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Introduction

Goal

Relate some virtual counts of complex algebraic curves in complex toric
surfaces to some refined counts of tropical curves in R2.

How is that not off-topic?

In some cases, refined counts of tropical curves are [Stoppa, Filippini]
examples of refined DT invariants of quivers (in the sense of Sven’s
talk).

Should think of the complex torus (C∗)2 in the toric surface as a silly
example of character variety and cluster variety.

Should be part of a more general story relating DT theory and
holomorphic curves in complex integrable systems (including moduli
spaces of Higgs bundles) (in a way compatible with Dylan’s talk).
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Curves in toric surfaces

Projective toric surface: (C∗)2-equivariant compactification of (C∗)2.
Consider curves with prescribed number of intersection points with each
toric divisor and prescribed multiplicities of these intersection points.
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Curves in toric surfaces

The same information (a toric surface, number of intersection points and
multiplicities of intersection points) is contained in a collection
∆ = {v1, . . . , vr} of vectors in Z2 summing to zero.

Rays R≥0vi define the fan of a toric surface X∆.

Vectors vi generating the same ray define intersection point with the
dual toric divisor.

Divisibility of vectors vi in Z2 defines the multiplicity the
corresponding intersection point.

A curve in X∆ satisfying the intersection and tangency constraints
specified by ∆ is said to be of type ∆.
Fix n general points P = {P1, . . . ,Pn} in (C∗)2. Denote g∆,n = n + 1 − r .
Let N∆,n ∈ N be the number of genus g∆,n curves of type ∆ passing
through P.
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Unrefined correspondence theorem

Theorem

[Mikhalkin, Nishinou-Siebert] For every ∆ and n as above, and
p = {p1, . . . ,pn} a collection of n general points in R2, we have

N∆,n
= N∆,p

trop ,

where
N∆,p

trop ∶= ∑
(h∶Γ→R2)∈Tg∆,n,p

m(h) ,

where Tg∆,n,p is the set of genus g∆,n tropical curves of type ∆ in R2, and
where m(h) is the multiplicity of h.
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Tropical curves in R2

Graph Γ and a map h∶Γ→ R2. Edges are mapped to straight lines of
rational slopes.
Vertices V are decorated by a nonnegative integer g(V ), the genus of
V . Define the genus of the tropical curve h by

g(h) ∶= gΓ +∑
V

g(V )

where gΓ is the genus of the graph Γ.
Edges E are decorated by a positive integer w(E), the weight of E .
Balancing condition at the vertices.
Type ∆: fix the directions and the weights of the unbounded edges.
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Tropical curves in R2

Fix p = {p1, . . . ,pn} a collection of n general points in R2.
Let Tg∆,n,p be the set of genus g∆,n tropical curves of type ∆ in R2. This

set is finite and for every (h∶Γ→ R2) ∈ Tg∆,n,p, the graph Γ is trivalent and
has vertices of genus zero.
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E1

E2

E3

Let uE1 , uE2 , uE3 be the primitive vectors in Z2 in the directions of the
edges E1, E2, E3 and going out of the vertex. Balancing condition:
w(E1)uE1 +w(E2)uE2 +w(E3)uE3 = 0.
Multiplicity of a trivalent vertex: m(V ) ∶= w(E1)w(E2)∣det(uE1 ,uE2)∣.
Multiplicity of h: m(h) ∶= ∏V m(V ).
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Unrefined correspondence theorem

Theorem

[Mikhalkin, Nishinou-Siebert] For every ∆ and n as above, and
p = {p1, . . . ,pn} a collection of n general points in R2, we have

N∆,n
= N∆,p

trop ,

where
N∆,p

trop ∶= ∑
(h∶Γ→R2)∈Tg∆,n,p

m(h) ,

where Tg∆,n,p is the set of genus g∆,n tropical curves of type ∆ in R2, and
where m(h) is the multiplicity of h.
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Tropicalization

For h̵ > 0, consider
πh̵∶ (C∗

)
2
→ R2

(z1, z2) ↦ (h̵ log ∣z1∣, h̵ log ∣z2∣) .

Fix p = {p1, . . . ,pn} collection of n general points in R2.

Define Pi(h̵) = e
pi
h̵ ∈ (C∗)2, i = 1, . . . ,n. We have πh̵(Pi(h̵)) = pi .

Let C(h̵) be a family of curves in (C∗)2 passing through Pi(h̵).
The image πh̵(C(h̵)) of C(h̵) is a complicated shape in R2 called an
amoeba.
For h̵ → 0, the amoeba retracts on a tropical curve.
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Refined tropical count

Refined multiplicity of a vertex V of multiplicity m(V ):

[m(V )]q ∶=
q

m(V )
2 − q−

m(V )
2

q
1
2 − q−

1
2

= q−
m(V )−1

2 (1 + q + ⋅ ⋅ ⋅ + qm(V )−1
)

Refined multiplicity of a trivalent tropical curve h∶Γ→ R2,

∏
V

[m(V )]q

Define [Block-Göttsche]

N∆,p
trop(q) ∶= ∑

(h∶Γ→R2)∈Tg∆,n,p

∏
V

[m(V )]q

Unrefined limit: N∆,p
trop(q = 1) = N∆,p

trop .
Remarkable property [Itenberg-Mikhalkin]: independent of general p.
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Question

Meaning of the refined tropical count N∆,p
trop(q) from the point of view

of the complex geometry of the toric surface X∆?

Geometric meaning of the extra variable q?

Göttsche-Shende conjecture: refinement from some topological Euler
characteristic to some Hirzebruch genus.

This talk: different point of view, via Gromov-Witten theory.
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Gromov-Witten theory

Stable maps: map f ∶C → X∆ from a nodal curve C such that
∣Aut(f )∣ is finite.

We have [Mandel-Ruddat]

N∆,n
∶= ∫

[M
log
g∆,n,n,∆

]virt

n

∏
i=1

ev∗i (pt)

Technical aspects: virtual fundamental class, logarithmic theory
[Abramovich-Chen-Gross-Siebert] to interact nicely with the toric
divisors.

Question: how to find a parameter q from this Gromov-Witten theory
point of view?
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Lambda classes

Idea: consider curves of genus g ≥ g∆,n.

Problem: the moduli space M
log
g∆,n,n,∆

has (virtual) dimension
g − g∆,n. It does not make sense to try to count these curves.

Idea corrected: insert a cohomology class of (complex) degree
g − g∆,n.

π∶C →M a family of genus g nodal curves, Hodge bundle E whose
fiber at C is H0(C , ωC). It is a rank g vector bundle. Lambda classes
are Chern classes of the Hodge bundle:

λj ∶= cj(E) ,

j = 0, . . . ,g .
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GW invariants

For every g ≥ g∆,n, define

N∆,n
g ∶= ∫

[M
log
g,n,∆]virt

(−1)g−g∆,nλg−g∆,n

n

∏
i=1

ev∗i (pt) ∈ Q
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Main result: refined correspondence theorem

Theorem [-]

For every ∆ and n, we have

∑
g≥g∆,n

N∆,n
g u2g−2+r

= N∆,p
trop(q) ((−i)(q

1
2 − q−

1
2 ))

2g∆,n−2+r

of power series in u with rational coefficients, where

q = e iu = ∑
n≥0

(iu)n

n!
.
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Remarks

Analogue results for K3 and abelian surfaces (involving the
Göttsche-Shende refinement).

Previous talks, several ways to interpret the variable q: number of
elements in a finite field, variable keeping track of some
cohomological information. In the previous theorem, completely
different way to interpret this variable q: write q = e iu, expand in
power series, get a genus expansion.
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Thank you for your attention!
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