The neural bases & distributional factors underlying learning and generalization of morphological inflections

Michael Nevat, U. of Haifa Michael T. Ullman, Georgetown U. Zohar Eviatar, U. of Haifa Tali Bitan, U. of Haifa & U. of Toronto

June 2017, Trieste

What are the statistical factors affecting learning of morphological regularities in a 2nd language?

- □ Is there a "default inflection"?
 - Some models suggest that emergence of "regular" inflections in L1 does not depend on their statistical properties (e.g., Berent, Pinker & Shimron, 1999; Marcus et al., 1995)
 - Which statistical factors affect emergence of a "default inflection"?

Domain general statistical factors

Suffix (type) frequency

- Repetitions critical for procedural / perceptual learning
- Shows effects but cannot explain alone emergence of "default".
- Predictability based on phonological cues
 - Critical in e.g. visual category learning
 - Shows effects, but its role is debated
- Affix Diversity: number of distinct cues predicting an affix
 - Plays role in generalization from motor, perceptual and category learning
 - May explain emergence of low-frequency "default" inflections

The Artificial Language

 48 nouns in artificial language (CVCVC)

Aurally presented + object image

- Plural inflection by suffix:
 - 5 suffixes (VC), varying frequencies:

Probabilistic phonological cue: rime- suffix

e.g.: "tuv<u>oz</u>" \rightarrow "tuv<u>oz</u>an"; "gish<u>oz</u>" \rightarrow "gish<u>oz</u>an".

"inishig" \rightarrow nishigan"; "posig" \rightarrow "posigan"

" $napod" \rightarrow "napodesh"; "nezod" \rightarrow "nezodesh"$

NOT explicit

Experimental groups

Group	Α	В	С
Suffix type freq	Probabilistic N=18	Probabilistic N=18	Deterministic N=17
1 High Freq. 50% (24 words)	0.375	0.148	` 0.283
1 Medium Freq. 25% (12 words)	0.125	0.269	0.133
3 Low Freq. 8.3% (3 X 4 words)	0.194 (each suffix)	0.167 (each suffix)	0.194 (each suffix)

Suffix frequency – within subject Suffix predictability – within and between subjects Suffix phonological diversity – within and between subjects

Multi-session training

Trained words: effect of suffix frequency

Learning of morpho-phonological regularities

Application of "correct" suffixes to Untrained words <u>with rime cues</u>

Increase in application of "correct" responses

Inflection of untrained words without phonological cues

- Increase in
 - application of Low frequency suffix
 - Beyond its frequency in trained stimuli
 - Especially in nondeterministic language

Application of suffixes to Untrained words <u>without rime cues</u>

Emergence of probabilistic "default"

- Cosine similarities
- Initially:
 - Greater reliance on suffix frequency > phonological diversity

Later:

- Increase in reliance on phonological diversity
 - Especially in nondeterministic languages

Untrained words without rime cues

Experiment 2: fMRI - Goals

- Which neurocognitive learning mechanisms are involved in learning morphological inflections in a 2nd language?
 - Procedural? Declarative? Both?
- Are they affected by these statistical factors
 - Suffix frequency
 - Predictability of phonological cues
 - (Only trained & untrained words with rime cues were tested)

FMRI procedure

18 participants (native Hebrew speakers)
 Language A

Early involvement of Fronto-striatal regions

- Caudate nuc. decreases with training:
 - Involved in motor & perceptual learning
- Nevat, Ullman, Eviatar, & Bitan, (2017)
- Consistent with procedural skill learning
- Affected by statistical information: suffix frequency

Untrained > trained words: "compositional"

Reliance on phonological cues

- Medial frontal / Pre-SMA:
 - Assoc. with procedural
 - Positive correlation

- Left IFG Triangularis
 - Declarative/ semantic retrieval
 - Negative correlation

Correlated with awareness

-0.2

Nevat, Ullman, Eviatar, & Bitan, (2017)

"Compositional" areas in trained items

- \Box In sess. 1:
- Less in high freq.
 suffixes.
- □ Greater reliance on storage?

Nevat, Ullman, Eviatar, & Bitan, (2017)

Conclusion-1

- Learning inflectional regularities in a novel language depends on statistical properties:
 Affix type frequency and phonological predictability
- When inflecting new words, with no phonological similarity to trained words:
 - A default inflection emerges (even in a novel language)
 - Initially it is the high frequency suffix
 - After learning of phonological regularities the "default" depends on both suffix frequency and suffix phonological diversity.

Conclusions-2

- Learning a novel grammar in adults
- Involves procedural learning mechanisms already in early stages of training.
- "Compositionality" (untrained>trained) involves
 language production mechanisms and is affected by
 learning of phonological regularities
- Familiar (trained) forms with high frequency suffixes are less "compositional".

THANK YOU

Funded by: US-Israel Binational Science Foundation 077/2007 to Bitan & Ullman