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Example 1: Traffic Flow

Traffic in a highway:

ρ(t, x) = density of cars at point x ∈ R and time t > 0.

Basic assumption: velocity of cars v(t, x) ≥ 0 depends only on the
density ρ(t, x): v(t, x) ≡ v(ρ(t, x)).

a b

ρ

Figure 1: Traffic Flow
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Example 1: Traffic Flow

d
dt

∫ b

a
ρ(t, x)dx = Flux(t, a) − Flux(t, b)

= v(ρ(t, a))ρ(t, a) − v(ρ(t, b))ρ(t, b).

If f (ρ) := ρ · v(ρ) we found∫ b

a
∂tρ(t, x)dx = f (ρ(t, a)) − f (ρ(t, b))

= −
∫ b

a
∂x f (ρ(t, x))dx .

∂tρ + ∂x f (ρ) = 0 Scalar conservation law
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Example 2: Gas Dynamics

Euler, Principes généraux du mouvement des fluides (1757)

∂tρ + ∂x (ρv) = 0 mass conservation
∂t(ρv) + ∂x ((ρv)v + P) = 0 momentum conservation
∂tE + ∂x (Ev + Pv) = 0 energy conservation

P ≡ P(ρ, e), E = 1
2ρv2 + ρe

e = internal energy.
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Example 2: Gas Dynamics

Adiabatic assumption ρe = p/(γ − 1):

∂tρ + ∂x (ρv)x = 0 mass conservation
∂t(ρv) + ∂x (ρv2 + P(ρ)) = 0 momentum conservation

(ρ−, v−) (ρ+, v+)

Figure 2: Gas in a pipe

Riemann finds a solution to the initial value problem

ρ(0, x) =
{

ρ−, if x < 0,

ρ+, if x > 0
v(0, x) =

{
v−, if x < 0,

v+, if x > 0
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Example 2: Gas Dynamics

General solution has two kind of waves:

• Compression waves
• Shocks

(ρ−, v−)

(ρ∗, v∗)

(ρ+, v+)

x

shock rarefaction

Figure 3: Solution to the Riemann Problem
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Shock waves

Figure 4: Shock waves interacting between two aircraft
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Systems of conservation laws

A system of n conservation laws is

∂tu + ∂x f (u) = 0

where
u ∈ Rn, f (u) ∈ Rn.

For smooth solutions it is equivalent to

∂tu + Df (u)∂x u = 0.

We say that the system is strictly hyperbolic if Df (u) has n distinct real
eigenvalues

λ1(u) < . . . < λn(u)
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System of conservation laws

For gas dynamics:

f (ρ, ρv) =
(

ρv
ρv2 + P(ρ)

)
, P(ρ) = κργ , γ > 1

Then
λ1 = v −

√
κργ−1 < v +

√
κργ−1 = λ2.
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Linear case

The linear and scalar case is the simple transport equation

∂tu + λ∂x u = 0

If initially u(0, x) = ū(x), then the unique solution to the Cauchy
problem is

u(t, x) = ū(x − λt).
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Linear systems

The linear case for systems reads

∂tu + A∂x u = 0

One can find left and right dual basis of eigenvectors r1, . . . rn , ℓ1, . . . , ℓn:

Ari = λi ri ℓiA = λiℓi

and
ri · ℓj = δij

We want to solve the initial value problem

u(0, x) = ū(x)
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Linear systems

We can diagonalize the system by defining components

ui := ℓi · u ∀ i = 1, . . . , n

Taking the scalar product

0 = ℓi ·
(
∂tu + A∂x u

)
= ∂tui + λi∂x ui

the system is reduced to n independent equations
∂tu1 + λ1∂x u1 = 0, u1(0, x) = ū1(x)
. . .

∂tun + λn∂x un = 0, un(0, x) = ūn(x)

Therefore
ui(x , t) = ūi(x − λi t) ∀ i = 1, . . . , n

u =
n∑

i=1
ū(x − λi t) · ri
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Nonlinear effects: shocks

What about the nonlinear case?

Start with a single conservation law

∂tu + ∂x f (u) = 0, u ∈ R.

Pick for example f (u) = u2/2, then for smooth solutions

∂tu + u∂x u = 0

shock
u(t1, ·) u(t2, ·)

Figure 5: Higher points move with higher speed =⇒ formation of shocks.
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Nonlinear effects: shocks

Smooth solutions are constant along characteristics:

d
dt u(t, x̄ + ut) = ∂tu + u · ∂x u = 0.
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Nonlinear effects: interactions

Left and right dual basis of eigenvectors r1(u), . . . rn(u) , ℓ1(u), . . . , ℓn(u):

Df (u)ri(u) = λi(u)ri(u) ℓi(u)Df (u) = λi(u)ℓi(u)

and
ri(u) · ℓj(u) = δij .

ui
x := ℓi · ux

Then
ux =

n∑
i=1

ui
x ri(u) ut = −

n∑
i=1

λi(u)ui
x ri(u)

Differentiating the first w.r.t. t and the second w.r.t. x and equating we
obtain

(ui
x )t + (λiui

x )x =
∑
j>k

(λj − λk)
(

ℓi · [rj , rk ]
)

uj
x uk

x .
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Nonlinear effects: interactions

Figure 6: Linear and nonlinear behavior
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Vanishing viscosity

What about existence of solutions?

Consider the vanishing viscosity approximations

∂tuε + ∂x f (uε) = ε∂2
xx uε

Formally we expect the convergence uε → u to solutions of the system
without viscosity:

∂tu + ∂x f (u) = 0.

Strategy for existence of solutions:

• prove strong compactness of approximate solutions uε,
• weak notion of solution
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Weak solutions

We have seen that solutions can became discontinuous in finite time,
therefore we need a weak concept of solution.

We say that u : R+ × R → Rn is a weak solution to the conservation
law if∫∫

∂tφ(t, x)u + ∂x φ(t, x)f (u)dtdx = 0 ∀ φ ∈ C∞
c (R+ × R)

or
∂tu + ∂x f (u) = 0 in D′ (in distributions).

Simplest weak solution is a single shock like

u(t, x) =
{

u−, if x < λt
u+ if x > λt
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Rankine-Hugoniot conditions

Using the divergence theorem applied to the field (u, f (u)) we can
show that u is a weak solution if and only if

f (u+) − f (u−) = λ(u+ − u−) Rankine-Hugoniot conditions

Figure 7: Derivation of R-H conditions
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Rankine-Hugoniot conditions

For every smooth φ we find

0 =
∫∫

Ω
φtu + φx f (u)dtdx

=
∫

Ω+
div(φu+, φf (u+))dtdx +

∫
Ω−

div(φu−, φf (u−))dtdx

=
∫

φ(t, λt)(u+, f (u+)) · n⃗+dt +
∫

φ(t, λt)(u−, f (u−)) · n⃗−dt

=
∫

φ(t, λt)(λ(u+ − u−) − f(u+) − f(u−))dt

n⃗+ = (λ, −1), n⃗− = (−λ, 1)
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Non uniqueness of weak solutions

Weak solutions are not unique. Consider Burgers equation

∂tu + ∂x u2/2 = 0, u0(x) =
{

−1 if x < 0,

1 if x > 0.

u1(t, x) =


−1 if x ≤ −t,

x
t if −t < x < t,

1 if x ≥ t.

u2(t, x) =
{

−1 if x < 0,

1 if x > 0

x−1 1 x−1 1
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travelling waves

The building blocks of solutions to

∂tuε + ∂x f (uε) = ∂2
xx uε (1)

are travelling waves

Uε(t, x) .= Ūε(x − λt) ’approximate shocks’

Uε is a solution to (1) if and only if(
Df (Ū(s)) − λIn×n

)
Ū ′(s) = Ū ′′(s)

In the n = 1 case (
f ′(Ū(s))) − λ

)
Ū ′(s) = Ū ′′(s)
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Travelling waves

We say that u−, u+ are connected by a viscous travelling wave if

Ūε(−∞) = u−, Ūε(+∞) = u+

(More precisely, if there is an invariant curve for the flow of the o.d.e.
connecting u−, u+, directed from u− to u+)
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Travelling waves

In the scalar case, integrating and setting Ū(−∞) = u−,

˙̄U(s) = f (Ū(s)) − f (u−) − λ(Ū(s) − u−)

u− is connected to u+ by a travelling wave if and only if

• the right-hand side does not change sign between u− and u+;
• is nonnegative when u− < u+ and nonpositive when u− > u+

• RH conditions hold

0 = lim
s→+∞

˙̄U(s) = f (u+) − f (u−) − λ(u+ − u−).

Similar reasoning for systems − > we obtain admissiblity conditions for a
general shock.
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Admissibility conditions: scalar case

The graph of f must lie below (u− < u+) above (u+ < u−) the chord.

Analogous condition for systems.

The shock with left and right states u−, u+ satisfies the Liu
admissibility condition provided that its speed is less or equal to the
speed of every smaller shock, joining u− with an intermediate state u∗.

Under this condition it can be proved that small BV solutions are unique.
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General Cauchy problem

Studying the interactions between travelling waves, one can control the
total variation of uε and therefore obtain strong compactness.

Theorem (Bianchini and Bressan) There is δ > 0 such that if

∥ū∥BV ≤ δ

then there exists a unique global entropy solution to the Cauchy problem

∂tu + ∂x f (u) = 0, u(0, x) = ū(x).

Also, solutions are L1 stable

∥v(t) − u(t)∥ ≤ C∥v(0) − u(0)∥.
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A lot of open problems in the field:

• Vanishing viscosity with general diffusion matrices

∂tu + ∂x f (u) = ε∂x (B(u)∂x u), B(u) ≥ 0.

• “Big” initial data
• Multidimensional case (i.e. x ∈ Rd , d > 1)
• ...

27



References

A. Bressan, Hyperbolic systems of conservation laws. The
one-dimensional Cauchy problem. Oxford University Press, Oxford,
2000.
C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,
Fourth edition. Springer-Verlag, Berlin, 2016.
D. Serre, Systems of Conservation Laws 1: Hyperbolicity, Entropies,
Shock Waves, Cambridge University Press, Cambridge, 2000,
Cambridge Studies in Advanced Mathematics, Vol. 54.

28


