the \mathbf{R} Tsurvival package (Matsuki, 2016). The original MATLAB routines are found in Reingold \& Sheridan (2014).

Confidence interval divergence point analysis (CI DPA

 procedure)- The goal is to establish at what point in time the two survival curves diverge.
- Divergence Point Estimate (DPE).

Confidence interval divergence point analysis (CI DPA

 procedure)- Divergence point: first $\mathbf{1} \mathbf{- m s}$ bin in a run of five consecutive bins of a substantial difference in survival percentages.
- Reingold and Sheridan (2014) recommend 1.5\%: good even for low-powered designs.
- Schmidtke et al. (in press) chose 3\% for greater reliability.

CI DPA continued

- For 1000 iterations, the CI DPA procedure:

1. randomly draws data for an individual participant (bootstrapping with replacement)
2. generates individual survival curves per condition for each participant
3. computes average survival $\%$ across participants for each condition and each bin.
4. estimates the divergence point (as defined above)

CI DPA continued

- A distribution of 1000 divergence points is generated.
- We take the median as the divergence point
- Also, the 95% confidence interval is available.

Output

```
# Method of Estimation:
# [1] "CI"
# Divergence Point Estimate:
# [1] 146
# Confidence Interval:
# 2.5% 97.5%
# 133.975 157.000
```


Application to morphology

- Obligatory meaning-blind decomposition versus form-and-meaning accounts.
- Relative time-course of formal versus semantic effects: early vs late, or roughly simultaneous.
- Relative timing of the surface frequency effect: very late (Solomyak \& Marantz, 2010) or not.
- Absolute timeframe of processing: neurophysiological estimates (post-300 ms) against behavioral data.

Procedure:

- Visual processing only; no priming here; but same method applies to any RT data.
- Identified two behavioural response types (lexical decision latencies and eye-movements) for
- LD: derived words in English and Dutch (Studies 1 and 2; BLP and DLP); pseudo-derived words and orthographic controls in English (Studies 3 and 4, BLP).

Procedure:

- Lexical variables proposed as diagnostic of orthography, semantics, and morphology.
- Continuous variables: split at the median to form conditions.
- Survival analysis: calculate divergence points for each lexical variable that is diagnostic of a recognition stage.

Divergence point estimate for surface frequency

English derived word recognition: British Lexicon Project (Keuleers et al., 2012)

Divergence point estimate for derivational entropy

Divergence point estimate for all predictors in Study 1

English derived word recognition, study 1:

Controls and checks

- We applied a conservative estimate of divergence point
- No correlation between effect size and relative order of divergence points
- No evidence that the divergence point for variable A was reflective of changes of an underlying variable B

Results: lexical decision timecourse

Studies 1 - 4: lexical decision Median divergence point estimates

Summary: Relative order

- Surface frequency first
- Onset of semantics as early as or earlier than morphology
- No major difference across derived, pseudo- and control words.

Procedure: Eye movements

- EM: first fixations on derived words in English sentences (3 studies).

Results: Eye-movement timecourse

Studies 5-7: eye-movements during sentence reading Median divergence point estimates

Summary: Eye movements

- 140-220 ms onset of effects.
- Surface and stem frequency simulataneous.
- Onset of semantics as early as or earlier than morphology

Compounds

- Lexical decision: 269 compounds
- Eye movements: 400 compounds

Compounds: lexical decision

BLP: lexical decision

Median divergence point estimates

Compounds: eye-movements

Eye-movements to compounds during sentence reading Median divergence point estimates

Survival analysis: Advantages and drawbacks

- Pros:
- Great for estimating absolute onset of an effect: $140-220 \mathrm{~ms}$ for *all* effects. Constrains for brain studies.
- Great for mapping relative onsets of effects.
- Cons:
- Less great for figuring out how long an effect goes for, or when it ends.
- Robust but not as optimal for multiple continuous predictors

Thank you!

