The neural bases \& distributional factors
 underlying
 learning and generalization of morphological inflections

Michael Nevat, U. of Haifa
Michael T. Ullman, Georgetown U.
Zohar Eviatar, U. of Haifa
Tali Bitan, U. of Haifa \& U. of Toronto

Goals

\square What are the statistical factors affecting learning of morphological regularities in a $2^{\text {nd }}$ language?
\square Is there a "default inflection"?
\square Some models suggest that emergence of "regular" inflections in L1 does not depend on their statistical properties (e.g., Berent, Pinker \& Shimron, 1999; Marcus et al., 1995)

- Which statistical factors affect emergence of a "default inflection"?

Domain general statistical factors

\square Suffix (type) frequency
\square Repetitions critical for procedural / perceptual learning
\square Shows effects but cannot explain alone emergence of "default".
\square Predictability based on phonological cues
\square Critical in e.g. visual category learning
\square Shows effects, but its role is debated
\square Affix Diversity: number of distinct cues predicting an affix
\square Plays role in generalization from motor, perceptual and category learning

- May explain emergence of low-frequency "default" inflections

The Artificial Language

$\square 48$ nouns in artificial language (CVCVC)

- Aurally presented + object image
\square Plural inflection by suffix:
- 5 suffixes (VC), varying frequencies:

\square Probabilistic phonological cue: rime- suffix e.g.: "tuvoz" \rightarrow "tuvozan"; "gishoz" \rightarrow "gishozan".

```
"nishiq" }->\mathrm{ nishiqan"; "posiq" }->\mathrm{ "posigan"
"napod" }->\mathrm{ "napodesh"; "nezod" }->\mathrm{ "nezodesh"
```

- NOT explicit

Experimental groups

Group	A Probabilistic $\mathrm{N}=18$	\mathbf{B} Probabilistic $\mathrm{N}=18$	Cuffix type freq Deterministic $\mathrm{N}=17$
1 High Freq. 50\% (24 words)	$\mathbf{0 . 3 7 5}$	$\mathbf{0 . 1 4 8}$	-0.283
1 Medium Freq. 25\% (12 words)	$\mathbf{0 . 1 2 5}$	$\mathbf{0 . 2 6 9}$	$\mathbf{0 . 1 3 3}$
3 Low Freq. 8.3\% (3 X 4 words)	$\mathbf{0 . 1 9 4}$ (each suffix)	$\mathbf{0 . 1 6 7}$ (each suffix)	$\mathbf{0 . 1 9 4}$ (each suffix)

Suffix frequency - within subject
Suffix predictability - within and between subjects
Suffix phonological diversity - within and between subjects

Multi-session training

Trained words: effect of suffix frequency

\square Best performance on High freq. inflections
\square but Low freq. is better/ equal to Medium.

Learning of morpho-phonological regularities

Application of "correct" suffixes to Untrained words with rime cues

Session
\square Increase in application of "correct" responses

Inflection of untrained words without phonological cues

\square Increase in
application of Low frequency suffix

- Beyond its frequency in trained stimuli
- Especially in nondeterministic language

Application of suffixes to Untrained words without rime cues

Emergence of probabilistic "default"

\square Cosine similarities

Untrained words without rime cues

\square Initially:
\square Greater reliance on suffix frequency > phonological diversity
\square Later:
\square Increase in reliance on phonological diversity

- Especially in nondeterministic languages

Experiment 2: fMRI - Goals

\square Which neurocognitive learning mechanisms are involved in learning morphological inflections in a $2^{\text {nd }}$ language?

- Procedural? Declarative? Both?
\square Are they affected by these statistical factors
\square Suffix frequency
\square Predictability of phonological cues
\square (Only trained \& untrained words with rime cues were tested)

FMRI procedure

$\square 18$ participants (native Hebrew speakers)
\square Language A

Trained-item test
Trained- item test
Trained- item test
5 training blocks
5 training blocks

$$
5 \text { training blocks }
$$

Trained-item test
Trained-item test
Trained-item test

```
Scan:
- Trained items
- Untrained items with
    rime cues
- Baseline: repetition
```

```
Scan:
- Trained items
- Untrained items with
    rime cues
- Baseline: repetition
```


Early involvement of Fronto-striatal regions

Sess. 1:

Low \& Medium > High
\square Caudate nuc. decreases with training: \square Involved in motor \& perceptual learning

Nevat, Ullman, Eviatar, \& Bitan, (2017)
\square Consistent with procedural skill learning
\square Affected by statistical information: suffix frequency

Untrained > trained words: "compositional"

\square Reliance on phonological cues

- Medial frontal/ Pre-SMA:
- Assoc. with procedural
- Positive correlation

- Left IFG Triangularis

■ Declarative/ semantic retrieval

- Negative correlation
\square Correlated with awareness

"Compositional" areas in trained items

\square In sess. 1:
\square Less in high freq. suffixes.
\square Greater reliance on storage?

Nevat, Ullman, Eviatar, \& Bitan, (2017)

Conclusion- 1

\square Learning inflectional regularities in a novel language depends on statistical properties:
\square Affix type frequency and phonological predictability
\square When inflecting new words, with no phonological similarity to trained words:
\square A default inflection emerges (even in a novel language)

- Initially it is the high frequency suffix
\square After learning of phonological regularities - the "default" depends on both suffix frequency and suffix phonological diversity.

Conclusions-2

\square Learning a novel grammar in adults
\square Involves procedural learning mechanisms already in early stages of training.
\square "Compositionality" (untrained>trained) involves language production mechanisms and is affected by learning of phonological regularities
\square Familiar (trained) forms with high frequency suffixes are less "compositional".

THANK YOU

Funded by: US-Israel Binational Science Foundation 077/2007 to Bitan \& Ullman

