On the E-polynomial of parabolic $\mathrm{Sp}_{2 n}$-character varieties

Vincenzo Cambò

SISSA, Trieste

SWAGP 2017

Higgs moduli spaces and character varieties
SISSA, Trieste
June 21, 2017

Outline

1 Introduction

2 Results

3 Conclusions

Notations

- $\Sigma_{g}:=$ Riemann surface of genus $g \geq 1$.

Notations

■ $\Sigma_{g}:=$ Riemann surface of genus $g \geq 1$.

- $G:=\operatorname{Sp}(2 n, \mathbb{C})$.

Notations

■ $\Sigma_{g}:=$ Riemann surface of genus $g \geq 1$.

- $G:=\operatorname{Sp}(2 n, \mathbb{C})$.
- $T:=$ maximal torus of diagonal matrices in $\operatorname{Sp}(2 n, \mathbb{C})$

Notations

■ $\Sigma_{g}:=$ Riemann surface of genus $g \geq 1$.

- $G:=\operatorname{Sp}(2 n, \mathbb{C})$.
- $T:=$ maximal torus of diagonal matrices in $\operatorname{Sp}(2 n, \mathbb{C})$ $\left(T \cong\left(\mathbb{C}^{\times}\right)^{n}\right)$.

Notations

- $\Sigma_{g}:=$ Riemann surface of genus $g \geq 1$.
- $G:=\operatorname{Sp}(2 n, \mathbb{C})$.
- $T:=$ maximal torus of diagonal matrices in $\operatorname{Sp}(2 n, \mathbb{C})$ $\left(T \cong\left(\mathbb{C}^{\times}\right)^{n}\right)$.
■ $\xi:=$ generic regular semisimple element in T of finite order

Notations

- $\Sigma_{g}:=$ Riemann surface of genus $g \geq 1$.
- $G:=\operatorname{Sp}(2 n, \mathbb{C})$.
- $T:=$ maximal torus of diagonal matrices in $\operatorname{Sp}(2 n, \mathbb{C})$ $\left(T \cong\left(\mathbb{C}^{\times}\right)^{n}\right)$.
■ $\xi:=$ generic regular semisimple element in T of finite order $\left(\Rightarrow C_{G}(\xi)=T\right)$.

Notations

- $\Sigma_{g}:=$ Riemann surface of genus $g \geq 1$.
- $G:=\operatorname{Sp}(2 n, \mathbb{C})$.
- $T:=$ maximal torus of diagonal matrices in $\operatorname{Sp}(2 n, \mathbb{C})$ $\left(T \cong\left(\mathbb{C}^{\times}\right)^{n}\right)$.
■ $\xi:=$ generic regular semisimple element in T of finite order $\left(\Rightarrow C_{G}(\xi)=T\right)$.
- $\mu_{2}^{n}:=$ involution matrices in T.

Notations

- $\Sigma_{g}:=$ Riemann surface of genus $g \geq 1$.
- $G:=\operatorname{Sp}(2 n, \mathbb{C})$.
- $T:=$ maximal torus of diagonal matrices in $\operatorname{Sp}(2 n, \mathbb{C})$ $\left(T \cong\left(\mathbb{C}^{\times}\right)^{n}\right)$.
■ $\xi:=$ generic regular semisimple element in T of finite order $\left(\Rightarrow C_{G}(\xi)=T\right)$.
- $\mu_{2}^{n}:=$ involution matrices in T.
- $[A: B]:=$ group commutator.

Character varieties

Consider the following algebraic variety:

Character varieties

Consider the following algebraic variety:

$$
\mathcal{U}_{n}^{\xi}:=\left\{\left(A_{i}, B_{i}\right)_{i=1}^{g} \in G^{2 g} \mid \prod_{i=1}^{g}\left[A_{i}: B_{i}\right]=\xi\right\}
$$

Character varieties

Consider the following algebraic variety:

$$
\mathcal{U}_{n}^{\xi}:=\left\{\left(A_{i}, B_{i}\right)_{i=1}^{g} \in G^{2 g} \mid \prod_{i=1}^{g}\left[A_{i}: B_{i}\right]=\xi\right\}
$$

T acts on \mathcal{U}_{n}^{ξ} by pointwise conjugation.

Character varieties

Consider the following algebraic variety:

$$
\mathcal{U}_{n}^{\xi}:=\left\{\left(A_{i}, B_{i}\right)_{i=1}^{g} \in G^{2 g} \mid \prod_{i=1}^{g}\left[A_{i}: B_{i}\right]=\xi\right\}
$$

T acts on \mathcal{U}_{n}^{ξ} by pointwise conjugation.

Definition

A parabolic $\operatorname{Sp}(2 n, \mathbb{C})$-character variety of Σ_{g} is the categorical quotient

$$
\mathcal{M}_{n}^{\xi}:=\mathcal{U}_{n}^{\xi} / / T
$$

Genericity condition

Let $\lambda(\xi)$ be the spectrum of ξ. ξ satisfies the genericity condition means that:

Genericity condition

Let $\lambda(\xi)$ be the spectrum of ξ. ξ satisfies the genericity condition means that:

■ $\pm 1 \notin \lambda(\xi)$.

Genericity condition

Let $\lambda(\xi)$ be the spectrum of ξ. ξ satisfies the genericity condition means that:

- $\pm 1 \notin \lambda(\xi)$.

■ For any subset $S \subset \lambda(\xi)$, if $\prod_{s \in S} s=1 \Rightarrow S=S^{-1}$, where $S^{-1}:=\left\{s^{-1} \mid s \in S\right\}$.

Genericity condition

Let $\lambda(\xi)$ be the spectrum of ξ. ξ satisfies the genericity condition means that:

- $\pm 1 \notin \lambda(\xi)$.
- For any subset $S \subset \lambda(\xi)$, if $\prod_{s \in S} s=1 \Rightarrow S=S^{-1}$, where $S^{-1}:=\left\{s^{-1} \mid s \in S\right\}$.

Example

If ϕ is a primitive $\left(2^{n}+1\right)$-root of unity, an element ξ whose spectrum $\lambda(\xi)$ is equal to $\left\{\phi^{ \pm 2^{i}}\right\}_{i=0, \ldots, n-1}$ satisfies the genericity condition.

Motivations

Goal: compute the E-polynomial of \mathcal{M}_{n}^{ξ}.

Motivations

Goal: compute the E-polynomial of \mathcal{M}_{n}^{ξ}.

- \mathcal{M}_{n}^{ξ} is the space of representations $\rho: \pi_{1}\left(\Sigma_{g} \backslash\left\{p_{0}\right\}\right) \rightarrow G$ where $p_{0} \in \Sigma_{g}$ is a fixed point, and $\rho(\gamma) \in \mathcal{C}_{\xi}$.

Motivations

Goal: compute the E-polynomial of \mathcal{M}_{n}^{ξ}.

- \mathcal{M}_{n}^{ξ} is the space of representations $\rho: \pi_{1}\left(\Sigma_{g} \backslash\left\{p_{0}\right\}\right) \rightarrow G$ where $p_{0} \in \Sigma_{g}$ is a fixed point, and $\rho(\gamma) \in \mathcal{C}_{\xi}$.
- $\mathcal{M}_{n}^{\mathcal{E}}$ is homeomorphic to a moduli space of G-Higgs bundles on Σ_{g} with parabolic structure at p_{0}.

Motivations

Goal: compute the E-polynomial of \mathcal{M}_{n}^{ξ}.

- \mathcal{M}_{n}^{ξ} is the space of representations $\rho: \pi_{1}\left(\Sigma_{g} \backslash\left\{p_{0}\right\}\right) \rightarrow G$ where $p_{0} \in \Sigma_{g}$ is a fixed point, and $\rho(\gamma) \in \mathcal{C}_{\xi}$.
- \mathcal{M}_{n}^{ξ} is homeomorphic to a moduli space of G-Higgs bundles on Σ_{g} with parabolic structure at p_{0}.

■ Hausel et al. conjectured Mirror symmetry for character varieties defined over Langlands dual groups in terms of the stringy E-polynomials.

History

Strategy: counting points over finite fields.

History

Strategy: counting points over finite fields.

- (Hausel and R-Villegas, 2008): E-polynomials of twisted GL(n, \mathbb{C})-character varieties.

History

Strategy: counting points over finite fields.

- (Hausel and R-Villegas, 2008): E-polynomials of twisted GL(n, \mathbb{C})-character varieties.

■ (Mereb, 2015): E-polynomials of twisted $\operatorname{SL}(n, \mathbb{C})$-character varieties.

History

Strategy: counting points over finite fields.

- (Hausel and R-Villegas, 2008): E-polynomials of twisted GL(n, \mathbb{C})-character varieties.

■ (Mereb, 2015): E-polynomials of twisted $\operatorname{SL}(n, \mathbb{C})$-character varieties.

■ (Hausel, Letellier and R-Villegas, 2011): E-polynomials of parabolic GL(n, \mathbb{C})-character varieties.

Geometry of \mathcal{M}_{n}^{ξ}

- \mathcal{U}_{n}^{ξ} is smooth and equidimensional.

Geometry of \mathcal{M}_{n}^{ξ}

- \mathcal{U}_{n}^{ξ} is smooth and equidimensional.
- Let $X \in \mathcal{U}_{n}^{\xi}, T_{X}$ its stabiliser. Then $Z(G) \leq T_{X} \leq \mu_{2}^{n}$

Geometry of \mathcal{M}_{n}^{ξ}

- \mathcal{U}_{n}^{ξ} is smooth and equidimensional.
- Let $X \in \mathcal{U}_{n}^{\xi}, T_{X}$ its stabiliser. Then $Z(G) \leq T_{X} \leq \mu_{2}^{n}$
$\Rightarrow \mathcal{M}_{n}^{\xi}$ is a geometric quotient

Geometry of \mathcal{M}_{n}^{ξ}

- \mathcal{U}_{n}^{ξ} is smooth and equidimensional.
- Let $X \in \mathcal{U}_{n}^{\xi}, T_{X}$ its stabiliser. Then $Z(G) \leq T_{X} \leq \mu_{2}^{n}$ $\Rightarrow \mathcal{M}_{n}^{\xi}$ is a geometric quotient $\Rightarrow \mathcal{M}_{n}^{\xi}$ is equidimensional.

Geometry of \mathcal{M}_{n}^{ξ}

- \mathcal{U}_{n}^{ξ} is smooth and equidimensional.
- Let $X \in \mathcal{U}_{n}^{\xi}, T_{X}$ its stabiliser. Then $Z(G) \leq T_{X} \leq \mu_{2}^{n}$ $\Rightarrow \mathcal{M}_{n}^{\xi}$ is a geometric quotient $\Rightarrow \mathcal{M}_{n}^{\xi}$ is equidimensional.
$■$ For $Z(G) \leq H \leq \boldsymbol{\mu}_{2}^{\eta}$, the set

$$
\widetilde{\mathcal{U}}_{n, H}^{\xi}:=\left\{X \in \mathcal{U}_{n}^{\xi} \mid H=T_{X}\right\}
$$

is T-stable and locally closed

Geometry of \mathcal{M}_{n}^{ξ}

- \mathcal{U}_{n}^{ξ} is smooth and equidimensional.
- Let $X \in \mathcal{U}_{n}^{\xi}, T_{X}$ its stabiliser. Then $Z(G) \leq T_{X} \leq \mu_{2}^{n}$ $\Rightarrow \mathcal{M}_{n}^{\xi}$ is a geometric quotient $\Rightarrow \mathcal{M}_{n}^{\xi}$ is equidimensional.
$■$ For $Z(G) \leq H \leq \boldsymbol{\mu}_{2}^{\eta}$, the set

$$
\widetilde{\mathcal{U}}_{n, H}^{\xi}:=\left\{X \in \mathcal{U}_{n}^{\xi} \mid H=T_{X}\right\}
$$

is T-stable and locally closed \Rightarrow the geometric free quotient

$$
\widetilde{\mathcal{M}}_{n, H}^{\xi}:=\widetilde{\mathcal{U}}_{n, H}^{\xi} /(T / H)
$$

is well defined.

Geometry of \mathcal{M}_{n}^{ξ}

- \mathcal{U}_{n}^{ξ} is smooth and equidimensional.
- Let $X \in \mathcal{U}_{n}^{\xi}, T_{X}$ its stabiliser. Then $Z(G) \leq T_{X} \leq \mu_{2}^{n}$ $\Rightarrow \mathcal{M}_{n}^{\xi}$ is a geometric quotient $\Rightarrow \mathcal{M}_{n}^{\xi}$ is equidimensional.
$■$ For $Z(G) \leq H \leq \boldsymbol{\mu}_{2}^{\eta}$, the set

$$
\widetilde{\mathcal{U}}_{n, H}^{\xi}:=\left\{X \in \mathcal{U}_{n}^{\xi} \mid H=T_{X}\right\}
$$

is T-stable and locally closed \Rightarrow the geometric free quotient

$$
\widetilde{\mathcal{M}}_{n, H}^{\xi}:=\widetilde{\mathcal{U}}_{n, H}^{\xi} /(T / H)
$$

is well defined.

- $\left\{\widetilde{\mathcal{M}}_{n, H}^{\xi}\right\}_{Z(G) \leq H \leq \mu_{2}^{n}}$ is a stratification of \mathcal{M}_{n}^{ξ}

Geometry of \mathcal{M}_{n}^{ξ}

For $Z(G) \leq H \leq \boldsymbol{\mu}_{2}^{n}$, define the closed subset of \mathcal{U}_{n}^{ξ}

$$
\mathcal{U}_{n, H}^{\xi}:=\left\{X \in \mathcal{U}_{n}^{\xi} \mid H \subseteq T_{X}\right\} .
$$

Geometry of \mathcal{M}_{n}^{ξ}

For $Z(G) \leq H \leq \mu_{2}^{n}$, define the closed subset of \mathcal{U}_{n}^{ξ}

$$
\mathcal{U}_{n, H}^{\xi}:=\left\{X \in \mathcal{U}_{n}^{\xi} \mid H \subseteq T_{X}\right\} .
$$

Proposition

There exists a well defined partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right) \vdash n$, depending on H, such that

$$
\mathcal{U}_{n, H}^{\xi} \cong \prod_{i=1}^{\prime} \mathcal{U}_{\lambda_{i}}^{\xi_{i}}
$$

where the ξ_{i} 's are generic elements.

Main Theorem

Denote $q:=x y$

Main Theorem

Denote $q:=x y$
Theorem
The E-polynomial of \mathcal{M}_{n}^{ξ} satisfies

$$
E\left(\mathcal{M}_{n}^{\xi} ; q\right)=\frac{1}{(q-1)^{n}} \sum_{\tau}\left(H_{\tau}(q)\right)^{2 g-1} C_{\tau}
$$

Main Theorem

Denote $q:=x y$
Theorem
The E-polynomial of \mathcal{M}_{n}^{ξ} satisfies

$$
E\left(\mathcal{M}_{n}^{\xi} ; q\right)=\frac{1}{(q-1)^{n}} \sum_{\tau}\left(H_{\tau}(q)\right)^{2 g-1} C_{\tau}
$$

Explicitly:

- $H_{\tau}(q) \in \mathbb{Z}[q]$ and $C_{\tau} \in \mathbb{Z}$.

Main Theorem

Denote $q:=x y$
Theorem
The E-polynomial of \mathcal{M}_{n}^{ξ} satisfies

$$
E\left(\mathcal{M}_{n}^{\xi} ; q\right)=\frac{1}{(q-1)^{n}} \sum_{\tau}\left(H_{\tau}(q)\right)^{2 g-1} C_{\tau}
$$

Explicitly:
■ $H_{\tau}(q) \in \mathbb{Z}[q]$ and $C_{\tau} \in \mathbb{Z}$.
■ $(q-1)^{n}$ divides $H_{\tau}(q)$.

Main Theorem

Denote $q:=x y$
Theorem
The E-polynomial of \mathcal{M}_{n}^{ξ} satisfies

$$
E\left(\mathcal{M}_{n}^{\xi} ; q\right)=\frac{1}{(q-1)^{n}} \sum_{\tau}\left(H_{\tau}(q)\right)^{2 g-1} C_{\tau}
$$

Explicitly:

- $H_{\tau}(q) \in \mathbb{Z}[q]$ and $C_{\tau} \in \mathbb{Z}$.

■ $(q-1)^{n}$ divides $H_{\tau}(q)$.

- The range of the summation only depends on n.

Topology of \mathcal{M}_{n}^{ξ}

Corollary

The E-polynomial of \mathcal{M}_{n}^{ξ} is palindromic and monic. In particular, \mathcal{M}_{n}^{ξ} is connected.

Topology of \mathcal{M}_{n}^{ξ}

Corollary

The E-polynomial of \mathcal{M}_{n}^{ξ} is palindromic and monic. In particular, \mathcal{M}_{n}^{ξ} is connected.

Corollary

The Euler characteristic $\chi\left(\mathcal{M}_{n}^{\xi}\right)$ of \mathcal{M}_{n}^{ξ} vanishes for $g \ngtr 1$. For $g=1$, we have

Topology of \mathcal{M}_{n}^{ξ}

Corollary

The E-polynomial of \mathcal{M}_{n}^{ξ} is palindromic and monic. In particular, \mathcal{M}_{n}^{ξ} is connected.

Corollary

The Euler characteristic $\chi\left(\mathcal{M}_{n}^{\xi}\right)$ of \mathcal{M}_{n}^{ξ} vanishes for $g \geqslant 1$. For $g=1$, we have

$$
\sum_{n \geq 0} \frac{\chi\left(\mathcal{M}_{n}^{\xi}\right)}{2^{n} n!} T^{n}=\prod_{k \geq 1} \frac{1}{\left(1-T^{k}\right)^{3}}=1+3 T+\cdots
$$

Example

For $n=1$, the E-polynomial looks like:

$$
E\left(\mathcal{M}_{1}^{\xi} ; q\right)
$$

Example

For $n=1$, the E-polynomial looks like:

$$
\begin{aligned}
E\left(\mathcal{M}_{1}^{\xi} ; q\right)= & \left(q^{3}-q\right)^{2 g-2}\left(q^{2}+q\right)+\left(q^{2}-1\right)^{2 g-2}(q+1) \\
& +\left(2^{2 g}-2\right)\left(q^{2}-q\right)^{2 g-2} q .
\end{aligned}
$$

Example

For $n=1$, the E-polynomial looks like:

$$
\begin{gathered}
E\left(\mathcal{M}_{1}^{\xi} ; q\right)= \\
\left(q^{3}-q\right)^{2 g-2}\left(q^{2}+q\right)+\left(q^{2}-1\right)^{2 g-2}(q+1) \\
\\
+\left(2^{2 g}-2\right)\left(q^{2}-q\right)^{2 g-2} q . \\
\chi\left(\mathcal{M}_{1}^{\xi}\right)=E\left(\mathcal{M}_{1}^{\xi} ; 1\right)= \begin{cases}6 & \text { if } g=1 \\
0 & \text { if } g \neq 1\end{cases}
\end{gathered}
$$

Computation of $E\left(\mathcal{M}_{n}^{\xi} ; q\right)$

- By additive property of the E-polynomial w.r.t. stratifications, we have

Computation of $E\left(\mathcal{M}_{n}^{\xi} ; q\right)$

- By additive property of the E-polynomial w.r.t. stratifications, we have

$$
E\left(\mathcal{M}_{n}^{\xi} ; q\right)=\sum_{Z(G) \leq H \leq \mu_{2}^{n}} E\left(\widetilde{\mathcal{M}}_{n, H}^{\xi} ; q\right)
$$

Computation of $E\left(\mathcal{M}_{n}^{\xi} ; q\right)$

- By additive property of the E-polynomial w.r.t. stratifications, we have

$$
E\left(\mathcal{M}_{n}^{\xi} ; q\right)=\sum_{z(G) \leq H \leq \mu_{2}^{n}} E\left(\widetilde{\mathcal{M}}_{n, H}^{\xi} ; q\right) .
$$

■ Define $\widetilde{N}_{n, H}^{\xi}(q):=\left|\widetilde{\mathcal{U}}_{n, H}^{\xi}\left(\mathbb{F}_{q}\right)\right|$.

Computation of $E\left(\mathcal{M}_{n}^{\xi} ; q\right)$

■ By additive property of the E-polynomial w.r.t. stratifications, we have

$$
E\left(\mathcal{M}_{n}^{\xi} ; q\right)=\sum_{z(G) \leq H \leq \mu_{2}^{n}} E\left(\widetilde{\mathcal{M}}_{n, H}^{\xi} ; q\right) .
$$

- Define $\widetilde{N}_{n, H}^{\xi}(q):=\left|\widetilde{\mathcal{U}}_{n, H}^{\xi}\left(\mathbb{F}_{q}\right)\right|$. Then

$$
E\left(\widetilde{\mathcal{M}}_{n, H}^{\xi} ; q\right)=\frac{\widetilde{N}_{n, H}^{\xi}(q)}{(q-1)^{n}}
$$

Computation of $E\left(\mathcal{M}_{n}^{\xi} ; q\right)$

- Define $N_{n, H}^{\xi}(q):=\left|\mathcal{U}_{n, H}^{\xi}\left(\mathbb{F}_{q}\right)\right|$.

Computation of $E\left(\mathcal{M}_{n}^{\xi} ; q\right)$

$■$ Define $N_{n, H}^{\xi}(q):=\left|\mathcal{U}_{n, H}^{\xi}\left(\mathbb{F}_{q}\right)\right|$. Then

$$
N_{n, H}^{\xi}(q)=\sum_{H \leq S \leq \mu_{2}^{n}} \widetilde{N}_{n, S}^{\xi}(q)
$$

Computation of $E\left(\mathcal{M}_{n}^{\xi} ; q\right)$

- Define $N_{n, H}^{\xi}(q):=\left|\mathcal{U}_{n, H}^{\xi}\left(\mathbb{F}_{q}\right)\right|$. Then

$$
\begin{aligned}
N_{n, H}^{\xi}(q) & =\sum_{H \leq S \leq \mu_{2}^{n}} \widetilde{N}_{n, S}^{\xi}(q) \\
M M \cdot \widetilde{N}_{n, H}^{\xi}(q) & =\sum_{H \leq S \leq \mu_{2}^{n}} \mu(H, S) N_{n, S}^{\xi}(q)
\end{aligned}
$$

Computation of $E\left(\mathcal{M}_{n}^{\xi} ; q\right)$

- Define $N_{n, H}^{\xi}(q):=\left|\mathcal{U}_{n, H}^{\xi}\left(\mathbb{F}_{q}\right)\right|$. Then

$$
\begin{gathered}
N_{n, H}^{\xi}(q)=\sum_{H \leq S \leq \mu_{2}^{n}} \widetilde{N}_{n, S}^{\xi}(q) \\
\stackrel{M, I .}{\Rightarrow} \widetilde{N}_{n, H}^{\xi}(q)=\sum_{H \leq S \leq \mu_{2}^{n}} \mu(H, S) N_{n, S}^{\xi}(q)
\end{gathered}
$$

(μ is the Möbius function of the poset of subgroups of μ_{2}^{n}).

Computation of $E\left(\mathcal{M}_{n}^{\xi} ; q\right)$

- Define $N_{n}^{\xi}(q):=\left|\mathcal{U}_{n}^{\xi}\left(\mathbb{F}_{q}\right)\right|$.

Computation of $E\left(\mathcal{M}_{n}^{\xi} ; q\right)$

- Define $N_{n}^{\xi}(q):=\left|\mathcal{U}_{n}^{\xi}\left(\mathbb{F}_{q}\right)\right|$. Then, by previous Proposition, we have

$$
N_{n, S}^{\xi}(q)=\prod_{i} N_{\lambda_{i}}^{\xi_{i}}(q)
$$

Computation of $E\left(\mathcal{M}_{n}^{\xi} ; q\right)$

- Define $N_{n}^{\xi}(q):=\left|\mathcal{U}_{n}^{\xi}\left(\mathbb{F}_{q}\right)\right|$. Then, by previous Proposition, we have

$$
N_{n, S}^{\xi}(q)=\prod_{i} N_{\lambda_{i}}^{\xi_{i}}(q)
$$

- We reduce to compute $\frac{1}{(q-1)^{n}} N_{n}^{\xi}(q)$ for any $n \in \mathbb{N}$ and any generic ξ.

Computation of $E\left(\mathcal{M}_{n}^{\xi} ; q\right)$

- Define $N_{n}^{\xi}(q):=\left|\mathcal{U}_{n}^{\xi}\left(\mathbb{F}_{q}\right)\right|$. Then, by previous Proposition, we have

$$
N_{n, S}^{\xi}(q)=\prod_{i} N_{\lambda_{i}}^{\xi_{i}}(q)
$$

- We reduce to compute $\frac{1}{(q-1)^{n}} N_{n}^{\xi}(q)$ for any $n \in \mathbb{N}$ and any generic ξ. Eventually, it turns out that

$$
E\left(\mathcal{M}_{n}^{\xi} ; q\right)=\frac{1}{(q-1)^{n}} N_{n}^{\xi}(q)
$$

Computation of $E\left(\mathcal{M}_{n}^{\xi} ; q\right)$

Frobenius formula:

$$
\frac{1}{(q-1)^{n}} N_{n}^{\xi}(q)=\frac{1}{(q-1)^{n}} \sum_{\chi \in \operatorname{Irr}\left(\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)\right)} \chi(\xi)\left(\frac{\left|\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)\right|}{\chi(1)}\right)^{2 g-1}
$$

Computation of $E\left(\mathcal{M}_{n}^{\xi} ; q\right)$

Frobenius formula:

$$
\frac{1}{(q-1)^{n}} N_{n}^{\xi}(q)=\frac{1}{(q-1)^{n}} \sum_{\chi \in \operatorname{Irr}\left(\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)\right)} \chi(\xi)\left(\frac{\left|\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)\right|}{\chi(1)}\right)^{2 g-1}
$$

Here, \mathbb{F}_{q} is a finite field such that $\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$ admits ξ.

Final comments

- $E\left(\mathcal{M}_{n}^{\xi} ; q\right)$ does not depend on the choice of the generic ξ, so actually we have computed the E-polynomial of a very large family of $\mathrm{Sp}_{2 n}$-character varieties.

Final comments

- $E\left(\mathcal{M}_{n}^{\xi} ; q\right)$ does not depend on the choice of the generic ξ, so actually we have computed the E-polynomial of a very large family of $\mathrm{Sp}_{2 n}$-character varieties.
- The order of the abelianization of $\operatorname{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$ counts connected components of \mathcal{M}_{n}^{ξ}. This seems to be a more general phenomenon, occuring for character varieties defined over simple algebraic group.

Thank you for your attention.

