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@ What is a fluid?

@ A fluid is any material that cannot sustain a tangential, or shearing, force when
at rest and that undergoes a continuous change in shape when subjected to such
a stress (e.g. liquids, gases). (source: Encyclopaedia Britannica)

Waves in a small lagoon, Malmg, Sweden.
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@ Problem: (in)stability of solutions of PDEs describing fluids under small
perturbations of initial data.

@ A solution ug to a nonlinear system is called linearly unstable if the linearization
of the equation at this solution has the form

d
—u = Au,
dt

where u is the perturbation of ug, A is a linear operator whose spectrum contains
eigenvalues with positive real part. If all the eigenvalues have negative real part,
then the solution is called linearly stable.

What about nonlinear stability?
@ Consider an autonomous nonlinear dynamical system
% = F(x(t))

where x(t) € D C RY, D open set containing the origin, f : D — R? cont.
vector field on D. Suppose f has an equilibrium at x, i.e. f(xe) =0.

The equilibrium xe is Lyapunov stable if for every ¢ > 0 there exists a § > 0 such
that if ||x(0) — xe|| < 6, then ||x(t) — xe|| < € for every t > 0.
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Examples of stability phenomena in fluids

Photo of approximately-periodic swell in shallow water, close to the Panama coast (1933).

source:Wikipedia.



Introduction Problem Formulation Result Sketch of proof Conclusion
000000000000 00000 (e]e] o 0000 o

Cross swells in front of Jle de Ré, France. source:Wikipedia.
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Photo of the planet Jupiter; notice the Great Red Spot in the southern hemisphere. source:NASA.
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Many of the PDEs under study, after possibly appropriate change of variables, take
the form

iug = Lu+ N(u)
where u belongs to some Banach space, L is a self-adjoint operator, and N is a
nonlinear term O(|u|9t1), g > 1, with N(0) = 0.

For initial data of size ¢ < 1, nonlinearity is viewed as a perturbation of the linear flow.
Classical local in time theory guarantees that the solutions have a linear behaviour
(hence the origin is stable) for times of order O(e~9).

For longer time scales the effect of the nonlinearity becomes non-trivial.
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Examples of instability phenomena in fluids

Transitions from laminar to turbulent regimes of the plume of a candle. source:Wikipedia.
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Growth of Sobolev norms: consider cubic defocusing nonlinear Schrédinger equation
on the 2D torus

—idru+ Au = |u]?u (1)
u(0, x) = up(x)
where x € T? := R?/(27Z)?, u: R x T2 — C.
Recall that if u(t,x) = Zjez2 aj(t)el
1/2

lu(Ollsrzy = | D lai(0)2 ) ;)= (R

jE€Z?

@ Eq. (1) is globally well posed in Sobolev spaces H*(T?), s > 1;

@ conservation of energy implies that ||u(t)|| 12y < Clluollpr(r2)-

What about [|u(t)||ys(r2) for s > 17

@ Growth of Sobolev norms is described by transfer of energy from low modes to
high modes.
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Photo of a rogue wave against a ship. source:Georgia Tech.
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Our research at SISSA

o

Prove rigorous results on stable and unstable dynamics in PDEs modelling water
waves and geophysical fluids.

@ Existence of small amplitude 2D /3D water waves;
Existence of vortex patches in 2D fluids;

Energy cascades from low to high frequency modes;
Modulational instabilities of traveling waves;

Extreme phenomena formations (e.g. rogue waves).
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Difficulties
Many aspects of the models, both from physics

@ 2D/3D fluids, gravity, surface tension, vorticity, density,...
and from mathematics

@ ansatz on solutions, approximations, structure of linear part (dispersion relation),
structure of nonlinearity,...

The above difficulties are often intertwined!

@ Tools: techniques from nonlinear PDEs (dispersive PDEs, Hamiltonian PDEs,...),
Hamiltonian systems,...
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Professors: M. Berti, A. Maspero;

Researchers/Assistant professors: R. Grande, B. Langella;

Postdocs: S. Pasquali, E. Roulley, S. Terracina;

PhD students: T. Barbieri, A.M. Radakovic, M.T. Rotolo, D. Silimbani

+ collaborators, both in Italy (Milan, Naples, Rome, Trieste...) and abroad (France,
Germany, Spain, Sweden, UAE, USA,...).
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Small amplitude asymmetrical water waves

with M. Groves (Germany), D. Nilsson and E. Wahlén (Sweden)

Prove existence of asymmetric small amplitude 3D doubly periodic steady water waves.

@ Doubly periodic: there are two lin. indep. wave vectors ki, ks € R? generating
the lattice

N = {k = niki + noks : n;j € Z, j= 1,2}, (2)
and a dual lattice of periods in R? such that
A= {)\:ml)\1+m2)\2 : ijZ,)\j'kg:27r§jg, ‘[':].,2}7 (3)

@ Asymmetric: generic ki, ko spanning A’.
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Setting

Incompressible inviscid fluid with constant density occupying a 3D domain with flat
bottom, under the action of gravity and surface tension.

@ We study small amplitude 3D steady water waves.

Steady: both the velocity field and free-surface profile are stationary with respect
to a uniformly (horizontally) translating frame of reference.

Notation: x’ = (x,y) € R? horizontal directions, z € R vertical direction.
@ Fluid domain:
Dy = {(x,2) ER? x R: —h < z < n(x)}, Q)

free surface given by the graph of an unknown function i : R> — IR; h > 0 is the
depth.

@ Beltrami flows: the velocity field u : Di,] — R3 and the vorticity curlu are
collinear, curlu = au for some constant o € R.

Why Beltrami flows? Physical reasons (e.g. experiments), mathematical reasons
(e.g. Arnold theorems on 3D steady Euler Eq.).

@ In the literature, the fluid is usually assumed to be irrotational, curlu = 0.
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divu=0
culu=au

Water waves system for Beltrami flows, in the pure gravity case.

Conclusion
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Equations for steady water waves on strong Beltrami flow
divu =0, in Dy, (5)
curlu = au, in Dy, (6)
u-e3=0, at z= —h, (7)
u-n=0, at z =, (8)
1 5 Mx Ny 1 -
Zlul? 4+ gn— _x ) — —> | =Z|c|]5, at z=n,
ol e ((1+|V7I|2)1/2>X ’ ((1+|w2)l/2 2 !

9

where e3 = (0,0,1)7, n is the outward unit normal vector, g is the gravity constant, 3
is the surface tension coefficient, ¢ = (c1, c2) " is the wave velocity, and (8) and (9) are
respectively the kinematic and the dynamic boundary conditions at the free surface.

@ If we consider a fluid domain with flat boundary, namely
Do :={(x',z) eRZxR: —h < z <0}, (10)
a “trivial solution” of (5)-(9) is the two-parameter family of laminar flows
u* = cu® c2u(2), c, €R, (11)
u® = uM[a] := (cos(az), —sin(az),0)7,

u®@ = u®[qa] := (sin(az), cos(az),0) .
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Example of a laminar flow, with « = 0.1, ¢c; =1, cp = —2.



Formulation Result Sketch of proof Conclusion
(1) C )

Single-equation Formulation

@ We consider sol. (7,u) of (4)-(9) which are small perturbations of the laminar
flow (10)-(11). If v := u — u*, we write v by a solenoidal vector potential A s.t.

v = curl A. (12)

@ Notation: F = (F1, F», F3)T three-dimensional vector field,
Fn=(F, )7,
F| = Fn + F3V 1|z=y quantity related to the tangential part of F,

For the two-dimensional vector field f = (fi, )7 we denote f+ = (f, —f)7.
We indicate the evaluation at the free surface with an underscore.

@ Hodge-Weyl decomposition for doubly periodic vector fields in R
vV =7+ VO+VIV, ¥V =(0,0)", V* =(9,-8)7, (13)

where v := (VH> denotes the mean value of v|| over one periodic cell.

@ We write u* - N = V - S(17)*, where

)= 5 (anlen’) + 2 (et 1)
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@ We choose v = 0, writing ¢ = ¢cg + u, where ¢g € R?is a given constant vector,
so that

u* = (c10 + p)u® + (20 + 2)u®, o = (c10, c20) "

Hence, the system can be reduced to a single equation:

(—u* - N+ T(n) - Vn)?
2(1+1[Vnl?)

TIx Ny B

where T(n) = M(n)(0,S(n)), and the operator M(n) is defined as
M(n)(7,g) := —(curl B)y, (15)

and B solves a suitable boundary-value problem.

1
J(n, p) = E\T(n)|2 - +T(n) - uj +gn

@ We want to construct small amplitude solutions of J(n, u) = 0.
We obtain (formally if 3 = 0) local solutions of J(n, ) = 0 of the form
n=m + n2(n, p), where

n = Aeikl«x/ 4 Beik2~x’ +l_qe—ik1«x/ 4 Be—ik2~x’ (16)
and n2 = O(|(m1, )||m|) (with analytic dependence upon n; and p for 8 > 0).



Result

Result

Theorem (Groves-Nilsson-P.-Wahlén, JDE, 2024)

Let us assume that the (generic) conditions (NR) and (T) hold true.

(i) Expanding m2 as a power series

m2(n1, 1) = Z M2,k,1(M5 1),

k+1>2

where 7 . ; is homogeneous of order k, [ in 71, p respectively (formally for
B = 0), one can construct 7 x ; such that

J(m + Z nz,k,/(m,u),u) = O(|(n1, w)|™™)

k+I<m
for each m € IN.
(i) Suppose 8 > 0. There exist ¢ > 0 and analytic functions y;: B-(0,R?) — R,
i =1,2 such that 1;(0,0) =0 and
J(n1 + n2(m, p1(1AP, 1BI?), n2(|AR,1B1)), ma(|AP%, 1BI2), n2(|A1%, |B?)) = 0,
where 71 is given by (16), for all (|Al,|B|) € B:(0,R?).
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Ideas (and difficulties) in the proof

@ Norms: define the Fourier coefficients of a periodic function f on the lattice A by

o= \Q|_1/2/ F(x')e ™ dx/,
Q

where € is the parallelogram built with A1, A2. For m > 0 we denote by
H™(IR?/A) the Sobolev space of periodic functions in variable x’ € IR? /A, with

the norm
1/2

1l g 1= | (L + 2]l

keN’
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@ Power series expansion: write the Taylor expansion of M(n) around n =0,
o0
M(n) = Z M;(n),
j=0

with Mj(7n) homogeneous of degree j in 7. Under the non-resonance condition

(NR) the restrictions
Ikl # al,
hy/a? —|k2¢ TN, if k| <|af,
hold for each k € A/,

we have 1
Mo(7,8) = =7+ ; (@D +D¢c(D)) D-g*,

(k) = v/ a? — k|2 cot(hy/a? — |k|]2), if |k|] < |«
' \/|k]2 — a2 coth(h \/|k|2 — a?), if |k| > |a

where

Conclusion
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o Dispersion relation: The linearization at the origin of (14) is given by
Jom:=Ti(n) co+gn—BAn=0, (17)

where T1(n) = Mg(0,S1(n)), and My is the principal part of the operator M(n)
in the power series expansion.

If we write the Fourier expansion of 7,
n(x) = ie™,
ken’
we have that (17) is equivalent to
p(k, co; B) =0, ke N,

where p is the dispersion relation

«
p(k,c; B) = [g+ﬂ\kl2—W (c-K)(k* - )| [k[*¢(|k]) — (c-k)* = 0. (18)
tan(h /a2 —|k|?) .
_— f k|l < |af,
t(|k|):: /az,‘k‘z | | ‘ ‘Oé|
tanh(h 4/ |k|2—a?) if |k‘ S ‘Oz|

We assume the transversality condition

(T) Leta €R, g,h>0, >0and c=co € R?\ {0}. Then the only solutions
k € N\ of the dispersion relation (18) are given by 0, +k1, tka.



Formulation Result Sketch of proof Conclusion
[e]e] o] [e]e]e] ] o]

@ Let us investigate ker(Jig). Notice that

D p(k, co, B) ke,

k[)
> P

Chon)(<) =g+ >

keA\ {0}
ker(Jlo) _ {ACikl‘X/ + Beikz.x’ + ;\C—ier/ n Bc—ikz-x/ : A, Be C},

|
Ik

because by (T) we have that p(k,co; 8) = 0 if and only if k = 0, £kq, tk».

Jio is formally invertible if ?:i:kl = '?:tkz = 0 with formal inverse given by

- 1, k|2 o ikex!
(' ) = —fo + ——— e’
10 g ; c([kDp(k, co; B)

k#0,+kq , ko

- with surface tension (8 > 0): p(k,co; B) 2 |k|3 for suff. large |k|, so the above
series converges in H572(R2/A) for f € H5(IR?/A).

- no surface tension (8 = 0): p(k, cp; 0) is not bounded from below as |k| — oo, so
the above formula does not define a bounded operator from H*(R?/A) to
HSTL(R?/A) for any s. This is the reason why the result is formal.
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Thank you for your attention!

Molo Audace at sunset, Trieste, November 2024.
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