Topological mirror symmetry via p-adic integration

Dimitri Wyss

École Polytechnique Fédérale de Lausanne Institue of Science and Technology Austria
dimitri.wyss@epfl.ch

June 18, 2017

Overview

- Joint with Michael Groechening and Paul Ziegler

Overview

- Joint with Michael Groechening and Paul Ziegler
- Mirror symmetry considerations led [Hausel-Thaddeus, 2003] to conjecture an equality of string-theoretic Hodge numbers of $S L_{n}$ and PGL ${ }_{n}$ Higgs moduli spaces.

Overview

- Joint with Michael Groechening and Paul Ziegler
- Mirror symmetry considerations led [Hausel-Thaddeus, 2003] to conjecture an equality of string-theoretic Hodge numbers of $S L_{n}$ and PGL ${ }_{n}$ Higgs moduli spaces.
- Their conjecture can be reformulated in terms of counting points over finite fields. This in turn can be done by computing p-adic volumes.

Overview

- Joint with Michael Groechening and Paul Ziegler
- Mirror symmetry considerations led [Hausel-Thaddeus, 2003] to conjecture an equality of string-theoretic Hodge numbers of $S L_{n}$ and PGL ${ }_{n}$ Higgs moduli spaces.
- Their conjecture can be reformulated in terms of counting points over finite fields. This in turn can be done by computing p-adic volumes.
- We can compare the p-adic volumes of the two moduli spaces, since "singular Hitchin fibers have measure 0 ".

Moduli space of SL_{n} Higgs bundles.

- Let C be a smooth projective curve of genus g and $K=K_{C}$ the canonical bundle.
- A Higgs bundle on C is a pair (E, ϕ), where E is a rank n vector bundle on C and $\phi \in H^{0}(C, \operatorname{End}(E) \otimes K)$.

Moduli space of SL_{n} Higgs bundles.

- Let C be a smooth projective curve of genus g and $K=K_{C}$ the canonical bundle.
- A Higgs bundle on C is a pair (E, ϕ), where E is a rank n vector bundle on C and $\phi \in H^{0}(C, E n d(E) \otimes K)$.

Definition

For an integer d coprime to n and a line bundle L of degree d on C define the moduli space of (twisted) $S L_{n}$-Higgs bundles as

$$
\mathcal{M}_{\mathrm{SL}_{n}}^{d}(C)=
$$

$\{$ Stable Higgs bundles (E, ϕ), with $\operatorname{det} E \cong L, \operatorname{tr} \phi=0\} / \sim$

- $\mathcal{M}_{\mathrm{SL}_{n}}^{d}(C)$ is a smooth quasi-projective variety.

Moduli space of PGL_{n} Higgs bundles

- The n-torsion points $\Gamma=\operatorname{Jac}_{C}[n] \cong(\mathbb{Z} / n \mathbb{Z})^{2 g}$ act on $\mathcal{M}_{\mathrm{SL}_{n}}^{d}(C)$ by tensoring:

$$
\gamma \cdot(E, \phi)=(E \otimes \gamma, \phi), \text { for } \gamma \in \Gamma
$$

Definition

The moduli space of (twisted) $P G L_{n}$ Higgs bundles is

$$
\mathcal{M}_{\mathrm{PGL}_{n}}^{d}(C)=\mathcal{M}_{\mathrm{SL}_{n}}^{d}(C) / \Gamma
$$

- Remark: More generally one can construct moduli space of G-Higgs bundles for any reductive G, it is however unclear how to "twist" in general.

Hitchin Fibration

- Given a Higgs bundle $(E, \phi) \in H^{0}(C, \operatorname{End}(E) \otimes K)$ we can consider its characteristic polynomial $h(\phi) \in \bigoplus_{i=1}^{n} H^{0}\left(C, K^{\otimes i}\right)$. This gives morphisms

Hitchin Fibration

- Given a Higgs bundle $(E, \phi) \in H^{0}(C, \operatorname{End}(E) \otimes K)$ we can consider its characteristic polynomial $h(\phi) \in \bigoplus_{i=1}^{n} H^{0}\left(C, K^{\otimes i}\right)$. This gives morphisms

Theorem (Hitchin, Simpson)

The Hitchin maps $h_{S L_{n}}, h_{P G L_{n}}$ are proper and their generic fibers are complex Lagrangian torsors for abelian varieties $\mathcal{P}_{S L_{n}}$ and $\mathcal{P}_{P G L_{n}}$ respectively. Furthermore $\mathcal{P}_{S L_{n}}$ and $\mathcal{P}_{P G L_{n}}$ are dual abelian varieties.

Hitchin Fibration

- Given a Higgs bundle $(E, \phi) \in H^{0}(C, \operatorname{End}(E) \otimes K)$ we can consider its characteristic polynomial $h(\phi) \in \bigoplus_{i=1}^{n} H^{0}\left(C, K^{\otimes i}\right)$. This gives morphisms

Theorem (Hitchin, Simpson)

The Hitchin maps $h_{S L_{n}}, h_{P G L_{n}}$ are proper and their generic fibers are complex Lagrangian torsors for abelian varieties $\mathcal{P}_{S L_{n}}$ and $\mathcal{P}_{P G L_{n}}$ respectively. Furthermore $\mathcal{P}_{S L_{n}}$ and $\mathcal{P}_{P G L_{n}}$ are dual abelian varieties.

- If it weren't for the torsor structure, $\mathcal{M}_{\mathrm{SL}_{n}}^{d}$ and $\mathcal{M}_{\mathrm{PGL}}^{n}$ would be mirror partners in the sense of Strominger-Yau-Zaslow.

Twisted SYZ Mirror Symmetry

- The correct duality between the fibrations $h_{\mathrm{SL}_{n}}, h_{\mathrm{PGL}_{n}}$ should take the torsor structure into account [Hitchin 2001]:
$\rightsquigarrow \mathbb{Z} / n \mathbb{Z}$-Gerbes B, \bar{B} on $\mathcal{M}_{\mathrm{SL}_{n}}^{d}, \mathcal{M}_{\text {PGL }_{n}}^{d}$.

Twisted SYZ Mirror Symmetry

- The correct duality between the fibrations $h_{\mathrm{SL}_{n}}, h_{\mathrm{PGL}_{n}}$ should take the torsor structure into account [Hitchin 2001]:
$\rightsquigarrow \mathbb{Z} / n \mathbb{Z}$-Gerbes B, \bar{B} on $\mathcal{M}_{\mathrm{SL}_{n}}^{d}, \mathcal{M}_{\mathrm{PGL}_{n}}^{d}$.

Theorem (Hausel-Thaddeus 2003)

The pairs $\left(\mathcal{M}_{S L_{n}}^{d}, B\right)$ and $\left(\mathcal{M}_{P G L_{n}}^{d}, \bar{B}\right)$ are $S Y Z$ mirror partners i.e. for a generic $a \in \mathbb{A}$ we have isomorphisms of $\mathcal{P}_{S L_{n}}$ and $\mathcal{P}_{P G L_{n}}$ torsors

$$
\begin{aligned}
& h_{S L_{n}}^{-1}(a) \cong \operatorname{Triv}\left(h_{P G L_{n}}^{-1}(a), \bar{B}\right) \\
& h_{P G L_{n}}^{-1}(a) \cong \operatorname{Triv}\left(h_{S L_{n}}^{-1}(a), B\right) .
\end{aligned}
$$

- Remark: [Donagi-Pantev, 2012] prove a similar statement for any pair of Langlands dual groups.

Topological Mirror Symmetry

- Because of the lack of properness and the presence of singularities, one cannot hope for the usual symmetry of the Hodge diamond. Instead Hausel-Thaddeus 'argue' that there should be an equality of stringy Hodge numbers.

Topological Mirror Symmetry

- Because of the lack of properness and the presence of singularities, one cannot hope for the usual symmetry of the Hodge diamond. Instead Hausel-Thaddeus 'argue' that there should be an equality of stringy Hodge numbers.

Definition

For any complex variety X define the E-polynomial by

$$
E(X ; x, y)=\sum_{p, q, i \geq 0}(-1)^{i} h^{p, q ; i}(X) x^{p} y^{q}
$$

where $h^{p, q ; i}(X)=\operatorname{dim}_{\mathbb{C}}\left(G r_{p}^{H o} G r_{p+q}^{w} H_{c}^{i}(X)\right)$ denote the compactly supported mixed Hodge numbers of X.

Topological Mirror Symmetry

- Because of the lack of properness and the presence of singularities, one cannot hope for the usual symmetry of the Hodge diamond. Instead Hausel-Thaddeus 'argue' that there should be an equality of stringy Hodge numbers.

Definition

For any complex variety X define the E-polynomial by

$$
E(X ; x, y)=\sum_{p, q, i \geq 0}(-1)^{i} h^{p, q ; i}(X) x^{p} y^{q}
$$

where $h^{p, q ; i}(X)=\operatorname{dim}_{\mathbb{C}}\left(G r_{p}^{H o} G r_{p+q}^{w} H_{c}^{i}(X)\right)$ denote the compactly supported mixed Hodge numbers of X.

- The compactly supported cohomology of $\mathcal{M}_{\mathrm{SL}_{n}}^{d}$ and $\mathcal{M}_{\mathrm{PGL}_{n}}^{d}$ is pure i.e. $h^{p, q ; i}=0$ unless $i=p+q$.

Topological Mirror Symmetry

Conjecture (Hausel-Thaddeus 2003)

There is an equality

$$
E\left(\mathcal{M}_{S L_{n}}^{d} ; x, y\right)=E_{s t}^{\bar{B}}\left(\mathcal{M}_{P G L_{n}}^{d} ; x, y\right) .
$$

Topological Mirror Symmetry

Conjecture (Hausel-Thaddeus 2003)

There is an equality

$$
E\left(\mathcal{M}_{S L_{n}}^{d} ; x, y\right)=E_{s t}^{\bar{B}}\left(\mathcal{M}_{P G L_{n}}^{d} ; x, y\right) .
$$

- The right hand side takes into account the orbifold structure and can be written as

$$
E_{s t}^{\bar{B}}\left(\mathcal{M}_{\mathrm{SL}_{n}}^{d} / \Gamma ; x, y\right)=\sum_{\gamma \in \Gamma}(x y)^{\mathcal{F}(\gamma)} E^{\bar{B}_{\gamma}}\left(\left(\mathcal{M}_{\mathrm{SL}_{n}}^{d}\right)^{\gamma} / \Gamma ; x, y\right),
$$

where $E^{\bar{B}_{\gamma}}$ denotes the E-polynomial with coefficients in the local system $\bar{B}_{\gamma} \rightarrow\left(\mathcal{M}_{\mathrm{SL}_{n}}^{d}\right)^{\gamma} / \Gamma$ and $\mathcal{F}(\gamma)$ the Fermionic shift.

- The Conjecture is true for $n=2,3$ [HT 2003].

Reduction to finite fields

- The point count analogue of $E(X ; x, y)$ is $\# X\left(\mathbb{F}_{q}\right)$. Consequently we define

$$
\#_{s t}^{\bar{B}} \mathcal{M}_{\mathrm{PGL}_{n}}^{d}\left(\mathbb{F}_{q}\right)=\sum_{\gamma \in \Gamma} q^{\mathcal{F}(\gamma)} \sum_{x \in\left(\mathcal{M}_{\mathrm{LL}_{n}}^{d}\right)^{\gamma} / \Gamma\left(\mathbb{F}_{q}\right)} \operatorname{tr}\left(\operatorname{Fr},\left(\bar{B}_{\gamma}\right)_{x}\right) .
$$

Reduction to finite fields

- The point count analogue of $E(X ; x, y)$ is $\# X\left(\mathbb{F}_{q}\right)$. Consequently we define

$$
\#_{s t}^{\bar{B}} \mathcal{M}_{\mathrm{PGL}_{n}}^{d}\left(\mathbb{F}_{q}\right)=\sum_{\gamma \in \Gamma} q^{\mathcal{F}(\gamma)} \sum_{x \in\left(\mathcal{M}_{\mathrm{SL}_{n}}^{d}\right)^{\gamma} / \Gamma\left(\mathbb{F}_{q}\right)} \operatorname{tr}\left(\mathrm{Fr},\left(\bar{B}_{\gamma}\right)_{x}\right) .
$$

Essentially by a theorem of Katz, the conjecture then follows from

Theorem (Groechening-W.-Ziegler)

$$
\begin{equation*}
\# \mathcal{M}_{S L_{n}}^{d}\left(\mathbb{F}_{q}\right)=\# \#_{s t}^{\bar{B}} \mathcal{M}_{P G L_{n}}^{d}\left(\mathbb{F}_{q}\right) \tag{1}
\end{equation*}
$$

Reduction to p-adic integration

- Let F be a finite extension of \mathbb{Q}_{p} with ring of integers \mathcal{O}_{F} and residue field $k_{F} \cong \mathbb{F}_{q}$.

Reduction to p-adic integration

- Let F be a finite extension of \mathbb{Q}_{p} with ring of integers \mathcal{O}_{F} and residue field $k_{F} \cong \mathbb{F}_{q}$.
- One can integrate differential forms on p-adic manifolds in a similar way as on real manifolds.
- In particular for any \mathcal{O}_{F}-variety X we can integrate top forms on the manifold $X^{\circ}=X\left(\mathcal{O}_{F}\right) \cap X^{s m}(F)$.

Reduction to p-adic integration

- Let F be a finite extension of \mathbb{Q}_{p} with ring of integers \mathcal{O}_{F} and residue field $k_{F} \cong \mathbb{F}_{q}$.
- One can integrate differential forms on p-adic manifolds in a similar way as on real manifolds.
- In particular for any \mathcal{O}_{F}-variety X we can integrate top forms on the manifold $X^{\circ}=X\left(\mathcal{O}_{F}\right) \cap X^{s m}(F)$.

Theorem (Weil 1982)

Let X be a smooth variety over \mathcal{O}_{F} of relative dimension n and ω a gauge form on X. Then

$$
\int_{X^{\circ}} \omega=\frac{\# X\left(\mathbb{F}_{q}\right)}{q^{n}}
$$

Reduction to p-adic integration

- Through Weil's theorem we can control the LHS of (1) by a p-adic integral.
- The same is also true for the RHS, when we integrate a certain weight function $f_{\bar{B}}$ against the canonical class $\omega_{\text {can }}$ on $\mathcal{M}_{\mathrm{PGL}_{n}}^{d}=\mathcal{M}_{\mathrm{SL}_{n}}^{d} / \Gamma$ [Denef-Loeser 2002].

Reduction to p-adic integration

- Through Weil's theorem we can control the LHS of (1) by a p-adic integral.
- The same is also true for the RHS, when we integrate a certain weight function $f_{\bar{B}}$ against the canonical class $\omega_{\text {can }}$ on $\mathcal{M}_{\mathrm{PGL}_{n}}^{d}=\mathcal{M}_{\mathrm{SL}_{n}}^{d} / \Gamma$ [Denef-Loeser 2002].
- The topological mirror symmetry conjecture of Hausel-Thaddeus thus follows from the following

Theorem (Groechening-W.-Ziegler)

$$
\int_{\mathcal{M}_{S L_{n}}^{d o}} \omega=\int_{\mathcal{M}_{P G L_{n}}^{d o}} f_{\bar{B}} \omega_{c a n} .
$$

Sketch of Proof

- Enough to compare the integrals fiberwise along F-smooth fibers:

$$
\int_{h_{S_{L_{n}}^{-1}(a)^{\circ}}} 1 \stackrel{?}{=} \int_{h_{\mathrm{PGL}_{n}}^{-1}(a)^{\circ}} f_{\bar{B}} \quad \text { for } a \in \mathbb{A}^{\text {gen }}(F) \cap \mathbb{A}\left(\mathcal{O}_{F}\right)
$$

Sketch of Proof

- Enough to compare the integrals fiberwise along F-smooth fibers:

$$
\int_{h_{S_{L}}^{-1}(a)^{\circ}} 1 \stackrel{?}{=} \int_{h_{P G L_{n}}^{-1}(a)^{\circ}} f_{\bar{B}} \quad \text { for } a \in \mathbb{A}^{\text {gen }}(F) \cap \mathbb{A}\left(\mathcal{O}_{F}\right)
$$

- The measures restricted to such fibers are translation invariant for the actions of $\mathcal{P}_{\mathrm{SL}_{n}}(F)$ and $\mathcal{P}_{\mathrm{PGL}_{n}}(F)$.
- From the isomorphism $h_{\mathrm{SL}_{n}}^{-1}(a) \cong \operatorname{Triv}\left(h_{\mathrm{PGL}}^{n}-1(a), \bar{B}\right)$ we deduce

$$
h_{\mathrm{SL}_{n}}^{-1}(a)(F) \neq \emptyset \Leftrightarrow \bar{B}_{\mid h_{\mathrm{PGL}}^{n}}^{-1}(a) \text { is trivial }
$$

Sketch of Proof

- Enough to compare the integrals fiberwise along F-smooth fibers:

$$
\int_{h_{\mathrm{SL}_{n}}^{-1}(a)^{\circ}} 1 \stackrel{?}{=} \int_{h_{\mathrm{PGL}_{n}}^{-1}(a)^{\circ}} f_{\bar{B}} \quad \text { for } a \in \mathbb{A}^{g e n}(F) \cap \mathbb{A}\left(\mathcal{O}_{F}\right) .
$$

Sketch of Proof

- Enough to compare the integrals fiberwise along F-smooth fibers:

$$
\int_{h_{\mathrm{SL}_{n}}^{-1}(a)^{\circ}} 1 \stackrel{?}{=} \int_{h_{\mathrm{PGL}_{n}}^{-1}(a)^{\circ}} f_{\bar{B}} \quad \text { for } a \in \mathbb{A}^{g e n}(F) \cap \mathbb{A}\left(\mathcal{O}_{F}\right) .
$$

- If $h_{\mathrm{SL}_{n}}^{-1}(a)(F)=\emptyset$, then

$$
\int_{h_{P G L_{n}}^{-1}(a)^{\circ}} f_{\bar{B}}=0
$$

by a character sum argument.

Sketch of Proof

- Enough to compare the integrals fiberwise along F-smooth fibers:

$$
\int_{h_{\mathrm{SL}_{n}}^{-1}(a)^{\circ}} 1 \stackrel{?}{=} \int_{h_{\mathrm{PGL} L_{n}}^{-1}(a)^{\circ}} f_{\bar{B}} \quad \text { for } a \in \mathbb{A}^{g e n}(F) \cap \mathbb{A}\left(\mathcal{O}_{F}\right)
$$

- If $h_{\mathrm{SL}_{n}}^{-1}(a)(F)=\emptyset$, then

$$
\int_{h_{P G L_{n}}^{-1}(a)^{\circ}} f_{\bar{B}}=0
$$

by a character sum argument.

- If $h_{\mathrm{SL}}^{n}-1(a)(F) \neq \emptyset$, then $f_{\bar{B}} \equiv 1$ and

$$
\int_{h_{\mathrm{SL}_{n}}^{-1}(a)^{\circ}} 1=\int_{h_{P G L_{n}}^{-1}(a)^{\circ}} 1,
$$

by using the self duality of the isogeny $\mathcal{P}_{\mathrm{SL}_{n}} \rightarrow \mathcal{P}_{\mathrm{PGL}_{n}}$.

Consequences

- The Weil pairing on the curve C gives an identification $\Gamma \cong \Gamma^{*}=\operatorname{Hom}\left(\Gamma, \mu_{n}\right)$. If $\gamma \in \Gamma$ corresponds to the character χ we have

$$
E^{\chi}\left(\mathcal{M}_{\mathrm{SL}_{n}}^{d} ; x, y\right)=(x y)^{F(\gamma)} E^{\bar{B}_{\gamma}}\left(\left(\mathcal{M}_{\mathrm{SL}_{n}}^{d}\right)^{\gamma} / \Gamma ; x, y\right)
$$

Consequences

- The Weil pairing on the curve C gives an identification $\Gamma \cong \Gamma^{*}=\operatorname{Hom}\left(\Gamma, \mu_{n}\right)$. If $\gamma \in \Gamma$ corresponds to the character χ we have

$$
E^{\chi}\left(\mathcal{M}_{\mathrm{SL}_{n}}^{d} ; x, y\right)=(x y)^{F(\gamma)} E^{\bar{B}_{\gamma}}\left(\left(\mathcal{M}_{\mathrm{SL}_{n}}^{d}\right)^{\gamma} / \Gamma ; x, y\right)
$$

- For any $a \in \mathbb{A}\left(\mathbb{F}_{q}\right)$ we have

$$
\# h_{\mathrm{SL}_{n}}^{-1}(a)\left(\mathbb{F}_{q}\right)=\#_{s t}^{\bar{B}} h_{\mathrm{PGL}_{n}}^{-1}(a)\left(\mathbb{F}_{q}\right) .
$$

Consequences

- The Weil pairing on the curve C gives an identification $\Gamma \cong \Gamma^{*}=\operatorname{Hom}\left(\Gamma, \mu_{n}\right)$. If $\gamma \in \Gamma$ corresponds to the character χ we have

$$
E^{\chi}\left(\mathcal{M}_{\mathrm{SL}_{n}}^{d} ; x, y\right)=(x y)^{F(\gamma)} E^{\bar{B}_{\gamma}}\left(\left(\mathcal{M}_{\mathrm{SL}_{n}}^{d}\right)^{\gamma} / \Gamma ; x, y\right)
$$

- For any $a \in \mathbb{A}\left(\mathbb{F}_{q}\right)$ we have

$$
\# h_{\mathrm{SL}_{n}}^{-1}(a)\left(\mathbb{F}_{q}\right)=\#_{s t}^{\bar{B}} h_{\mathrm{PGL}_{n}}^{-1}(a)\left(\mathbb{F}_{q}\right)
$$

- For any d^{\prime} comprime to n we have

$$
E\left(\mathcal{M}_{\mathrm{SL}_{n}}^{d} ; x, y\right)=E\left(\mathcal{M}_{\mathrm{SL}_{n}}^{d^{\prime}} ; x, y\right), \quad E\left(\mathcal{M}_{\mathrm{GL}_{n}}^{d} ; x, y\right)=E\left(\mathcal{M}_{\mathrm{GL}_{n}}^{d^{\prime}} ; x, y\right)
$$

Thank you!

