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The Distributions revolution (L. Schwartz)
(and Young’s measures, and currents, and varifolds, . . . )

. . . all of a sudden, all functions became infinitely differentiable and all
sequences converging. . .

Oscillations and concentration became a source of interest and not
an obstruction to regularity.



Application-driven suggestions

oscillations in alloys singularities in liquid crystals pattern formation



Effects in the Calculus of Variations

The classical questions of the Calculus of Variations regarded
existence and regularity for a single minimum problem.
With the freedom of having non-strongly converging minimizing
sequences, it became interesting to study sequences of problems.

The variational formulation
(In a classical context) we introduce some (small, positive) parameter
ε, and consider problems

min
{∫

Ω

fε(x, u,∇u) dx : u ∈ Xε

}
As we let ε→ 0 do minimizers (or almost minimizers) develop
oscillations/concentration at some scale?
What are the relevant features of fε that drive the scale?



A classic: gradient theory of phase transitions
Van der Waals/Cahn-Hilliard theory of phase transitions
(u = density of a fluid)
Variational principle: optimal configurations minimize the free
energy

∫
Ω

W (u(x)) dx+ ε2

∫
Ω

|∇u|2 dx with given
∫

Ω

u(x) dx = m|Ω|

W = double-well potential (we can suppose with two minima at 0 and 1)
and m ∈ (0, 1)



Asymptotic analysis
Equivalent energy:

Fε(u) =
1

ε

∫
Ω
W (u(x)) dx+ε

∫
Ω
|∇u|2 dx

(
≥ 2

∫
Ω

√
W (u)|∇u| dx

)
with Xε =

{
u ∈ H1(Ω) :

∫
Ω u(x) dx = m|Ω|

}
Convergence: uε → A if uε → χA in measure.

Minimal-interface criterion: the limit A minimizes a perimeter
functional

F0(A) = cWPer(A,Ω)

with X0 =
{
A set of finite perimeter in Ω : |A| = m|Ω|

}
Scale: minimizers uε make a transition from 0 to 1 in an
ε-neighbourhood of Ω ∩ ∂A



Classic elliptic homogenization

The simplest example is

min
{∫ 1

0

a
(x
ε

)
|u′(x)|2 dx − 2

∫ 1

0

g(x)u(x) dx : u(0) = 0, u(1) = z
}

with a 1-periodic.
The Euler-Lagrange equation is

−
(
a
(x
ε

)
u′ε

)′
= g,

which gives (G a primitive of g)

u′ε = −G(x) + const

a(x
ε )

⇀ −G(x) + const

a
, with

1

a
=

∫ 1

0

1

a(s)
ds

(a is the harmonic mean of a)



Homogenized limit

Using the boundary conditions to determine the constants, we then
have that uε weakly converges to the minimizer of

min
{
a

∫ 1

0

|u′(x)|2 dx − 2

∫ 1

0

g(x)u(x) dx : u(0) = 0, u(1) = z
}
.

Scale of uε: in this case the scale is the period of the energy, which
translates in the period of the solutions.
uε oscillates at scale ε and optimizes the oscillations according to the
coefficient a.

Note that for strongly converging uε to u we have

lim
ε→0

∫
Ω

a
(x
ε

)
|u′ε(x)|2 dx = a

∫
Ω

|u′(x)|2 dx,

where a =
∫ 1

0
a(s)ds is the average of a (and a > a unless a is

constant).



De Giorgi’s Γ-convergence
In both examples we have
• there exists lim

ε→0+
inf Fε → minF0

• we have convergence of minimizing sequences to minimizers
• the form of F0 is independent of m, and g and boundary values in
the two case.
This fact can be translated in a convergence of functionals.

This convergence can be formulated in topological terms:
Fε : Xε → [−∞,+∞] Γ-converge to F0 : X0 → [−∞,+∞], with
respect to a convergence xε → x0 if
(i) (liminf inequality) F0(x0) ≤ lim inf

ε→0
Fε(xε) for all xε → x0;

(ii) (existence of a recovery sequence) for all x0 there exists xε → x0

such that F0(x0) ≥ lim sup
ε→0

Fε(xε)

Note:(upon some compactness requirements) The proof that Γ-convergence implies
convergence of minima is elementary and is essentially the same of the Weierstrass
Theorem. Indeed, Γ-convergence is equivalent to convergence of minima and
minimizing sequences (and “stability wrt continuous perturbations).



The analytical question

• compute the Γ-limit F0

• describe the behaviour of minimizing sequences through suitable
formulas and a scale.

General variational formulas
Phase-transition problems The constant cW is given by a
one-dimensional optimal-profile problem

cW = min
{∫ +∞

−∞
(W (v(t)) + |v′(t)|2)dt : v(−∞) = 0, v(+∞) = 1

}
and uε(x) ∼ v(d(x,∂A)

ε ) where A is the minimal set and d is the signed
distance



Homogenization problems
The function a|z|2 can be expressed by a cell-problem formula

a|z|2 = min
{∫ 1

0

a(t)|ϕ′(t)|2dt : ϕ(t)− zt 1-periodic
}

(optimization over all periodic perturbations of the function z). If we
denote by ϕ(·, z) the minimum, then uε(x) ∼ ϕ(x

ε , u
′(x)), where u is

the solution to the limit problem.

This formula can be used to described the limit also in dimension
d > 1 e.g. of

Fε(u) =

∫
Ω

〈
A
(x
ε

)
∇u(x),∇u(x)

〉
dx,

with A a (0, 1)d-periodic definite positive matrix. The Γ-limit is
described by a constant matrix Ahom with

〈Ahomξ, ξ〉 = min
{∫

(0,1)d
〈A(y)∇ϕ,∇ϕ〉dy : ϕ(y)− ξy 1-periodic

}



Optimization of oscillations in different directions

This formula highlights that optimal oscillations can be different in
different direction.
If for example d = 2 and A(y1, y2) = a(y1)Id with a 1-periodic, so that

Fε(u) =

∫
Ω

a
(x1

ε

)
|∇u|2 dx,

we have oscillations only in the y1-direction and Ahom =

[
a 0
0 a

]
(and conversely if A(y) = a(y2)Id), showing that the limit does not
depend only on averaged quantities of the coefficients of A.

Consequence: this shows that all (homogeneous) elliptic functionals∫
Ω
〈B∇u,∇u〉 dx are Γ-limits of isotropic functionals

∫
Ω
a(x

ε )|∇u|2 dx
(Easy: change variables so as to write B as a diagonal matrix. . . )

Problem (mixtures of N isotropic functionals) If a = a(x1, . . . , xd)
is 1-periodic and can take only finitely many values a1, a2, . . . , aN with
given proportions, what are the possible limits of

∫
Ω
a(x

ε )|∇u|2 dx?
Difficult. If N ≥ 3 open.



Oscillations at all periods for vector problems

The cell-problem formula still holds if we consider more general
functionals

Fε(u) =

∫
Ω

f
(x
ε
,∇u

)
dx,

with f(·, ξ) 1-periodic as long as u is scalar.

If u is vector valued the integrand fhom(ξ) with ξ ∈ Rm×d of the limit
is given by an asymptotic formula

fhom(ξ) = inf
N∈N

1

Nd
min

{∫
(0,1)d

f(y,∇ϕ)dy : ϕ(y)− ξy N-periodic
}

;

that is, minimizers may develop oscillations at all period N at scale ε
(they can be a superposition of εN -periodic functions for all N and
hence almost periodic)

Question: under what conditions we have that the minimum is
achieved at N finite? Easy answer: f(y, ·) convex. Many general
answers (especially for special values of ξ; cf. the Cauchy-Born rule)



Oscillations and concentration

Concentration can be driven also by boundary conditions. If these
boundary conditions are imposed on periodic varying sets these two
effects add up. A classic example is that of Dirichlet boundary
conditions on an ε-periodic perforation in Rd (d ≥ 3)

Fε(u) =

∫
Ω

|∇u|2 dx

Xε =
{
u ∈ H1(Ω) : u = 0 on

⋃
k Bεd/(d−2)(εk)

}
,

where Br(x) denotes the ball of center x and radius r and the sum is
performed on all k such that Bεd/(d−2)(εk) ⊂ Ω.

(“Strange term coming from nowhere”).The Γ-limit is

F0(u) =

∫
Ω

|∇u|2 dx+ C

∫
Ω

|u|2 dx.

where C is the capacity of the unit ball in Rd



Optimal sequences concentrate on the boundary of the (very) small
balls minimizing the capacity (at scale εd/(d−2)) and at the same time
give an average contribution summing up in the last term.

Question: what are the possible limits if we take arbitrary sets where
we require that u = 0?
(Answer: general “strange terms” integrated with respect to
capacitary measures. This is a complex theory known as the theory
of ‘Relaxed Dirichlet Problems’)



A different type of concentration: point
singularities

Ginzburg-Landau functionals. In the vector case (e.g. d = m = 2),
we can consider problems

min
{∫

Ω

|∇u|2 dx+
1

ε2

∫
Ω

(|u|2 − 1)2 dx : u = ϕ on ∂Ω
}

with non-trivial solutions if ϕ : ∂Ω→ Sd−1 has non-zero degree.

The term 1
ε2 (|uε|2 − 1)2 is a penalization term that forces |u| = 1 in the

limit, but the relevant behaviour of uε is that they develop vortices
around point singularities; i.e., close to a finite set of x0 they tend to
be of the form

uε(x) ∼
( x− x0

|x− x0|

)n
(in complex notation) where n is the degree of the vortex.

Here the relevant converging quantity is the Jacobian of uε, whose
limit is a finite sum of Dirac deltas at points in Ω with integer
coefficients.



Microscopic and macroscopic scales

Recent developments (e.g. in Data Science) are requiring the
analysis of (large) sets of points with little geometrical structure or
regularity. Variational techniques have been used both directly on
discrete sets and on continuum approximations. The simplest
standpoint is that of considering

Fε(u) =
∑
i6=j

Φij(ui, uj),

where Xε = {{ui}i∈Iε} is a set parameterizing an increasing set of
points, and Φij is a function measuring some interaction between the
points parameterized at i and j. The cardinality of Iε diverges as
ε→ 0.
Alternatively, we can consider approximate continuum models

Fε(u) =

∫
X

∫
X

fε(u(x), u(y))dxdy



The study of the asymptotic behaviour of such energies is very
complex by their non-locality and superposition of scales
• ‘microscopic effects’ favouring oscillations of nearby points;
• ‘macroscopic effects’ favouring oscillations at a scale much larger
than the ‘miocroscopic one’
• ‘incommensurability effects’ in the discrete case (e.g. if Iε is
parameterized on a lattice);
• ‘nonlocal effects’, in which microscopic and macroscopic
oscillations compete.



An example of a project starting from a recent course
(‘Another look at Homogenization’ (Milan J. Math 2023) by B, Brusca and Donati)

Problem. Compare ‘non-local fractional homogenization’ with ‘local’
homogenization.
In terms of functionals, let ε→ 0 and sε → 1−

Fε(u) =
1− sε

2

∫ 1

0

∫ 1

0

a
(x
ε

) |u(x)− u(y)|2

|x− y|1+2s
dxdy,

Then the limit is a
∫ 1

0

|u′|2 dx (as in the continuum case) if and only if

1− s << ε2

Open problem: is this threshold optimal; that is, is the limit equal to

a

∫ 1

0

|u′|2 dx (averaged limit) if 1− s >> ε2



Thank you for your attention


