Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Introducing Donaldson-Thomas theory with an eye towards character varieties.

Sven Meinhardt (jointly with Ben Davison and Markus Reineke)

SISSA

June 19, 2017

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Moduli of	quiver re	presentatio	ns		

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Moduli of	quiver re	presentatio	ns		

Quiver $Q = (Q_0, Q_1, s, t)$, dimension vector $\gamma = (\gamma_v)_{v \in Q_0} \in \mathbb{N}^{Q_0}$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Moduli of	quiver re	presentatio	ns		

Quiver $Q = (Q_0, Q_1, s, t)$, dimension vector $\gamma = (\gamma_v)_{v \in Q_0} \in \mathbb{N}^{Q_0}$

$$\mathsf{Mat}_\gamma(\mathcal{Q}) := \prod_{\mathcal{Q}_1 \ni lpha : \mathbf{v} o \mathbf{w}} \mathsf{Mat}_{\gamma_{\mathbf{w}} imes \gamma_{\mathbf{v}}}(\mathbb{C})$$

with action of $G_\gamma:=\prod_{v\in \mathcal{Q}_0}\mathsf{GL}_{\gamma_v}(\mathbb{C})$ by simultaneous conjugation.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Moduli of	quiver re	presentatio	ns		

Quiver $Q = (Q_0, Q_1, s, t)$, dimension vector $\gamma = (\gamma_{v})_{v \in Q_0} \in \mathbb{N}^{Q_0}$

$$\mathsf{Mat}_\gamma(\mathcal{Q}) := \prod_{\mathcal{Q}_1 \ni lpha : \mathbf{v} o \mathbf{w}} \mathsf{Mat}_{\gamma_{\mathbf{w}} imes \gamma_{\mathbf{v}}}(\mathbb{C})$$

with action of $G_\gamma := \prod_{v \in Q_0} \operatorname{GL}_{\gamma_v}(\mathbb{C})$ by simultaneous conjugation.

Moduli stack of representations: $\mathfrak{Rep}_{\gamma}(Q) := \operatorname{Mat}_{\gamma}(Q)/\mathcal{G}_{\gamma}$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Moduli of	quiver re	presentatio	ns		

Quiver $Q = (Q_0, Q_1, s, t)$, dimension vector $\gamma = (\gamma_{v})_{v \in Q_0} \in \mathbb{N}^{Q_0}$

$$\mathsf{Mat}_\gamma(\mathcal{Q}) := \prod_{\mathcal{Q}_1 \ni lpha : \mathbf{v} o \mathbf{w}} \mathsf{Mat}_{\gamma_{\mathbf{w}} imes \gamma_{\mathbf{v}}}(\mathbb{C})$$

with action of $G_\gamma := \prod_{v \in Q_0} \operatorname{GL}_{\gamma_v}(\mathbb{C})$ by simultaneous conjugation.

Moduli stack of representations: $\mathfrak{Rep}_{\gamma}(Q) := \operatorname{Mat}_{\gamma}(Q)/\mathcal{G}_{\gamma}$

Question: What about moduli spaces?

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Definition

A tuple $\xi = (\xi_{v})_{v \in \mathcal{Q}_{0}} \in \mathbb{H}^{\mathcal{Q}_{0}}_{+}$ is called a stability condition.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Definition

A tuple $\xi = (\xi_{\nu})_{\nu \in Q_0} \in \mathbb{H}^{Q_0}_+$ is called a stability condition. Given ξ , we call $M = (M_{\alpha})_{\alpha \in Q_1} \in \operatorname{Mat}_{\gamma}(Q) \xi$ -semistable if

$$rg(\xi \cdot \dim M') \leq rg(\xi \cdot \dim M) = rg(\sum_{oldsymbol{
u} \in \mathcal{Q}_0} \xi_{oldsymbol{
u}} \, \gamma_{oldsymbol{
u}})$$

for all subrepresentations M' of M.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Definition

A tuple $\xi = (\xi_{\nu})_{\nu \in Q_0} \in \mathbb{H}^{Q_0}_+$ is called a stability condition. Given ξ , we call $M = (M_{\alpha})_{\alpha \in Q_1} \in Mat_{\gamma}(Q) \xi$ -semistable if

$$rg(\xi \cdot \dim M') \leq rg(\xi \cdot \dim M) = rg(\sum_{
u \in Q_0} \xi_{
u} \, \gamma_{
u})$$

for all subrepresentations M' of M. Mat $_{\gamma}^{\xi-ss}(Q) \subset Mat_{\gamma}(Q)$ is the subset of ξ -semistable representations.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Definition

A tuple $\xi = (\xi_{\nu})_{\nu \in Q_0} \in \mathbb{H}^{Q_0}_+$ is called a stability condition. Given ξ , we call $M = (M_{\alpha})_{\alpha \in Q_1} \in Mat_{\gamma}(Q) \xi$ -semistable if

$$\arg(\xi \cdot \dim M') \leq \arg(\xi \cdot \dim M) = \arg(\sum_{v \in Q_0} \xi_v \gamma_v)$$

for all subrepresentations M' of M. Mat $_{\gamma}^{\xi-ss}(Q) \subset Mat_{\gamma}(Q)$ is the subset of ξ -semistable representations.

A representation without proper subrepresentations of the same phase $\arg(\xi \cdot \dim M)$ is called stable.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Definition

A tuple $\xi = (\xi_{\nu})_{\nu \in Q_0} \in \mathbb{H}^{Q_0}_+$ is called a stability condition. Given ξ , we call $M = (M_{\alpha})_{\alpha \in Q_1} \in Mat_{\gamma}(Q) \xi$ -semistable if

$$\arg(\xi \cdot \dim M') \leq \arg(\xi \cdot \dim M) = \arg(\sum_{v \in Q_0} \xi_v \gamma_v)$$

for all subrepresentations M' of M. Mat $_{\gamma}^{\xi-ss}(Q) \subset Mat_{\gamma}(Q)$ is the subset of ξ -semistable representations.

A representation without proper subrepresentations of the same phase $\arg(\xi \cdot \dim M)$ is called stable.

Fact: Every semistable representation has a "Jordan-Hölder" filtration with stable subquotients of the same phase.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Theorem (Davison-M. '17)

For all ξ and all γ , the subset $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q) \subset \operatorname{Mat}_{\gamma}(Q)$ is the open subvariety of semistable points for a suitable linearization of the G_{γ} -action on $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q)$.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Theorem (Davison-M. '17)

For all ξ and all γ , the subset $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q) \subset \operatorname{Mat}_{\gamma}(Q)$ is the open subvariety of semistable points for a suitable linearization of the G_{γ} -action on $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q)$. Moreover

$$\mathcal{M}^{\xi-\mathit{ss}}_\gamma({\it Q}):={\sf Mat}^{\xi-\mathit{ss}}_\gamma({\it Q})/\!\!/{\it G}_\gamma$$

is a quasiprojective variety parameterizing ξ -semistable representations up to S-equivalence.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Theorem (Davison-M. '17)

For all ξ and all γ , the subset $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q) \subset \operatorname{Mat}_{\gamma}(Q)$ is the open subvariety of semistable points for a suitable linearization of the G_{γ} -action on $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q)$. Moreover

$$\mathcal{M}^{\xi-ss}_\gamma(Q):=\mathsf{Mat}^{\xi-ss}_\gamma(Q)/\!\!/ \mathcal{G}_\gamma$$

is a quasiprojective variety parameterizing ξ -semistable representations up to S-equivalence.

Here, $M \sim_S M'$ if M and M' have the same stable subquotients (up to isomorphism) counted with multiplicities.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Imposing	relations				

Typically, the matrices/linear maps M_{lpha} have to satisfy extra relations.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Imposing	relations				

Typically, the matrices/linear maps M_{lpha} have to satisfy extra relations.

Example: Fix $g \ge 1$ and consider the quiver

$$a_1,...,a_g \bigcirc ullet \bigcirc b_1,...,b_g$$

with the relation $\sum_{i=1}^g [a_i,b_i] = \sum_{i=1}^g a_i b_i - b_i a_i = 0$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Imposing	relations				

Typically, the matrices/linear maps M_{lpha} have to satisfy extra relations.

Example: Fix $g \ge 1$ and consider the quiver

$$a_1,...,a_g \bigcirc \bullet \bigcirc b_1,...,b_g$$

with the relation $\sum_{i=1}^g [a_i,b_i] = \sum_{i=1}^g a_i b_i - b_i a_i = 0$.

Hence, $(M_{\alpha})_{\alpha \in Q_1}$ satisfying these relations provides a representation of the "preprojective algebra" $\mathbb{C}\langle a_1, \ldots, a_g, b_1, \ldots, b_g \rangle / \sum_{i=1}^{g} [a_i, b_i].$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Definition

A potential W for a quiver Q is a complex linear combination of cycles in Q (up to cyclic order of the cycles).

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Definition

A potential W for a quiver Q is a complex linear combination of cycles in Q (up to cyclic order of the cycles). Given $\alpha \in Q_1$, denote by $\partial W/\partial \alpha$ the non-commutative derivative of W wrt. α obtained by permuting all occurrences of α cyclically to the front and deleting α .

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Definition

A potential W for a quiver Q is a complex linear combination of cycles in Q (up to cyclic order of the cycles). Given $\alpha \in Q_1$, denote by $\partial W/\partial \alpha$ the non-commutative derivative of W wrt. α obtained by permuting all occurrences of α cyclically to the front and deleting α . Given W, denote by $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q,W)$ the closed subvariety of $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q)$ of representations satisfying the relations $\partial W/\partial \alpha = 0$ for all $\alpha \in Q_1$.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Definition

A potential W for a quiver Q is a complex linear combination of cycles in Q (up to cyclic order of the cycles). Given $\alpha \in Q_1$, denote by $\partial W/\partial \alpha$ the non-commutative derivative of W wrt. α obtained by permuting all occurrences of α cyclically to the front and deleting α . Given W, denote by $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q,W)$ the closed subvariety of $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q)$ of representations satisfying the relations $\partial W/\partial \alpha = 0$ for all $\alpha \in Q_1$. $\mathfrak{Rep}_{\gamma}^{\xi-ss}(Q,W) := \operatorname{Mat}_{\gamma}^{\xi-ss}(Q,W)/G_{\gamma}$ and $\mathcal{M}_{\gamma}^{\xi-ss}(Q,W) := \operatorname{Mat}_{\gamma}^{\xi-ss}(Q,W)//G_{\gamma}$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Example					

Consider

with potential $W = \omega \sum_{i=1}^{g} [a_i, b_i] = \sum_{i=1}^{g} \omega a_i b_i - \omega b_i a_i$.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Example					

Consider

$$a_1,\ldots,a_g$$

with potential $W = \omega \sum_{i=1}^{g} [a_i, b_i] = \sum_{i=1}^{g} \omega a_i b_i - \omega b_i a_i$. Hence

$$\frac{\partial W}{\partial \omega} = \sum_{i=1}^{g} [a_i, b_i],$$

$$\frac{\partial W}{\partial a_i} = b_i \omega - \omega b_i,$$

$$\frac{\partial W}{\partial b_i} = \omega a_i - a_i \omega.$$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Example					

Consider

with potential $W = \omega \sum_{i=1}^{g} [a_i, b_i] = \sum_{i=1}^{g} \omega a_i b_i - \omega b_i a_i$. Hence

$$\frac{\partial W}{\partial \omega} = \sum_{i=1}^{g} [a_i, b_i],$$

$$\frac{\partial W}{\partial a_i} = b_i \omega - \omega b_i,$$

$$\frac{\partial W}{\partial b_i} = \omega a_i - a_i \omega.$$

Thus, $(M_{\alpha})_{\alpha \in Q_1}$ satisfying these relations provides a representation $(M_{\alpha})_{\alpha \neq \omega}$ of the preprojective algebra $\mathbb{C}\langle a_1, \ldots, a_g, b_1, \ldots, b_g \rangle / \sum_{i=1}^{g} [a_i, b_i]$ together with an endomorphism M_{ω} of that representation.

Quiver moduliPotentialsHall algebrasQuantum groupsGenericityIntegralityFor g = 1 we get $\mathcal{M}_{\gamma}^{\xi-ss}(Q,W) = \operatorname{Sym}^{\gamma}(\mathbb{C}^3) = (\mathbb{C}^3)^{\gamma} /\!\!/ S_{\gamma}$ as
 $(M_{\alpha})_{\alpha \in Q}$ can be considered as a zero-dimensional sheaf on \mathbb{C}^3 with
coordinates (a_1, b_1, ω) .Sym \mathcal{M}_{γ} Sym \mathcal{M}_{γ} Sym \mathcal{M}_{γ}

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
For $\sigma =$	= 1 we get A	$\Lambda^{\xi-ss}(Q,W)$ =	$=$ Sym ^{γ} (\mathbb{C}^3) $=$ ($(3)^{\gamma} / S_{\gamma} as$	

For g = 1 we get $\mathcal{M}^{\gamma}_{\gamma} \cong (Q, W) = \operatorname{Sym}^{\gamma}(\mathbb{C}^{\circ}) = (\mathbb{C}^{\circ})^{\gamma} / S_{\gamma}$ as $(M_{\alpha})_{\alpha \in Q}$ can be considered as a zero-dimensional sheaf on \mathbb{C}^{3} with coordinates (a_{1}, b_{1}, ω) .

Notice: Representations of the preprojective algebra cannot be described by a quiver with potential.

Quiver moduliPotentialsHall algebrasQuantum groupsGenericityIntegralityFor g = 1 we get $\mathcal{M}^{\xi-ss}_{\gamma}(Q,W) = \operatorname{Sym}^{\gamma}(\mathbb{C}^3) = (\mathbb{C}^3)^{\gamma} /\!\!/ S_{\gamma}$ as

 $(M_{\alpha})_{\alpha \in Q}$ can be considered as a zero-dimensional sheaf on \mathbb{C}^3 with coordinates (a_1, b_1, ω) .

Notice: Representations of the preprojective algebra cannot be described by a quiver with potential.

Question: Why only relations induced by potentials?

Quiver moduli Potentials Hall algebras Quantum groups Genericity Integrality For g = 1 we get $\mathcal{M}_{\gamma}^{\xi-ss}(Q, W) = \operatorname{Sym}^{\gamma}(\mathbb{C}^3) = (\mathbb{C}^3)^{\gamma} /\!\!/ S_{\gamma}$ as $(M_{\alpha})_{\alpha \in Q}$ can be considered as a zero-dimensional sheaf on \mathbb{C}^3 with coordinates (a_1, b_1, ω) .

Notice: Representations of the preprojective algebra cannot be described by a quiver with potential.

Question: Why only relations induced by potentials?

• $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q,W) = \operatorname{Crit}(\operatorname{Tr}_{\gamma}(W))$ for some G_{γ} -invariant function $\operatorname{Tr}_{\gamma}(W) : \operatorname{Mat}_{\gamma}^{\xi-ss}(Q) \longrightarrow \mathbb{C}$,

Quiver moduliPotentialsHall algebrasQuantum groupsGenericityIntegralityFor g = 1 we get $\mathcal{M}_{\gamma}^{\xi-ss}(Q,W) = \operatorname{Sym}^{\gamma}(\mathbb{C}^3) = (\mathbb{C}^3)^{\gamma} /\!\!/ S_{\gamma}$ as
 $(M_{\alpha})_{\alpha \in Q}$ can be considered as a zero-dimensional sheaf on \mathbb{C}^3 with
coordinates (a_1, b_1, ω) .Sym \mathcal{M}_{γ} Sym \mathcal{M}_{γ} <t

Notice: Representations of the preprojective algebra cannot be described by a quiver with potential.

Question: Why only relations induced by potentials?

- $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q,W) = \operatorname{Crit}(\operatorname{Tr}_{\gamma}(W))$ for some G_{γ} -invariant function $\operatorname{Tr}_{\gamma}(W) : \operatorname{Mat}_{\gamma}^{\xi-ss}(Q) \longrightarrow \mathbb{C}$,
- There exists a perverse sheaf/(monodromic) mixed Hodge module of vanishing cycles $\phi_{\operatorname{Tr}_{\gamma}(W)}$ on $\operatorname{Crit}(\operatorname{Tr}_{\gamma}(W))$ measuring the singularities of the fibers of $\operatorname{Tr}_{\gamma}(W)$.

Quiver moduli Potentials Hall algebras Quantum groups Genericity Integrality For g = 1 we get $\mathcal{M}_{\gamma}^{\xi-ss}(Q, W) = \operatorname{Sym}^{\gamma}(\mathbb{C}^3) = (\mathbb{C}^3)^{\gamma} /\!\!/ S_{\gamma}$ as $(M_{\alpha})_{\alpha \in Q}$ can be considered as a zero-dimensional sheaf on \mathbb{C}^3 with coordinates (a_1, b_1, ω) .

Notice: Representations of the preprojective algebra cannot be described by a quiver with potential.

Question: Why only relations induced by potentials?

- $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q,W) = \operatorname{Crit}(\operatorname{Tr}_{\gamma}(W))$ for some G_{γ} -invariant function $\operatorname{Tr}_{\gamma}(W) : \operatorname{Mat}_{\gamma}^{\xi-ss}(Q) \longrightarrow \mathbb{C}$,
- ⁽²⁾ There exists a perverse sheaf/(monodromic) mixed Hodge module of vanishing cycles $\phi_{\operatorname{Tr}_{\gamma}(W)}$ on $\operatorname{Crit}(\operatorname{Tr}_{\gamma}(W))$ measuring the singularities of the fibers of $\operatorname{Tr}_{\gamma}(W)$.

Notice: $\operatorname{Tr}_{\gamma}(W) = f_{\gamma} \circ p$ for some function $f_{\gamma} : \mathcal{M}_{\gamma}^{\xi-ss}(Q) \longrightarrow \mathbb{C}$, where $p : \operatorname{Mat}_{\gamma}^{\xi-ss}(Q) \longrightarrow \mathcal{M}_{\gamma}^{\xi-ss}(Q)$ is the quotient map.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Hall algeb	oras - Part	:			

Fix a "phase" $\vartheta \in (0, \pi)$ and introduce the shorthand $\Gamma_{\vartheta} := \{ 0 \neq \gamma \in \mathbb{N}^{Q_0} \mid \arg(\sum_{\nu \in Q_0} \xi_{\nu} \gamma_{\nu}) = \vartheta \} \cup \{ 0 \}$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Hall algeb	oras - Part	:			

Fix a "phase" $\vartheta \in (0, \pi)$ and introduce the shorthand $\Gamma_{\vartheta} := \{ 0 \neq \gamma \in \mathbb{N}^{Q_0} \mid \arg(\sum_{\nu \in Q_0} \xi_{\nu} \gamma_{\nu}) = \vartheta \} \cup \{ 0 \}$ We define the **relative Hall algebra**

$$\overline{\mathcal{H}}(\mathcal{Q},\mathcal{W},\xi,\vartheta):=\bigoplus_{\gamma\in\Gamma_{\vartheta}}\bigoplus_{i\in\mathbb{Z}}\mathsf{R}^{i}\!p_{\mathcal{G}_{\gamma}}\phi_{\mathsf{Tr}_{\gamma}(\mathcal{W})}\otimes[\mathsf{twist}],$$

where $R'p_G$ is the *i*-th direct G_{γ} -equivariant image with respect to the perverse t-structure on $\mathcal{M}_{\gamma}^{\xi-ss}(Q, W)$ (see below),

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Hall algeb	oras - Part	:			

Fix a "phase" $\vartheta \in (0, \pi)$ and introduce the shorthand $\Gamma_{\vartheta} := \{ 0 \neq \gamma \in \mathbb{N}^{Q_0} \mid \arg(\sum_{\nu \in Q_0} \xi_{\nu} \gamma_{\nu}) = \vartheta \} \cup \{ 0 \}$ We define the **relative Hall algebra**

$$\overline{\mathcal{H}}(\mathcal{Q},\mathcal{W},\xi,artheta):=igoplus_{\gamma\in\Gamma_artheta}igoplus_{i\in\mathbb{Z}}\mathsf{R}^{i}\!p_{\mathcal{G}_\gamma}\phi_{\mathsf{Tr}_\gamma(\mathcal{W})}\otimes[\mathsf{twist}],$$

where $R'p_G$ is the *i*-th direct G_{γ} -equivariant image with respect to the perverse t-structure on $\mathcal{M}_{\gamma}^{\xi-ss}(Q,W)$ (see below), and the **absolute Hall algebra**

$$\mathcal{H}(Q,W,\xi,\vartheta) := \bigoplus_{\gamma \in \Gamma_{\vartheta}} \bigoplus_{i \in \mathbb{Z}} \mathsf{H}^{i}_{G_{\gamma}} \left(\mathsf{Mat}_{\gamma}^{\xi-ss}(Q,W), \phi_{\mathsf{Tr}_{\gamma}(W)} \right) \otimes [\mathsf{twist}].$$

by taking the G_{γ} -equivariant cohomology.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Equivaria	nt direct i	mages			

To compute $\operatorname{H}_{G_{\gamma}}^{i}$ and $\operatorname{R}^{i}_{p_{G_{\gamma}}}$, we replace $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q, W)$ and $p: \operatorname{Mat}_{\gamma}^{\xi-ss}(Q, W) \longrightarrow \mathcal{M}_{\gamma}^{\xi-ss}(Q, W)$ with

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Equivariar	nt direct i	mages			

To compute
$$\operatorname{H}_{G_{\gamma}}^{i}$$
 and $\operatorname{R}^{i}_{\mathcal{P}_{G_{\gamma}}}$, we replace $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q,W)$ and $p:\operatorname{Mat}_{\gamma}^{\xi-ss}(Q,W)\longrightarrow \mathcal{M}_{\gamma}^{\xi-ss}(Q,W)$ with

 $EG_{\gamma} imes_{G_{\gamma}} \operatorname{Mat}_{\gamma}^{\xi-ss}(Q,W) \text{ and } EG_{\gamma} imes_{G_{\gamma}} \operatorname{Mat}_{\gamma}^{\xi-ss}(Q,W) \longrightarrow \mathcal{M}_{\gamma}^{\xi-ss}(Q,W)$

and take cohomology and direct images respectively.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Equivariar	nt direct i	mages			

To compute $\operatorname{H}_{G_{\gamma}}^{i}$ and $\operatorname{R}_{p_{G_{\gamma}}}^{i}$, we replace $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q, W)$ and $p: \operatorname{Mat}_{\gamma}^{\xi-ss}(Q, W) \longrightarrow \mathcal{M}_{\gamma}^{\xi-ss}(Q, W)$ with

 $\textit{EG}_{\gamma} \times_{\textit{G}_{\gamma}} \textsf{Mat}_{\gamma}^{\xi-\textit{ss}}(\textit{Q},\textit{W}) \textsf{ and } \textit{EG}_{\gamma} \times_{\textit{G}_{\gamma}} \textsf{Mat}_{\gamma}^{\xi-\textit{ss}}(\textit{Q},\textit{W}) \longrightarrow \mathcal{M}_{\gamma}^{\xi-\textit{ss}}(\textit{Q},\textit{W})$

and take cohomology and direct images respectively. In practice, we have $EG_{\gamma} \times_{G_{\gamma}} \operatorname{Mat}_{\gamma}^{\xi-ss}(Q, W) = \varinjlim_{n} U_{\gamma}^{(n)}(Q, W, \xi)$ for finite dimensional closed "subvarieties" $U_{\gamma}^{(n)}(Q, W, \xi)$ such that

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Equivariar	nt direct i	mages			

To compute $\operatorname{H}_{G_{\gamma}}^{i}$ and $\operatorname{R}_{\mathcal{F}}^{i}p_{G_{\gamma}}$, we replace $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q, W)$ and $p: \operatorname{Mat}_{\gamma}^{\xi-ss}(Q, W) \longrightarrow \mathcal{M}_{\gamma}^{\xi-ss}(Q, W)$ with

 $\textit{EG}_{\gamma} \times_{\textit{G}_{\gamma}} \textsf{Mat}_{\gamma}^{\xi-\textit{ss}}(\textit{Q},\textit{W}) \textsf{ and } \textit{EG}_{\gamma} \times_{\textit{G}_{\gamma}} \textsf{Mat}_{\gamma}^{\xi-\textit{ss}}(\textit{Q},\textit{W}) \longrightarrow \mathcal{M}_{\gamma}^{\xi-\textit{ss}}(\textit{Q},\textit{W})$

and take cohomology and direct images respectively. In practice, we have $EG_{\gamma} \times_{G_{\gamma}} \operatorname{Mat}_{\gamma}^{\xi-ss}(Q, W) = \varinjlim_{n} U_{\gamma}^{(n)}(Q, W, \xi)$ for finite dimensional closed "subvarieties" $U_{\gamma}^{(n)}(Q, W, \xi)$ such that $\blacksquare \operatorname{H}^{i}(U_{\gamma}^{(n)}(Q, W, \xi))$ stabilizes for $n \gg 0$,

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Equivariar	nt direct i	mages			

To compute $\operatorname{H}_{G_{\gamma}}^{i}$ and $\operatorname{R}^{i}_{p_{G_{\gamma}}}$, we replace $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q, W)$ and $p: \operatorname{Mat}_{\gamma}^{\xi-ss}(Q, W) \longrightarrow \mathcal{M}_{\gamma}^{\xi-ss}(Q, W)$ with

 $\mathit{EG}_{\gamma} \times_{\mathit{G}_{\gamma}} \mathsf{Mat}_{\gamma}^{\xi-\mathit{ss}}(\mathit{Q}, \mathit{W}) \text{ and } \mathit{EG}_{\gamma} \times_{\mathit{G}_{\gamma}} \mathsf{Mat}_{\gamma}^{\xi-\mathit{ss}}(\mathit{Q}, \mathit{W}) \longrightarrow \mathcal{M}_{\gamma}^{\xi-\mathit{ss}}(\mathit{Q}, \mathit{W})$

and take cohomology and direct images respectively. In practice, we have $EG_{\gamma} \times_{G_{\gamma}} \operatorname{Mat}_{\gamma}^{\xi-ss}(Q, W) = \varinjlim_{n} U_{\gamma}^{(n)}(Q, W, \xi)$ for finite dimensional closed "subvarieties" $U_{\gamma}^{(n)}(Q, W, \xi)$ such that

- Hⁱ $(U_{\gamma}^{(n)}(Q, W, \xi))$ stabilizes for $n \gg 0$,

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Equivaria	nt direct i	mages			

To compute $\operatorname{H}_{G_{\gamma}}^{i}$ and $\operatorname{R}^{i}_{p_{G_{\gamma}}}$, we replace $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q, W)$ and $p: \operatorname{Mat}_{\gamma}^{\xi-ss}(Q, W) \longrightarrow \mathcal{M}_{\gamma}^{\xi-ss}(Q, W)$ with

 $\mathit{EG}_{\gamma} \times_{\mathit{G}_{\gamma}} \mathsf{Mat}_{\gamma}^{\xi-\mathit{ss}}(\mathit{Q}, \mathit{W}) \text{ and } \mathit{EG}_{\gamma} \times_{\mathit{G}_{\gamma}} \mathsf{Mat}_{\gamma}^{\xi-\mathit{ss}}(\mathit{Q}, \mathit{W}) \longrightarrow \mathcal{M}_{\gamma}^{\xi-\mathit{ss}}(\mathit{Q}, \mathit{W})$

and take cohomology and direct images respectively. In practice, we have $EG_{\gamma} \times_{G_{\gamma}} \operatorname{Mat}_{\gamma}^{\xi-ss}(Q, W) = \varinjlim_{n} U_{\gamma}^{(n)}(Q, W, \xi)$ for finite dimensional closed "subvarieties" $U_{\gamma}^{(n)}(Q, W, \xi)$ such that

- Hⁱ $(U_{\gamma}^{(n)}(Q, W, \xi))$ stabilizes for $n \gg 0$,

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Equivaria	nt direct i	mages			

To compute $\operatorname{H}_{G_{\gamma}}^{i}$ and $\operatorname{R}_{p_{G_{\gamma}}}^{i}$, we replace $\operatorname{Mat}_{\gamma}^{\xi-ss}(Q, W)$ and $p: \operatorname{Mat}_{\gamma}^{\xi-ss}(Q, W) \longrightarrow \mathcal{M}_{\gamma}^{\xi-ss}(Q, W)$ with

 $\mathit{EG}_{\gamma} \times_{\mathit{G}_{\gamma}} \mathsf{Mat}_{\gamma}^{\xi-\mathit{ss}}(\mathit{Q}, \mathit{W}) \text{ and } \mathit{EG}_{\gamma} \times_{\mathit{G}_{\gamma}} \mathsf{Mat}_{\gamma}^{\xi-\mathit{ss}}(\mathit{Q}, \mathit{W}) \longrightarrow \mathcal{M}_{\gamma}^{\xi-\mathit{ss}}(\mathit{Q}, \mathit{W})$

and take cohomology and direct images respectively. In practice, we have $EG_{\gamma} \times_{G_{\gamma}} \operatorname{Mat}_{\gamma}^{\xi-ss}(Q, W) = \varinjlim_{n} U_{\gamma}^{(n)}(Q, W, \xi)$ for finite dimensional closed "subvarieties" $U_{\gamma}^{(n)}(Q, W, \xi)$ such that

•
$$\mathsf{H}^{i}\left(U_{\gamma}^{(n)}(Q,W,\xi)\right)$$
 stabilizes for $n\gg0$,

$$U^{(n)}_{\gamma}(Q, W, \xi) \longrightarrow \mathcal{M}^{\xi-ss}_{\gamma}(Q, W) \text{ is proper.}$$

Approximation (of p) by proper maps

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Notice:					

The absolute Hall algebra H(Q, W, ξ, ϑ) = H^{*}_{*}(Q, W, ξ, ϑ) is a bi-graded vector space/monodromic mixed Hodge structure.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
A					

Notice:

- The absolute Hall algebra H(Q, W, ξ, ϑ) = H^{*}_{*}(Q, W, ξ, ϑ) is a bi-graded vector space/monodromic mixed Hodge structure.
- So The relative Hall algebra $\overline{\mathcal{H}}(Q, W, \xi, \vartheta) = \overline{\mathcal{H}}^*_*(Q, W, \xi, \vartheta)$ is a bi-graded perverse sheaf/monodromic mixed Hodge module on $\mathcal{M}^{\xi-ss}_\vartheta(Q, W) := \sqcup_{\gamma \in \Gamma_\vartheta} \mathcal{M}^{\xi-ss}_\gamma(Q, W).$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Notice:

- The absolute Hall algebra H(Q, W, ξ, ϑ) = H^{*}_{*}(Q, W, ξ, ϑ) is a bi-graded vector space/monodromic mixed Hodge structure.
- So The relative Hall algebra $\overline{\mathcal{H}}(Q, W, \xi, \vartheta) = \overline{\mathcal{H}}^*_*(Q, W, \xi, \vartheta)$ is a bi-graded perverse sheaf/monodromic mixed Hodge module on $\mathcal{M}^{\xi-ss}_\vartheta(Q, W) := \sqcup_{\gamma \in \Gamma_\vartheta} \mathcal{M}^{\xi-ss}_\gamma(Q, W).$

By general arguments there is a "perverse" filtration on $\mathcal{H}^*_{\gamma}(Q, W, \xi, \vartheta)$ and a spectral sequence with E_2 -term

$$\mathsf{H}^{i}\left(\mathcal{M}^{\xi-ss}_{\gamma}(\mathcal{Q},\mathcal{W}),\overline{\mathcal{H}}^{j}_{\gamma}(\mathcal{Q},\mathcal{W},\xi,artheta)
ight)$$

converging to $\mathfrak{gr}^{i}\mathcal{H}^{i+j}_{\gamma}(Q,W,\xi,\vartheta).$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
A					

Notice:

- The absolute Hall algebra H(Q, W, ξ, ϑ) = H^{*}_{*}(Q, W, ξ, ϑ) is a bi-graded vector space/monodromic mixed Hodge structure.
- So The relative Hall algebra $\overline{\mathcal{H}}(Q, W, \xi, \vartheta) = \overline{\mathcal{H}}^*_*(Q, W, \xi, \vartheta)$ is a bi-graded perverse sheaf/monodromic mixed Hodge module on $\mathcal{M}^{\xi-ss}_\vartheta(Q, W) := \sqcup_{\gamma \in \Gamma_\vartheta} \mathcal{M}^{\xi-ss}_\gamma(Q, W).$

By general arguments there is a "perverse" filtration on $\mathcal{H}^*_{\gamma}(Q, W, \xi, \vartheta)$ and a spectral sequence with E_2 -term

$$\mathsf{H}^{i}\left(\mathcal{M}^{\xi-ss}_{\gamma}(\mathcal{Q},\mathcal{W}),\overline{\mathcal{H}}^{j}_{\gamma}(\mathcal{Q},\mathcal{W},\xi,artheta)
ight)$$

converging to $\mathfrak{gr}^{i}\mathcal{H}^{i+j}_{\gamma}(Q,W,\xi,\vartheta).$

Proposition (Davison-M. '16)

The spectral sequence collapses at E_2 , i.e.

 $\mathfrak{gr}^* \mathcal{H}^*_{\gamma}(Q, W, \xi, \vartheta) \cong \mathsf{H}^* \left(\mathcal{M}^{\xi-ss}_{\gamma}(Q, W), \overline{\mathcal{H}}^*_{\gamma}(Q, W, \xi, \vartheta) \right).$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Hall algeb	oras - Part	:			

Given dimension vectors $\gamma', \gamma'' \in \Gamma_{\vartheta}$, consider

 $\mathsf{Mat}_{\gamma',\gamma''}^{\xi-ss}(Q):=\big\{(\mathit{M}_{\alpha})\in\mathsf{Mat}_{\gamma'+\gamma''}^{\xi-ss}(Q)\mid \mathit{M}_{\alpha} \text{ upper block triagonal}\big\}$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Hall algeb	oras - Part	:			

Given dimension vectors $\gamma', \gamma'' \in \Gamma_{\vartheta}$, consider

$$\mathsf{Mat}^{\xi-ss}_{\gamma',\gamma''}(Q):=ig\{(M_lpha)\in\mathsf{Mat}^{\xi-ss}_{\gamma'+\gamma''}(Q)\mid M_lpha$$
 upper block triagonalig\}

with its action by the subgroup $G_{\gamma',\gamma''} \subset G_{\gamma'+\gamma''}$ of upper block triagonal invertible matrices.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Hall algeb	oras - Part	:			

Given dimension vectors $\gamma', \gamma'' \in \Gamma_{artheta}$, consider

$$\mathsf{Mat}^{\xi-ss}_{\gamma',\gamma''}(Q):=ig\{(M_lpha)\in\mathsf{Mat}^{\xi-ss}_{\gamma'+\gamma''}(Q)\mid M_lpha$$
 upper block triagonalig\}

with its action by the subgroup $G_{\gamma',\gamma''} \subset G_{\gamma'+\gamma''}$ of upper block triagonal invertible matrices.

$$\mathfrak{Rep}^{\xi-ss}_{\gamma',\gamma''}(Q):=\mathsf{Mat}^{\xi-ss}_{\gamma',\gamma''}(Q)/\mathcal{G}_{\gamma',\gamma''}$$

is the stack of short exact sequences.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Hall algeb	oras - Part	:			

Given dimension vectors $\gamma', \gamma'' \in \Gamma_{artheta}$, consider

$$\mathsf{Mat}^{\xi-ss}_{\gamma',\gamma''}(Q):=ig\{(M_lpha)\in\mathsf{Mat}^{\xi-ss}_{\gamma'+\gamma''}(Q)\mid M_lpha$$
 upper block triagonalig\}

with its action by the subgroup $G_{\gamma',\gamma''} \subset G_{\gamma'+\gamma''}$ of upper block triagonal invertible matrices.

$$\mathfrak{Rep}^{\xi-ss}_{\gamma',\gamma''}(Q):=\mathsf{Mat}^{\xi-ss}_{\gamma',\gamma''}(Q)/\mathcal{G}_{\gamma',\gamma''}$$

is the stack of short exact sequences. Get equivariant maps

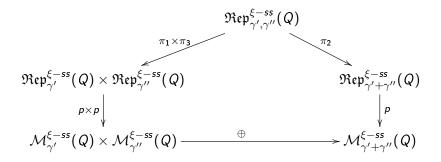
$$\pi_2: \mathsf{Mat}^{\xi-ss}_{\gamma',\gamma''}(Q) \hookrightarrow \mathsf{Mat}^{\xi-ss}_{\gamma'+\gamma''}(Q)$$

and

$$\pi_1\times\pi_3:\mathsf{Mat}_{\gamma',\gamma''}^{\xi-ss}\longrightarrow\mathsf{Mat}_{\gamma'}^{\xi-ss}(Q)\times\mathsf{Mat}_{\gamma''}^{\xi-ss}(Q)$$

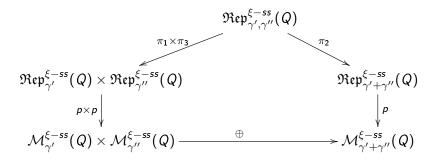
Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

inducing a commutative diagram



Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

inducing a commutative diagram



Using adjunction morphisms for pull-back and push-forwards, the Thom–Sebastiani isomorphism and properties of the vanishing cycle functor, we get maps

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

$$\oplus_* \Big(\,\overline{\mathcal{H}}_{\gamma'}(\mathcal{Q},\mathcal{W},\xi,\vartheta)\boxtimes\overline{\mathcal{H}}_{\gamma''}(\mathcal{Q},\mathcal{W},\xi,\vartheta)\Big) \longrightarrow \overline{\mathcal{H}}_{\gamma'+\gamma''}(\mathcal{Q},\mathcal{W},\xi,\vartheta)$$

of perverse sheaves/monodromic mixed Hodge modules

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

$$\oplus_* \Big(\, \overline{\mathcal{H}}_{\gamma'}(\mathcal{Q},\mathcal{W},\xi,\vartheta) \boxtimes \overline{\mathcal{H}}_{\gamma''}(\mathcal{Q},\mathcal{W},\xi,\vartheta) \Big) \longrightarrow \overline{\mathcal{H}}_{\gamma'+\gamma''}(\mathcal{Q},\mathcal{W},\xi,\vartheta)$$

of perverse sheaves/monodromic mixed Hodge modules and similarly

$$\mathcal{H}_{\gamma'}(\mathcal{Q},\mathcal{W},\xi,artheta)\otimes\mathcal{H}_{\gamma''}(\mathcal{Q},\mathcal{W},\xi,artheta)\longrightarrow\mathcal{H}_{\gamma'+\gamma''}(\mathcal{Q},\mathcal{W},\xi,artheta).$$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

$$\oplus_* \Big(\, \overline{\mathcal{H}}_{\gamma'}(\mathcal{Q},\mathcal{W},\xi,\vartheta) \boxtimes \overline{\mathcal{H}}_{\gamma''}(\mathcal{Q},\mathcal{W},\xi,\vartheta) \Big) \longrightarrow \overline{\mathcal{H}}_{\gamma'+\gamma''}(\mathcal{Q},\mathcal{W},\xi,\vartheta)$$

of perverse sheaves/monodromic mixed Hodge modules and similarly

$$\mathcal{H}_{\gamma'}(\mathcal{Q},\mathcal{W},\xi,\vartheta)\otimes\mathcal{H}_{\gamma''}(\mathcal{Q},\mathcal{W},\xi,\vartheta)\longrightarrow\mathcal{H}_{\gamma'+\gamma''}(\mathcal{Q},\mathcal{W},\xi,\vartheta).$$

Summing over $\gamma', \gamma'' \in \Gamma_{\vartheta}$ we get algebras in appropriate symmetric monoidal tensor categories.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

• The Hall algebras $\overline{\mathcal{H}}(Q, W, \xi, \vartheta)$ and $\mathcal{H}(Q, W, \xi, \vartheta)$ are associative with unit.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

- The Hall algebras H
 (Q, W, ξ, θ) and H(Q, W, ξ, θ) are associative with unit.
- The collapsing spectral sequence is a spectral sequence of algebras inducing an isomorphism of algebras

 $\mathfrak{gr}^* \mathcal{H}^*(Q, W, \xi, \vartheta) \cong \mathsf{H}^* \left(\mathcal{M}_{\vartheta}^{\xi - \mathfrak{ss}}(Q, W), \overline{\mathcal{H}}^*(Q, W, \xi, \vartheta) \right).$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

- The Hall algebras H
 (Q, W, ξ, θ) and H(Q, W, ξ, θ) are associative with unit.
- The collapsing spectral sequence is a spectral sequence of algebras inducing an isomorphism of algebras

 $\mathfrak{gr}^* \mathcal{H}^*(Q, W, \xi, \vartheta) \cong \mathsf{H}^* \left(\mathcal{M}_{\vartheta}^{\xi - \mathfrak{ss}}(Q, W), \overline{\mathcal{H}}^*(Q, W, \xi, \vartheta) \right).$

The absolute Hall algebra H(Q, W, ξ, θ) has a compatible (localized) coproduct turning H(Q, W, ξ, θ) into a (localized) bi-algebra and gr H(Q, W, ξ, θ) into a Hopf algebra.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

- The Hall algebras H
 (Q, W, ξ, θ) and H(Q, W, ξ, θ) are associative with unit.
- The collapsing spectral sequence is a spectral sequence of algebras inducing an isomorphism of algebras

$$\mathfrak{gr}^* \, \mathcal{H}^*(Q, W, \xi, artheta) \cong \mathsf{H}^* ig(\mathcal{M}^{\xi-ss}_artheta(Q, W), \overline{\mathcal{H}}^*(Q, W, \xi, artheta) ig).$$

The absolute Hall algebra H(Q, W, ξ, θ) has a compatible (localized) coproduct turning H(Q, W, ξ, θ) into a (localized) bi-algebra and gr H(Q, W, ξ, θ) into a Hopf algebra.

Question: What can we say about the structures of the Hall algebras?

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Genericity					

We call a stability condition ξ generic if for all $\vartheta \in (0, \pi)$ and all $\gamma', \gamma'' \in \Gamma_{\vartheta}$ the bilinear pairing $\sum_{\alpha: v \to w} \gamma'_v \gamma''_w$ is symmetric.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Genericity					

We call a stability condition ξ generic if for all $\vartheta \in (0, \pi)$ and all $\gamma', \gamma'' \in \Gamma_{\vartheta}$ the bilinear pairing $\sum_{\alpha: v \to w} \gamma'_v \gamma''_w$ is symmetric.

Interpretation: Given representations M' and M'' of dimension vectors $\gamma', \gamma'' \in \Gamma_{\vartheta}$,

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Genericity					

We call a stability condition ξ generic if for all $\vartheta \in (0, \pi)$ and all $\gamma', \gamma'' \in \Gamma_{\vartheta}$ the bilinear pairing $\sum_{\alpha: \nu \to w} \gamma'_{\nu} \gamma''_{w}$ is symmetric.

Interpretation: Given representations M' and M'' of dimension vectors $\gamma', \gamma'' \in \Gamma_{\vartheta}$, let $(S_{\kappa})_{\kappa \in K}$ be the family of (non-isomorphic) stable factors of M' and M''. For $\kappa, \lambda \in K$ let $A_{\kappa\lambda} := \dim \operatorname{Ext}^1(S_{\kappa}, S_{\lambda})$.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Genericity					

We call a stability condition ξ generic if for all $\vartheta \in (0, \pi)$ and all $\gamma', \gamma'' \in \Gamma_{\vartheta}$ the bilinear pairing $\sum_{\alpha: \nu \to w} \gamma'_{\nu} \gamma''_{w}$ is symmetric.

Interpretation: Given representations M' and M'' of dimension vectors $\gamma', \gamma'' \in \Gamma_{\vartheta}$, let $(S_{\kappa})_{\kappa \in K}$ be the family of (non-isomorphic) stable factors of M' and M''. For $\kappa, \lambda \in K$ let $A_{\kappa\lambda} := \dim \operatorname{Ext}^1(S_{\kappa}, S_{\lambda})$. Then, ξ is generic if for all choices of ϑ, M' and M'', the matrix $A = (A_{\kappa\lambda})$ is symmetric.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Genericity					

We call a stability condition ξ generic if for all $\vartheta \in (0, \pi)$ and all $\gamma', \gamma'' \in \Gamma_{\vartheta}$ the bilinear pairing $\sum_{\alpha: v \to w} \gamma'_v \gamma''_w$ is symmetric.

Interpretation: Given representations M' and M'' of dimension vectors $\gamma', \gamma'' \in \Gamma_{\vartheta}$, let $(S_{\kappa})_{\kappa \in K}$ be the family of (non-isomorphic) stable factors of M' and M''. For $\kappa, \lambda \in K$ let $A_{\kappa\lambda} := \dim \operatorname{Ext}^1(S_{\kappa}, S_{\lambda})$. Then, ξ is generic if for all choices of ϑ, M' and M'', the matrix $A = (A_{\kappa\lambda})$ is symmetric. The quiver with vertex set K and $A_{\kappa\lambda}$ arrows from κ to λ is called the (Ext-)quiver of $(S_{\kappa})_{\kappa \in K}$. It is symmetric if ξ is generic.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

The absolute Hall algebra of the Ext-quiver of $(S_{\kappa})_{\kappa \in K}$ with a suitable (formal) potential determines the Hall algebra product on the stalks of the relative Hall-algebra $\overline{\mathcal{H}}(Q, W, \xi, \vartheta)$ at M' and M''

 $\overline{\mathcal{H}}(Q,W,\xi,\vartheta)_{M'}\otimes\overline{\mathcal{H}}(Q,W,\xi,\vartheta)_{M''}\longrightarrow\overline{\mathcal{H}}(Q,W,\xi,\vartheta)_{M'\oplus M''}.$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

The absolute Hall algebra of the Ext-quiver of $(S_{\kappa})_{\kappa \in K}$ with a suitable (formal) potential determines the Hall algebra product on the stalks of the relative Hall-algebra $\overline{\mathcal{H}}(Q, W, \xi, \vartheta)$ at M' and M''

 $\overline{\mathcal{H}}(Q,W,\xi,\vartheta)_{M'}\otimes\overline{\mathcal{H}}(Q,W,\xi,\vartheta)_{M''}\longrightarrow\overline{\mathcal{H}}(Q,W,\xi,\vartheta)_{M'\oplus M''}.$

By a result of Efimov the absolute Hall algebra of a symmetric quiver with zero potential is (graded) commutative. Using this, we can prove

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

The absolute Hall algebra of the Ext-quiver of $(S_{\kappa})_{\kappa \in K}$ with a suitable (formal) potential determines the Hall algebra product on the stalks of the relative Hall-algebra $\overline{\mathcal{H}}(Q, W, \xi, \vartheta)$ at M' and M''

 $\overline{\mathcal{H}}(Q,W,\xi,\vartheta)_{M'}\otimes\overline{\mathcal{H}}(Q,W,\xi,\vartheta)_{M''}\longrightarrow\overline{\mathcal{H}}(Q,W,\xi,\vartheta)_{M'\oplus M''}.$

By a result of Efimov the absolute Hall algebra of a symmetric quiver with zero potential is (graded) commutative. Using this, we can prove

Theorem (Davison-M. '16)

If ξ is a generic stability condition, the relative Hall algebra $\overline{\mathcal{H}}(Q, W, \xi, \vartheta)$ is (graded) commutative for all phases $\vartheta \in (0, \pi)$.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

The absolute Hall algebra of the Ext-quiver of $(S_{\kappa})_{\kappa \in K}$ with a suitable (formal) potential determines the Hall algebra product on the stalks of the relative Hall-algebra $\overline{\mathcal{H}}(Q, W, \xi, \vartheta)$ at M' and M''

 $\overline{\mathcal{H}}(Q,W,\xi,\vartheta)_{M'}\otimes\overline{\mathcal{H}}(Q,W,\xi,\vartheta)_{M''}\longrightarrow\overline{\mathcal{H}}(Q,W,\xi,\vartheta)_{M'\oplus M''}.$

By a result of Efimov the absolute Hall algebra of a symmetric quiver with zero potential is (graded) commutative. Using this, we can prove

Theorem (Davison-M. '16)

If ξ is a generic stability condition, the relative Hall algebra $\overline{\mathcal{H}}(Q, W, \xi, \vartheta)$ is (graded) commutative for all phases $\vartheta \in (0, \pi)$.

Question: How does this commutative algebra look like?

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Integrality					

For a generic stability condition ξ and any phase $\vartheta \in (0, \pi)$ the relative Hall algebra $\overline{\mathcal{H}}(Q, W, \xi, \vartheta)$ is a symmetric algebra, i.e.

 $\overline{\mathcal{H}}(Q,W,\xi,\vartheta) = \mathsf{Sym}(\mathcal{G})$

for some (graded) perverse sheaf/monodromic mixed Hodge modules \mathcal{G} on $\mathcal{M}_{\vartheta}^{\xi-ss}(Q,W) = \sqcup_{\gamma \in \Gamma_{\vartheta}} \mathcal{M}_{\gamma}^{\xi-ss}(Q,W).$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Integrality					

For a generic stability condition ξ and any phase $\vartheta \in (0, \pi)$ the relative Hall algebra $\overline{\mathcal{H}}(Q, W, \xi, \vartheta)$ is a symmetric algebra, i.e.

 $\overline{\mathcal{H}}(Q, W, \xi, \vartheta) = \operatorname{Sym}(\mathcal{G})$

for some (graded) perverse sheaf/monodromic mixed Hodge modules \mathcal{G} on $\mathcal{M}_{\vartheta}^{\xi-ss}(Q,W) = \sqcup_{\gamma \in \Gamma_{\vartheta}} \mathcal{M}_{\gamma}^{\xi-ss}(Q,W).$

Remark: The absolute Hall algebra $\mathcal{H}(Q, W, \xi, \vartheta)$ is in general not (graded) commutative even for generic ξ . But:

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Integrality					

For a generic stability condition ξ and any phase $\vartheta \in (0, \pi)$ the relative Hall algebra $\overline{\mathcal{H}}(Q, W, \xi, \vartheta)$ is a symmetric algebra, i.e.

 $\overline{\mathcal{H}}(Q, W, \xi, \vartheta) = \operatorname{Sym}(\mathcal{G})$

for some (graded) perverse sheaf/monodromic mixed Hodge modules \mathcal{G} on $\mathcal{M}_{\vartheta}^{\xi-ss}(Q,W) = \sqcup_{\gamma \in \Gamma_{\vartheta}} \mathcal{M}_{\gamma}^{\xi-ss}(Q,W).$

Remark: The absolute Hall algebra $\mathcal{H}(Q, W, \xi, \vartheta)$ is in general not (graded) commutative even for generic ξ . But:

Corollary

For generic ξ and any ϑ the associated graded algebra $\mathfrak{gr} \mathcal{H}(Q, W, \xi, \vartheta)$ wrt. the perverse filtration is a symmetric algebra generated by $\mathrm{H}^*(\mathcal{M}^{\xi-\mathrm{ss}}_\vartheta(Q, W), \mathcal{G})$.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Question: Can we determine \mathcal{G} ?

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Question: Can we determine \mathcal{G} ?

$$\begin{array}{l} \textbf{Recall:} \ \mathsf{Tr}_{\gamma}(W): \mathsf{Mat}_{\gamma}^{\xi-ss}(Q) \xrightarrow{p} \mathcal{M}_{\gamma}^{\xi-ss}(Q) \xrightarrow{f_{\gamma}} \mathbb{C} \ \mathsf{and} \\ \mathsf{Mat}_{\gamma}^{\xi-ss}(Q,W) = \mathsf{Crit}(\mathsf{Tr}_{\gamma}(W)). \end{array}$$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Question: Can we determine G?

$$\begin{array}{l} \textbf{Recall:} \ \mathsf{Tr}_{\gamma}(W): \mathsf{Mat}_{\gamma}^{\xi-ss}(Q) \xrightarrow{p} \mathcal{M}_{\gamma}^{\xi-ss}(Q) \xrightarrow{f_{\gamma}} \mathbb{C} \ \mathsf{and} \\ \mathsf{Mat}_{\gamma}^{\xi-ss}(Q,W) = \mathsf{Crit}(\mathsf{Tr}_{\gamma}(W)). \end{array}$$

Definition

③ For $\gamma \in \mathbb{N}^{\mathcal{Q}_0}$ we form the "Donaldson–Thomas sheaf"

$$\mathcal{DT}_{\gamma}(\mathcal{Q}, \mathcal{W}, \xi) = egin{cases} \phi_{f_{\gamma}}ig(\mathcal{IC}_{\mathcal{M}^{\xi-ss}_{\gamma}(\mathcal{Q})}(\mathbb{Q})ig) & ext{if} \ \mathcal{M}^{\xi-st}_{\gamma}(\mathcal{Q})
eq \emptyset, \ 0 & ext{else} \end{cases}$$

Here, $\mathcal{IC}_{\mathcal{M}_{\gamma}^{\xi-ss}(Q)}(\mathbb{Q})$ is the intersection complex of $\mathcal{M}_{\gamma}^{\xi-ss}(Q)$.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Question: Can we determine *G*?

$$\begin{array}{l} \textbf{Recall:} \ \mathsf{Tr}_{\gamma}(W): \mathsf{Mat}_{\gamma}^{\xi-ss}(Q) \xrightarrow{p} \mathcal{M}_{\gamma}^{\xi-ss}(Q) \xrightarrow{f_{\gamma}} \mathbb{C} \ \mathsf{and} \\ \mathsf{Mat}_{\gamma}^{\xi-ss}(Q,W) = \mathsf{Crit}(\mathsf{Tr}_{\gamma}(W)). \end{array}$$

Definition

 $\textbf{9} \ \ \, \text{For} \ \gamma \in \mathbb{N}^{\mathcal{Q}_{\textbf{0}}} \ \text{we form the ``Donaldson-Thomas sheaf''}$

$$\mathcal{DT}_{\gamma}(\mathcal{Q}, \mathcal{W}, \xi) = egin{cases} \phi_{f_{\gamma}}ig(\mathcal{IC}_{\mathcal{M}^{\xi-ss}_{\gamma}(\mathcal{Q})}(\mathbb{Q})ig) & ext{if} \ \mathcal{M}^{\xi-st}_{\gamma}(\mathcal{Q})
eq \emptyset, \ 0 & ext{else} \end{cases}$$

Here, $\mathcal{IC}_{\mathcal{M}_{\gamma}^{\xi-ss}(Q)}(\mathbb{Q})$ is the intersection complex of $\mathcal{M}_{\gamma}^{\xi-ss}(Q)$.

② DT_ϑ(Q, W, ξ) := ⊕_{γ∈Γϑ} DT_γ(Q, W, ξ) a perverse sheaf/monodromic mixed Hodge module on M^{ξ-ss}_ϑ(Q, W).

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

For a generic stability condition ξ and any phase $\vartheta \in (0,\pi)$ we get

$$\mathcal{G} = \mathcal{DT}_{\vartheta}(Q, W, \xi) \otimes \mathsf{H}(B\mathbb{C}^*)_{vir} := \bigoplus_{i \in \mathbb{N}} \mathcal{DT}_{\vartheta}(Q, W, \vartheta) \otimes [twist]^{2i+1}.$$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

For a generic stability condition ξ and any phase $artheta \in (0,\pi)$ we get

$${\mathcal G}={\mathcal D}{\mathcal T}_{artheta}(Q,W,\xi){\otimes}{\mathsf H}(B{\mathbb C}^*)_{{\it vir}}:=igoplus_{i\in{\mathbb N}}{\mathcal D}{\mathcal T}_{artheta}(Q,W,artheta){\otimes}[{\it twist}]^{2i+1}.$$

Corollary

For generic ξ and any ϑ the associated graded algebra $\mathfrak{gr} \mathcal{H}(Q, W, \xi, \vartheta)$ wrt. the perverse filtration is a symmetric algebra generated by $\mathrm{H}^*\left(\mathcal{M}^{\xi-ss}_{\vartheta}(Q, W), \mathcal{DT}_{\vartheta}(Q, W, \xi)\right) \otimes \mathrm{H}(B\mathbb{C}^*)_{\mathrm{vir}}.$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

For a generic stability condition ξ and any phase $artheta \in (0,\pi)$ we get

$${\mathcal G}={\mathcal D}{\mathcal T}_artheta(Q,W,\xi){\otimes}{\mathsf H}(B{\mathbb C}^*)_{{\it vir}}:=igoplus_{i\in{\mathbb N}}{\mathcal D}{\mathcal T}_artheta(Q,W,artheta){\otimes}[{\it twist}]^{2i+1}.$$

Corollary

For generic ξ and any ϑ the associated graded algebra gr $\mathcal{H}(Q, W, \xi, \vartheta)$ wrt. the perverse filtration is a symmetric algebra generated by $\mathrm{H}^*\left(\mathcal{M}^{\xi-\mathrm{ss}}_{\vartheta}(Q, W), \mathcal{DT}_{\vartheta}(Q, W, \xi)\right) \otimes \mathrm{H}(B\mathbb{C}^*)_{\mathrm{vir}}.$

Definition

The (alternating) dimension of $H_c^*(\mathcal{M}_{\gamma}^{\xi-ss}(Q, W), \mathcal{DT}_{\gamma}(Q, W, \xi))$ is called the Donaldson-Thomas invariant for Q, W, ξ, γ . Its Hodge polynomial is the refined DT invariant.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Examples					

• For W = 0, we get $\mathcal{DT}_{\gamma}(Q, W, \xi) = \mathcal{IC}_{\mathcal{M}_{\gamma}^{\xi-ss}(Q)}(\mathbb{Q})$ if $\mathcal{M}_{\gamma}^{\xi-st}(Q)$ is non-empty and zero else. Thus, the DT invariants compute intersection Euler characteristics and intersection Betti numbers.

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality
Examples					

• For W = 0, we get $\mathcal{DT}_{\gamma}(Q, W, \xi) = \mathcal{IC}_{\mathcal{M}_{\gamma}^{\xi-ss}(Q)}(\mathbb{Q})$ if $\mathcal{M}_{\gamma}^{\xi-st}(Q)$ is non-empty and zero else. Thus, the DT invariants compute intersection Euler characteristics and intersection Betti numbers.

2 For

and $W = \omega[a_1, b_1]$, we get $\mathcal{M}^{\xi-ss}_{\gamma}(Q, W) = \operatorname{Sym}^{\gamma}(\mathbb{C}^3) = (\mathbb{C}^3)^n /\!\!/ S_n$ and $\mathcal{DT}_{\gamma}(Q, W, \xi)$ is the constant (perverse) sheaf $\mathbb{Q}[3]$ on the small diagonal $\Delta : \mathbb{C}^3 \hookrightarrow \operatorname{Sym}^{\gamma}(\mathbb{C}^3).$

Quiver moduli	Potentials	Hall algebras	Quantum groups	Genericity	Integrality

Thank you!