Cross-morphemic transposed letter (TL) effects argue against a single decompositional pathway

Marcus Taft

University of New South Wales, Sydney, Australia

Lisi Beyersmann

Macquarie University, Sydney, Australia

Jonathan Grainger

Aix-Marseille University, Marseille, France

For more than 40 years, I have been advocating an account of polymorphemic word recognition that entails a single pathway of **obligatory decomposition** with no direct whole-word access.

Reinforced by the finding of masked priming from pseudo-derived words that cannot be ascribed to mere orthographic repetition (e.g., Longtin, Segui, & Halle, 2003; Rastle & Davis, 2008):

corner-CORN	<	tunnel-CORN,
cashew-CASH	=	mortal-CASH

Along with:

hunter-HUNT < symbol-HUNT,

the implication is that the presence of an orthographic form that simply <u>appears</u> to be a suffix leads to decomposition.

What happens if the letter-string is disrupted by the transposition of two letters that straddle the morpheme boundary?

e.g., hunetr-HUNT vs hunafr-HUNT corenr-CORN vs corabr-CORN

So, exactly the same pattern of priming <u>must</u> be observed for **TL stimuli** and **intact stimuli**.

However, Diependaele, Morris, Serota, Bertrand, and Grainger (2013) reported that priming for intact pseudo-derived primes (**corner-CORN**) <u>disappeared</u> under TL conditions (**corenr-CORN**), despite transparent priming (**hunter-HUNT**) being maintained (**hunetr-HUNT**). In addition, Diependaele et al. (2013) argued against obligatory decomposition from the finding that cross-morpheme transposition also disrupted the priming of the stem of a suffixed pseudoword:

- e.g., hunten-HUNT < carden-HUNT
- But hunetn-HUNT = carden-HUNT

So, if the single-pathway obligatory decompositional model is to be maintained, it is critical to establish whether these two effects are genuine.

EXPERIMENT 1

Used items derived from the intact stimuli tested by Beyersmann, Ziegler, Castles, Coltheart, Kezilas, & Grainger (2015).

They found standard priming effects:

- hunter-HUNT < symbol-HUNT
- corner-CORN < tunnel-CORN
- cashew-CASH = mortal-CASH

	TL Prime	Control	
Transparent	hunetr-HUNT	hunafr-HUNT	
Pseudo-derived	corenr-CORN	corabr-CORN	
Form-related	casehw-CASH	casagw-CASH	

	TL Prime	Control	Priming
Transparent	hunetr-HUNT 574 ms	hunafr-HUNT 594 ms	+20 *

	TL Prime	Control	Priming
Transparent	hunetr-HUNT 574 ms	hunafr-HUNT 594 ms	+20 *
Form-related	casehw-CASH 594 ms	casagw-CASH 594 ms	0

	TL Prime	Control	Priming
Transparent	hunetr-HUNT 574 ms	hunafr-HUNT 594 ms	+20 *
Pseudo-derived	corenr-CORN 602 ms	corabr-CORN 604 ms	+2
Form-related	casehw-CASH 594 ms	casagw-CASH 594 ms	0

So, the results of Diependaele et al. (2013) are replicated and the single-pathway obligatory decompositional model cannot handle them.

EXPERIMENT 2

Priming for <u>suffixed pseudowords</u> compared to <u>suffixed real words</u>. Same suffixes used for both.

INTACT:

hunter-HUNTvshunten-HUNTvshundir-HUNTgolden-GOLDvsgolder-GOLDvsgolkir-GOLD

<u>TL</u>:

hunetr-HUNTvshunetn-HUNTvshunidr-HUNTgoledn-GOLDvsgoledr-GOLDvsgolikr-GOLD

	Real	Pseudo	Control	Real priming	Pseudo priming
Intact	hunter-HUNT 613 ms	hunten-HUNT 610 ms	hundir-HUNT 629 ms	+16 *	+19 *

	Real	Pseudo	Control	Real priming	Pseudo priming
Intact	hunter-HUNT 613 ms	hunten-HUNT 610 ms	hundir-HUNT 629 ms	+16 *	+19 *
TL	hunetr-HUNT 621 ms	hunetn-HUNT 625 ms	hunidr-HUNT 637 ms	+16 *	+12 *

So, contrary to Dipiendaele et al. (2013), TL suffixed pseudowords do generate priming, consistent with the single-pathway obligatory decomposition model. How do we explain a **lack of TL pseudo-derived priming** (corenr-CORN) along with the **existence of TL pseudoword priming** (hunetn-HUNT)?

Account based on <u>my</u> interpretation of the new model outlined in **Grainger and Beyersmann**: *Psychology of Learning and Motivation*, Vol 67, in press.

(A development of the **Dual Pathways** approach outlined by Diependaele et al., 2013, and Grainger & Ziegler, 2011).

Edge-aligned processing

Edge-aligned processing

But also coarse-grained pathway (open bigrams?)

But also activation of the embedded word that is subordinate to the activation of the whole word

The complete system

TL pseudowords

CONCLUSION

- If the findings of Experiment 1 hold up, a single-pathway obligatory decomposition account is untenable.
- A model that separates the locus of decomposition from the locus of transposed letter effects seems necessary, hence requiring dual pathways in the recognition of polysyllabic words.