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Introduction

• Quantum mechanics is a microscopic theory of nature, explaining many
of its key features. Example: the stability of matter.

• It is also very successful in explaining transport phenomena, of relevance
in condensed matter physics.

Famous example: the Quantum Hall Effect, or more recently topological
insulators.

• Cond-mat is a constant source of interesting math problems, that
motivated the development of various areas of mathematics: functional
analysis, spectral theory, probability, noncommutative geometry, etc.

• I am (mostly) interested in the rigorous understanding of the collective
behavior of many-body quantum systems, using rigorous field theory and
statistical mechanics methods.
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The Integer Quantum Hall Effect

• 2d insulators exposed to strong magnetic field and in-plane electric field.

Extremely low temperatures (about 4 Kelvins)

• Linear response (weak E):

J1 = σ11E , J2 = σ21E

σ11 = longitudinal conductivity, σ21 = −σ12 = Hall conductivity.
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The Integer Quantum Hall Effect

• Classical prediction: linear behavior of transverse conductivity
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The Integer Quantum Hall Effect

• von Klitzing et al. ’80 Experiment on GaAs-heterostructures (insulators).
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The Integer Quantum Hall Effect

• von Klitzing et al. ’80 Experiment on GaAs-heterostructures (insulators).

• Integer Quantum Hall effect: σ21 is quantized, with 10−9 precision!

σ21 =
e2

h
· n , n ∈ Z .

Purely quantum phenomenon. First example of topological insulator.
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Rigorous results

• This phenomenon is by now rigorously understood, for a wide class of
physically realistic models. First example of topological insulator.

Thouless-Kohmoto-Nightingale-den Nijs ’82: for translation
invariant systems, quantization follows from topology.

Bellissard-Van Elst-Schulz Baldes ’94, Avron-Seiler-Simon ’94:
translation invariance can be dropped, using noncommutative
geometric methods, or index theorems for Fredholm operators.

Aizenman-Graf ’98: plateaux follow from Anderson localization.

• The phenomenon can also be understood via QFT methods:

Chern-Simons effective field theories; bulk-edge dualities;
nonrenormalization of anomalies; supersymmetry...

• Despite all the effort, the effect of many-body interactions has been only
recently rigorously understood. ( we’ll discuss it later)
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Mathematical setting

• Let us start from noninteracting fermions. One-particle on an infinite 2d
crystalline lattice:

ψ ∈ `2(Z2;CM ) wave function of the particle

we allow for M internal degrees of freedom (sublattice, spin etc).
Normalization: ‖ψ‖2 = 1.

• Hamiltonian: H = H∗ on `2(Z2;CM ), generates evolution via the
Schrödinger equation,

i∂tψt = Hψt , ψ0 = ψ .

• The zero-temperature equilibrium state for ∞-many fermions is defined
by the Fermi projector:

〈O〉µ := Tr`2 OPµ , Pµ := χ(H ≤ µ) ,

for a given chemical potential µ.
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Mathematical setting

• Typical class of models to be considered:

B

V

∆

where ∆ : lattice hopping; V external potential; B: magnetic field.

• Hamiltonian: H = −∆A + V , with

∆A(x; y) = ∆(x; y)ei
∫
x→y

d`·A(`) ,

∫
∂(plaquette)

d` ·A(`) = Flux(B)
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Insulators

• The beauty of the IQHE is that it does not rely on a specific model.

The common feature is the insulating behavior:

|〈δx, Pµδy〉| ≤ Ce−c|x−y| exponential decay of correlations.

• True if:

µ /∈ σ(H). Trivial, if H < µ! In that case, χ(H ≤ µ) = Identity.

µ R

µ ∈ σpp(H) & µ not eigenvalue of H. This is the case if V is a
strong random potential: Anderson localization.

µ R

• Not true if µ ∈ σac(H). For instance, if H = −∆, Pµ(x; y) decays as a
power law. Physically, these situations describe metals.
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Quantization of σ12

• A lenghty and nontrivial computation gives the following result for
the Hall conducticity:

σ12 = lim
L→∞

i

L2
Tr`2(Z2) χ(|x| ≤ L)Pµ[[x̂1, Pµ], [x̂2, Pµ]]

which turns out to be an integer multiple of 1/2π!

• Simplest possible case. Let:

Pµ =
⊕
k∈T2

P̂ (k) , P̂ (k) = |ϕ(k)〉〈ϕ(k)| , ϕ(k) ∈ CM

Then:

σ12 =

∫
T2

dk

(2π)2
~∇× 〈ϕ(k), i~∇kϕ(k)〉 ∈ 1

2π
Z .
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Colored butterflies

• Hofstadter model: Laplacian on Z2 with constant magnetic field.

Spectrum in black, the resolvent in white.

• For rational magnetic field, the spectrum is a finite union of intervals.

For irrational fields, the spectrum is a Cantor set!

Ten Martini conjecture, proved by Avila & Jitomirskaya; Annals 2005,

revisited by Jitomirskaya & Krasovsky; Annals 2021.
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Colored butterflies

• Hofstadter model: Laplacian on Z2 with constant magnetic field.

Spectrum in black, the resolvent is colored with the value of σ12.

• For rational magnetic field, the spectrum is a finite union of intervals.

For irrational fields, the spectrum is a Cantor set!

Ten Martini conjecture, proved by Avila & Jitomirskaya; Annals 2005,

revisited by Jitomirskaya & Krasovsky; Annals 2021.
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Bulk-edge duality

• Halperin ’82. Hall phases must come with robust edge currents.

• Intuition: the transition from the nontrivial Hall phase to the void has to
come with a insulator/metal transition:

As long as the system is in the insulating phase, the Hall conductivity is
constant.
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Edge states in quantum Hall systems

• Let H be a lattice Schrödinger operator on the cylinder ΛL.

For simplicity, assume transl. inv.: H =
⊕

k∈S1 Ĥ(k).

Figure: The lattice ΛL (L1 = L2.)
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Edge states in quantum Hall systems

• Let H be a lattice Schrödinger operator on the cylinder ΛL.

For simplicity, assume transl. inv.: H =
⊕

k∈S1 Ĥ(k).

• Hp : counterpart of H with periodic b.c.. Hyp.: Hp is gapped.

σ(H) might differ from σ(Hp) by the presence of edge states.

Figure: Spectrum of Ĥ(k), as function of k ∈ S1.

• Red curve: eigenvalue branch ε(k), with eigenstates (edge modes)

ϕx(k) = eikx1ξx2
(k) , with ξx2

(k) ∼ e−cx2 .
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The bulk-edge correspondence

• Bulk-edge duality: relation between σ12 and the edge states of H.

σ12 =
∑
ω

sgn(vω)

2π
(sgn(vω)= chirality of edge mode)

Figure: (a) : σ12 = 1
2π , (b) : σ12 = − 1

2π , (c) : σ12 = 0.

• Rigorous results for noninteracting systems:

Hatsugai ’93: Translation invariant systems.
Schulz-Baldes et al. ’00: Disordered systems (with bulk gap).
Graf et al. ’02: Mobility gap regime.
Graf-P. ’13: Time-reversal invariant systems.

• Boundary states described in terms of effective (1 + 1)d chiral QFT.
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What is missing?

• The previous discussion only focused on non-interacting models.
In real systems, electrons unavoidably interact. Taking them into
account makes the analysis much harder.

• Still, the noninteracting theory is able to describe many experimentally
observed phenomena, to an amazing precision. Why is that?

• A key aspect of the Hall effect not captured by the non-interacting
theory is the fractionalization of the Hall conductivity: (FQHE)
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Statistical mechanics description

• N -particle fermionic Hilbert space, finite lattice ΛL = [−L/2, L/2]2:

hN =
{
ψN ∈ `2(ΛNL )

∣∣ψN is antisymmetric under permutations
}

and N -particle Hamiltonian:

HN =

N∑
i=1

1⊗(i−1) ⊗Hi ⊗ 1⊗(N−i) + λ

N∑
i<j

v(x̂i − x̂j)

• Useful to lift to a setting where the number of particles is not fixed:

F =
⊕
N≥0

hN , H =
⊕
N≥0

HN , (Fock space)

• The equilibrium state of the system is defined by a density matrix:

ρβ,L,µ =
1

Zβ,L,µ

⊕
N≥0

e−β(HN−µN) , 〈O〉β,L,µ := TrFOρβ,L,µ .
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Program

• For λ = 0, the model is noninteracting: quantum analogue of a Gaussian
free field. (All correlations computable via Wick rule.)

• For λ 6= 0, determining whether the system is in an insulating phase or
not is much harder. The preliminary question we are interested in is:

How fast does 〈AXBY 〉 − 〈AX〉〈BY 〉 decay as dist(X,Y )→∞?

Here, 〈·〉 ≡ 〈·〉β,L,µ. We are interested in the β, L→∞ limit.

• In this many-body setting, the Hall conductivity is given by:

σ12 = lim
η→0+

lim
β→∞

lim
L→∞

∫ 0

−∞
dt eηt〈[eiHtJ1e−iHt, J2]〉β,L,µ

for a suitable current operator J = (J1, J2). The second task is:

Extend the theory of the QHE to the many-body setting.
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QFT & RG

• We study these problems via quantum field theory and renormalization
group methods.

• RG has been introduced by Wilson in the 70s for the study of critical
phenomena in stat-mech. It is by now a powerful tool in mathematical
physics: it allows to rigorously compute physical quantities (e.g. critical
exponents) in cases where no exact solutions are available.

• In collaboration with A. Giuliani (Roma 3) and V. Mastropietro (Milan)
we used these methods to initiate a rigorous study of interacting
topological phases of matter, from a stat-mech viewpoint.

• Recently, with F. Caragiulo (SISSA) and H. P. Singh (SISSA), we
extended the techniques to disordered topological insulators, and to
study real-time dynamics for edge modes.
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In a nutshell

• For small interactions, all these models can be represented as
perturbation of Grassmann Gaussian QFTs in d+ 1 dimensions:

Z =

∫
ν(dψ)eV (ψ) ,

where ν(·) is a suitable Grassmann Gaussian measure, and V (·) is a
polynomial interaction (e.g. quadratic or quartic).

• The free theory enters in the determination of the covariance of ν(·).
Insulators (µ /∈ σ(H)): the covariance decays exponentially fast.
Z can be evaluated via a convergent determinant expansion.

Metals (µ ∈ σ(H)): perturbation theory does not work.
Z can be evaluated via multiscale analysis.
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Renormalization group

• Connection between microscopic and macroscopic world, based on
iterative coarse graining methods.

Replace microscopic quantities by local averages, end up with new model.

Iterative applications give rise to a “flow of models”.
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Renormalization group

• Connection between microscopic and macroscopic world, based in
iterative coarse graining methods.

• Dynamical system in the space of models. Different models might share
the same fixed point: Universality!

• The fixed point might be much simpler than the original model. Some of
its properties (e.g., scaling exponents) might be explicitly computable.
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Rigorous results about many-body systems

• Hastings-Michalakis; Comm. Math. Phys. 2015.

Giuliani, Mastropietro, P.; Comm. Math. Phys. 2016.

For |λ| small enough, the Hall conductivity is universal:

σ12(λ) = σ12(0) .

Based on gauge-theoretic methods (Ward identities).

• Mastropietro, P.; Comm. Math. Phys. 2022: universality of the edge
conductance:

σedge(λ) = σedge(0) .

Based on construction of scaling limit for edge correlations: Generalized
Luttinger model, an integrable QFT.

• The combination of these two results allow to rigorously lift the
bulk-edge duality to many-body systems, for small interaction.
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Recent works with my group at SISSA

• w/ F. Caragiulo: extension of the methods to disordered systems.
Scaling limit of edge correlations, in presence of quasi-periodic potential.
Number-theoretic estimates combined with RG tools.

• w/ H. P. Singh: large-scale dynamics of edge currents, starting from the
Schrödinger equation. Proof of bosonic behavior of edge currents, from
first principles. Anomalous Ward identities and chiral anomalies.

• w/ L. Goller: rigorous analysis of Z2 Ising gauge theory coupled to
matter. Proof of semimetallic behavior and universality of magnetic
susceptibility. Reflection positivity methods and chessboard estimates.

• Combination of disorder and many-body interactions? Connections with
generalized hydrodynamics? Combination of RG and reflection positivity
methods, for gauge theories? Fractionalization, anyons...?

Thank you!
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