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Moduli of quiver representations

Quiver Q = (Q0,Q1, s, t), dimension vector γ = (γv )v∈Q0
∈ NQ0

Matγ(Q) :=
∏

Q13α:v→w

Matγw×γv (C)

with action of Gγ :=
∏

v∈Q0
GLγv (C) by simultaneous conjugation.

Moduli stack of representations: Repγ(Q) := Matγ(Q)/Gγ

Question: What about moduli spaces?



Quiver moduli Potentials Hall algebras Quantum groups Genericity Integrality

Moduli of quiver representations

Quiver Q = (Q0,Q1, s, t), dimension vector γ = (γv )v∈Q0
∈ NQ0

Matγ(Q) :=
∏

Q13α:v→w

Matγw×γv (C)

with action of Gγ :=
∏

v∈Q0
GLγv (C) by simultaneous conjugation.

Moduli stack of representations: Repγ(Q) := Matγ(Q)/Gγ

Question: What about moduli spaces?



Quiver moduli Potentials Hall algebras Quantum groups Genericity Integrality

Moduli of quiver representations

Quiver Q = (Q0,Q1, s, t), dimension vector γ = (γv )v∈Q0
∈ NQ0

Matγ(Q) :=
∏

Q13α:v→w

Matγw×γv (C)

with action of Gγ :=
∏

v∈Q0
GLγv (C) by simultaneous conjugation.

Moduli stack of representations: Repγ(Q) := Matγ(Q)/Gγ

Question: What about moduli spaces?



Quiver moduli Potentials Hall algebras Quantum groups Genericity Integrality

Moduli of quiver representations

Quiver Q = (Q0,Q1, s, t), dimension vector γ = (γv )v∈Q0
∈ NQ0

Matγ(Q) :=
∏

Q13α:v→w

Matγw×γv (C)

with action of Gγ :=
∏

v∈Q0
GLγv (C) by simultaneous conjugation.

Moduli stack of representations: Repγ(Q) := Matγ(Q)/Gγ

Question: What about moduli spaces?



Quiver moduli Potentials Hall algebras Quantum groups Genericity Integrality

Moduli of quiver representations

Quiver Q = (Q0,Q1, s, t), dimension vector γ = (γv )v∈Q0
∈ NQ0

Matγ(Q) :=
∏

Q13α:v→w

Matγw×γv (C)

with action of Gγ :=
∏

v∈Q0
GLγv (C) by simultaneous conjugation.

Moduli stack of representations: Repγ(Q) := Matγ(Q)/Gγ

Question: What about moduli spaces?



Quiver moduli Potentials Hall algebras Quantum groups Genericity Integrality

Mumford: Need to single out semistable representations

De�nition

A tuple ξ = (ξv )v∈Q0
∈ HQ0

+ is called a stability condition. Given ξ,
we call M = (Mα)α∈Q1

∈ Matγ(Q) ξ-semistable if

arg(ξ · dimM ′) ≤ arg(ξ · dimM) = arg(
∑
v∈Q0

ξv γv )

for all subrepresentations M ′ of M.
Matξ−ssγ (Q) ⊂ Matγ(Q) is the subset of ξ-semistable
representations.
A representation without proper subrepresentations of the same
phase arg(ξ · dimM) is called stable.

Fact: Every semistable representation has a �Jordan�Hölder�
�ltration with stable subquotients of the same phase.
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Theorem (Davison�M. '17)

For all ξ and all γ, the subset Matξ−ssγ (Q) ⊂ Matγ(Q) is the open
subvariety of semistable points for a suitable linearization of the
Gγ-action on Matξ−ssγ (Q).

Moreover

Mξ−ss
γ (Q) := Matξ−ssγ (Q)//Gγ

is a quasiprojective variety parameterizing ξ-semistable
representations up to S-equivalence.

Here, M ∼S M ′ if M and M ′ have the same stable subquotients
(up to isomorphism) counted with multiplicities.
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Imposing relations

Typically, the matrices/linear maps Mα have to satisfy extra
relations.

Example: Fix g ≥ 1 and consider the quiver

•a1,...,ag
%%

b1,...,bgee

with the relation
∑g

i=1
[ai , bi ] =

∑g
i=1

aibi − biai = 0.

Hence, (Mα)α∈Q1
satisfying these relations provides a

representation of the �preprojective algebra�
C〈a1, . . . , ag , b1, . . . , bg 〉/

∑g
i=1

[ai , bi ].
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In Donaldson�Thomas theory the relations are induced by a
�potential� W .

De�nition

A potential W for a quiver Q is a complex linear combination of
cycles in Q (up to cyclic order of the cycles). Given α ∈ Q1, denote
by ∂W /∂α the non-commutative derivative of W wrt. α obtained
by permuting all occurrences of α cyclically to the front and
deleting α. Given W , denote by Matξ−ssγ (Q,W ) the closed

subvariety of Matξ−ssγ (Q) of representations satisfying the relations
∂W /∂α = 0 for all α ∈ Q1.
Repξ−ssγ (Q,W ) := Matξ−ssγ (Q,W )/Gγ and

Mξ−ss
γ (Q,W ) := Matξ−ssγ (Q,W )//Gγ
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Example

Consider

•a1,...,ag
%%

b1,...,bgee

ω

��

with potential W = ω
∑g

i=1
[ai , bi ] =

∑g
i=1

ωaibi − ωbiai .

Hence

∂W /∂ω =

g∑
i=1

[ai , bi ],

∂W /∂ai = biω − ωbi ,
∂W /∂bi = ωai − aiω.

Thus, (Mα)α∈Q1
satisfying these relations provides a representation

(Mα)α 6=ω of the preprojective algebra
C〈a1, . . . , ag , b1, . . . , bg 〉/

∑g
i=1

[ai , bi ] together with an
endomorphism Mω of that representation.
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For g = 1 we getMξ−ss
γ (Q,W ) = Symγ(C3) = (C3)γ//Sγ as

(Mα)α∈Q can be considered as a zero-dimensional sheaf on C3 with
coordinates (a1, b1, ω).

Notice: Representations of the preprojective algebra cannot be
described by a quiver with potential.

Question: Why only relations induced by potentials?

1 Matξ−ssγ (Q,W ) = Crit(Trγ(W )) for some Gγ-invariant

function Trγ(W ) : Matξ−ssγ (Q) −→ C,
2 There exists a perverse sheaf/(monodromic) mixed Hodge

module of vanishing cycles φTrγ(W ) on Crit(Trγ(W ))
measuring the singularities of the �bers of Trγ(W ).

Notice: Trγ(W ) = fγ ◦ p for some function fγ :Mξ−ss
γ (Q) −→ C,

where p : Matξ−ssγ (Q) −→Mξ−ss
γ (Q) is the quotient map.
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Hall algebras - Part I

Fix a �phase� ϑ ∈ (0, π) and introduce the shorthand
Γϑ := {0 6= γ ∈ NQ0 | arg(

∑
v∈Q0

ξv γv ) = ϑ} ∪ {0}

We de�ne the relative Hall algebra

H(Q,W , ξ, ϑ) :=
⊕
γ∈Γϑ

⊕
i∈Z

RipGγφTrγ(W ) ⊗ [twist],

where RipG is the i-th direct Gγ-equivariant image with respect to
the perverse t-structure onMξ−ss

γ (Q,W ) (see below),
and the absolute Hall algebra

H(Q,W , ξ, ϑ) :=
⊕
γ∈Γϑ

⊕
i∈Z

Hi
Gγ

(
Matξ−ssγ (Q,W ), φTrγ(W )

)
⊗[twist].

by taking the Gγ-equivariant cohomology.
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Equivariant direct images

To compute Hi
Gγ

and RipGγ , we replace Matξ−ssγ (Q,W ) and

p : Matξ−ssγ (Q,W ) −→Mξ−ss
γ (Q,W ) with

EGγ×GγMatξ−ssγ (Q,W ) and EGγ×GγMatξ−ssγ (Q,W ) −→Mξ−ss
γ (Q,W )

and take cohomology and direct images respectively.

In practice, we have EGγ ×Gγ Matξ−ssγ (Q,W ) = lim−→n
U

(n)
γ (Q,W , ξ)

for �nite dimensional closed �subvarieties� U
(n)
γ (Q,W , ξ) such that

1 Hi
(
U

(n)
γ (Q,W , ξ)

)
stabilizes for n� 0,

2 U
(n)
γ (Q,W , ξ) −→ Repξ−ssγ (Q,W ) is an atlas,

3 U
(n)
γ (Q,W , ξ) −→Mξ−ss

γ (Q,W ) is proper.

Approximation (of p) by proper maps
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Notice:

1 The absolute Hall algebra H(Q,W , ξ, ϑ) = H∗∗(Q,W , ξ, ϑ) is
a bi-graded vector space/monodromic mixed Hodge structure.

2 The relative Hall algebra H(Q,W , ξ, ϑ) = H∗∗(Q,W , ξ, ϑ) is a
bi-graded perverse sheaf/monodromic mixed Hodge module on

Mξ−ss
ϑ (Q,W ) := tγ∈ΓϑM

ξ−ss
γ (Q,W ).

By general arguments there is a �perverse� �ltration on
H∗γ(Q,W , ξ, ϑ) and a spectral sequence with E2-term

Hi
(
Mξ−ss

γ (Q,W ),Hj
γ(Q,W , ξ, ϑ)

)
converging to gri Hi+j

γ (Q,W , ξ, ϑ).

Proposition (Davison�M. '16)

The spectral sequence collapses at E2, i.e.

gr∗H∗γ(Q,W , ξ, ϑ) ∼= H∗
(
Mξ−ss

γ (Q,W ),H∗γ(Q,W , ξ, ϑ)
)
.
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Hall algebras - Part II

Given dimension vectors γ′, γ′′ ∈ Γϑ, consider

Matξ−ssγ′,γ′′(Q) :=
{

(Mα) ∈ Matξ−ssγ′+γ′′(Q) | Mα upper block triagonal
}

with its action by the subgroup Gγ′,γ′′ ⊂ Gγ′+γ′′ of upper block
triagonal invertible matrices.

Repξ−ssγ′,γ′′(Q) := Matξ−ssγ′,γ′′(Q)/Gγ′,γ′′

is the stack of short exact sequences.
Get equivariant maps

π2 : Matξ−ssγ′,γ′′(Q) ↪→ Matξ−ssγ′+γ′′(Q)

and
π1 × π3 : Matξ−ssγ′,γ′′ −→ Matξ−ssγ′ (Q)×Matξ−ssγ′′ (Q)
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inducing a commutative diagram

Repξ−ssγ′,γ′′(Q)

π2

''

π1×π3

uu

Repξ−ssγ′ (Q)×Repξ−ssγ′′ (Q)

p×p
��

Repξ−ssγ′+γ′′(Q)

p

��

Mξ−ss
γ′ (Q)×Mξ−ss

γ′′ (Q)
⊕ //Mξ−ss

γ′+γ′′(Q)

Using adjunction morphisms for pull-back and push-forwards, the
Thom�Sebastiani isomorphism and properties of the vanishing cycle
functor, we get maps
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⊕∗
(
Hγ′(Q,W , ξ, ϑ) �Hγ′′(Q,W , ξ, ϑ)

)
−→ Hγ′+γ′′(Q,W , ξ, ϑ)

of perverse sheaves/monodromic mixed Hodge modules

and similarly

Hγ′(Q,W , ξ, ϑ)⊗Hγ′′(Q,W , ξ, ϑ) −→ Hγ′+γ′′(Q,W , ξ, ϑ).

Summing over γ′, γ′′ ∈ Γϑ we get algebras in appropriate symmetric
monoidal tensor categories.
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Theorem (Davison�M. '16)

1 The Hall algebras H(Q,W , ξ, ϑ) and H(Q,W , ξ, ϑ) are
associative with unit.

2 The collapsing spectral sequence is a spectral sequence of
algebras inducing an isomorphism of algebras

gr∗H∗(Q,W , ξ, ϑ) ∼= H∗
(
Mξ−ss

ϑ (Q,W ),H∗(Q,W , ξ, ϑ)
)
.

3 The absolute Hall algebra H(Q,W , ξ, ϑ) has a compatible
(localized) coproduct turning H(Q,W , ξ, ϑ) into a (localized)
bi-algebra and grH(Q,W , ξ, ϑ) into a Hopf algebra.

Question: What can we say about the structures of the Hall
algebras?
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Genericity

De�nition

We call a stability condition ξ generic if for all ϑ ∈ (0, π) and all
γ′, γ′′ ∈ Γϑ the bilinear pairing

∑
α:v→w γ

′
vγ
′′
w is symmetric.

Interpretation: Given representations M ′ and M ′′ of dimension
vectors γ′, γ′′ ∈ Γϑ, let (Sκ)κ∈K be the family of (non-isomorphic)
stable factors of M ′ and M ′′. For κ, λ ∈ K let
Aκλ := dimExt1(Sκ, Sλ). Then, ξ is generic if for all choices of
ϑ,M ′ and M ′′, the matrix A = (Aκλ) is symmetric. The quiver
with vertex set K and Aκλ arrows from κ to λ is called the
(Ext-)quiver of (Sκ)κ∈K . It is symmetric if ξ is generic.
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Theorem (Davison�M. '16)

The absolute Hall algebra of the Ext-quiver of (Sκ)κ∈K with a
suitable (formal) potential determines the Hall algebra product on
the stalks of the relative Hall-algebra H(Q,W , ξ, ϑ) at M ′ and M ′′

H(Q,W , ξ, ϑ)M′ ⊗H(Q,W , ξ, ϑ)M′′ −→ H(Q,W , ξ, ϑ)M′⊕M′′ .

By a result of E�mov the absolute Hall algebra of a symmetric
quiver with zero potential is (graded) commutative. Using this, we
can prove

Theorem (Davison�M. '16)

If ξ is a generic stability condition, the relative Hall algebra
H(Q,W , ξ, ϑ) is (graded) commutative for all phases ϑ ∈ (0, π).

Question: How does this commutative algebra look like?
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can prove

Theorem (Davison�M. '16)

If ξ is a generic stability condition, the relative Hall algebra
H(Q,W , ξ, ϑ) is (graded) commutative for all phases ϑ ∈ (0, π).

Question: How does this commutative algebra look like?
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Integrality

Theorem (Davison�M. '16)

For a generic stability condition ξ and any phase ϑ ∈ (0, π) the
relative Hall algebra H(Q,W , ξ, ϑ) is a symmetric algebra, i.e.

H(Q,W , ξ, ϑ) = Sym(G)

for some (graded) perverse sheaf/monodromic mixed Hodge

modules G onMξ−ss
ϑ (Q,W ) = tγ∈ΓϑM

ξ−ss
γ (Q,W ).

Remark: The absolute Hall algebra H(Q,W , ξ, ϑ) is in general not
(graded) commutative even for generic ξ. But:

Corollary

For generic ξ and any ϑ the associated graded algebra
grH(Q,W , ξ, ϑ) wrt. the perverse �ltration is a symmetric algebra

generated by H∗
(
Mξ−ss

ϑ (Q,W ),G
)
.
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Question: Can we determine G?

Recall: Trγ(W ) : Matξ−ssγ (Q)
p−→Mξ−ss

γ (Q)
fγ−−→ C and

Matξ−ssγ (Q,W ) = Crit(Trγ(W )).

De�nition

1 For γ ∈ NQ0 we form the �Donaldson�Thomas sheaf�

DT γ(Q,W , ξ) =

{
φfγ
(
ICMξ−ss

γ (Q)
(Q)
)

if Mξ−st
γ (Q) 6= ∅,

0 else

Here, ICMξ−ss
γ (Q)

(Q) is the intersection complex of

Mξ−ss
γ (Q).

2 DT ϑ(Q,W , ξ) :=
⊕

γ∈Γϑ
DT γ(Q,W , ξ) a perverse

sheaf/monodromic mixed Hodge module onMξ−ss
ϑ (Q,W ).
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Theorem (Davison�M. '16)

For a generic stability condition ξ and any phase ϑ ∈ (0, π) we get

G = DT ϑ(Q,W , ξ)⊗H(BC∗)vir :=
⊕
i∈N
DT ϑ(Q,W , ϑ)⊗[twist]2i+1.

Corollary

For generic ξ and any ϑ the associated graded algebra
grH(Q,W , ξ, ϑ) wrt. the perverse �ltration is a symmetric algebra

generated by H∗
(
Mξ−ss

ϑ (Q,W ),DT ϑ(Q,W , ξ)
)
⊗ H(BC∗)vir .

De�nition

The (alternating) dimension of H∗c
(
Mξ−ss

γ (Q,W ),DT γ(Q,W , ξ)
)

is called the Donaldson�Thomas invariant for Q,W , ξ, γ. Its Hodge
polynomial is the re�ned DT invariant.
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Examples

1 For W = 0, we get DT γ(Q,W , ξ) = ICMξ−ss
γ (Q)

(Q) if

Mξ−st
γ (Q) is non-empty and zero else. Thus, the DT

invariants compute intersection Euler characteristics and
intersection Betti numbers.

2 For

•a1
%%

b1ee

ω

��

and W = ω[a1, b1], we get
Mξ−ss

γ (Q,W ) = Symγ(C3) = (C3)n//Sn and DT γ(Q,W , ξ)
is the constant (perverse) sheaf Q[3] on the small diagonal
∆ : C3 ↪→ Symγ(C3).
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Thank you!
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