On the E-polynomial of parabolic Sp_{2n} -character varieties

Vincenzo Cambò

SISSA, Trieste

SWAGP 2017 Higgs moduli spaces and character varieties SISSA, Trieste June 21, 2017

Outline

1 Introduction

- 2 Results
- 3 Conclusions

■ Σ_g := Riemann surface of genus $g \ge 1$.

- Σ_g := Riemann surface of genus $g \ge 1$.
- $G:=\mathrm{Sp}(2n,\mathbb{C}).$

- Σ_g := Riemann surface of genus $g \ge 1$.
- $G:=\mathrm{Sp}(2n,\mathbb{C}).$
- T:= maximal torus of diagonal matrices in $Sp(2n, \mathbb{C})$

- Σ_g := Riemann surface of genus $g \ge 1$.
- $G:=\mathrm{Sp}(2n,\mathbb{C}).$
- $T := \text{maximal torus of diagonal matrices in } \operatorname{Sp}(2n, \mathbb{C})$ $(T \cong (\mathbb{C}^{\times})^n).$

- Σ_g := Riemann surface of genus $g \ge 1$.
- $G := \operatorname{Sp}(2n, \mathbb{C}).$
- $T := \text{maximal torus of diagonal matrices in } \operatorname{Sp}(2n, \mathbb{C})$ $(T \cong (\mathbb{C}^{\times})^n).$
- ξ := generic regular semisimple element in T of finite order

- Σ_g := Riemann surface of genus $g \ge 1$.
- $G:=\mathrm{Sp}(2n,\mathbb{C}).$
- $T := \text{maximal torus of diagonal matrices in } \operatorname{Sp}(2n, \mathbb{C})$ $(T \cong (\mathbb{C}^{\times})^n).$
- ξ := generic regular semisimple element in T of finite order $(\Rightarrow C_G(\xi) = T)$.

- Σ_g := Riemann surface of genus $g \ge 1$.
- $G:=\mathrm{Sp}(2n,\mathbb{C}).$
- T:= maximal torus of diagonal matrices in $Sp(2n, \mathbb{C})$ $(T \cong (\mathbb{C}^{\times})^n)$.
- ξ := generic regular semisimple element in T of finite order $(\Rightarrow C_G(\xi) = T)$.
- μ_2^n := involution matrices in T.

- Σ_g := Riemann surface of genus $g \ge 1$.
- $G:=\mathrm{Sp}(2n,\mathbb{C}).$
- T:= maximal torus of diagonal matrices in $Sp(2n, \mathbb{C})$ $(T \cong (\mathbb{C}^{\times})^n)$.
- ξ := generic regular semisimple element in T of finite order $(\Rightarrow C_G(\xi) = T)$.
- μ_2^n := involution matrices in T.
- \blacksquare [A : B]:= group commutator.

Consider the following algebraic variety:

Consider the following algebraic variety:

$$\mathcal{U}_n^{\xi} := \left\{ (A_i, B_i)_{i=1}^g \in G^{2g} \mid \prod_{i=1}^g [A_i : B_i] = \xi \right\}$$

Consider the following algebraic variety:

$$\mathcal{U}_n^{\xi} := \left\{ (A_i, B_i)_{i=1}^g \in G^{2g} \mid \prod_{i=1}^g [A_i : B_i] = \xi \right\}$$

T acts on \mathcal{U}_n^{ξ} by pointwise conjugation.

Consider the following algebraic variety:

$$\mathcal{U}_n^{\xi} := \left\{ (A_i, B_i)_{i=1}^g \in G^{2g} \mid \prod_{i=1}^g [A_i : B_i] = \xi \right\}$$

 $\mathcal T$ acts on $\mathcal U_n^\xi$ by pointwise conjugation.

Definition

A parabolic $\operatorname{Sp}(2n,\mathbb{C})$ -character variety of Σ_g is the categorical quotient

$$\mathcal{M}_n^{\xi} := \mathcal{U}_n^{\xi} / / T$$

Let $\lambda(\xi)$ be the spectrum of ξ . ξ satisfies the *genericity condition* means that:

Let $\lambda(\xi)$ be the spectrum of ξ . ξ satisfies the *genericity condition* means that:

 $=\pm 1 \notin \lambda(\xi).$

Let $\lambda(\xi)$ be the spectrum of ξ . ξ satisfies the *genericity condition* means that:

- \bullet $\pm 1 \notin \lambda(\xi)$.
- For any subset $S \subset \lambda\left(\xi\right)$, if $\prod_{s \in S} s = 1 \Rightarrow S = S^{-1}$, where

$$S^{-1}:=\left\{ s^{-1}\mid s\in S\right\} .$$

Let $\lambda(\xi)$ be the spectrum of ξ . ξ satisfies the *genericity condition* means that:

- \blacksquare $\pm 1 \notin \lambda(\xi)$.
- For any subset $S \subset \lambda$ (ξ), if $\prod_{s \in S} s = 1 \Rightarrow S = S^{-1}$, where $S^{-1} := \{s^{-1} \mid s \in S\}$.

Example

If ϕ is a primitive (2^n+1) -root of unity, an element ξ whose spectrum $\lambda(\xi)$ is equal to $\left\{\phi^{\pm 2^i}\right\}_{i=0,\dots,n-1}$ satisfies the genericity condition.

Motivations

Goal: compute the *E*-polynomial of \mathcal{M}_n^{ξ} .

Motivations

Goal: compute the *E*-polynomial of \mathcal{M}_n^{ξ} .

■ \mathcal{M}_n^{ξ} is the space of representations $\rho: \pi_1(\Sigma_g \setminus \{p_0\}) \to G$ where $p_0 \in \Sigma_g$ is a fixed point, and $\rho(\gamma) \in \mathcal{C}_{\xi}$.

Introduction Results Conclusions

Motivations

Goal: compute the *E*-polynomial of \mathcal{M}_n^{ξ} .

- \mathcal{M}_n^{ξ} is the space of representations $\rho : \pi_1(\Sigma_g \setminus \{p_0\}) \to G$ where $p_0 \in \Sigma_g$ is a fixed point, and $\rho(\gamma) \in \mathcal{C}_{\xi}$.
- \mathcal{M}_n^{ξ} is homeomorphic to a moduli space of G-Higgs bundles on Σ_g with parabolic structure at p_0 .

Introduction Results Conclusions

Motivations

Goal: compute the *E*-polynomial of \mathcal{M}_n^{ξ} .

- \mathcal{M}_n^{ξ} is the space of representations $\rho : \pi_1(\Sigma_g \setminus \{p_0\}) \to G$ where $p_0 \in \Sigma_g$ is a fixed point, and $\rho(\gamma) \in \mathcal{C}_{\xi}$.
- \mathcal{M}_n^{ξ} is homeomorphic to a moduli space of G-Higgs bundles on Σ_g with parabolic structure at p_0 .
- Hausel et al. conjectured Mirror symmetry for character varieties defined over Langlands dual groups in terms of the stringy E-polynomials.

History

Strategy: counting points over finite fields.

SISSA. Trieste

History

Strategy: counting points over finite fields.

• (Hausel and R-Villegas, 2008): *E*-polynomials of twisted $GL(n, \mathbb{C})$ -character varieties.

Introduction Results Conclusions

History

Strategy: counting points over finite fields.

- (Hausel and R-Villegas, 2008): *E*-polynomials of twisted $GL(n, \mathbb{C})$ -character varieties.
- (Mereb, 2015): *E*-polynomials of twisted $SL(n, \mathbb{C})$ -character varieties.

Introduction Results Conclusions

History

Strategy: counting points over finite fields.

- (Hausel and R-Villegas, 2008): *E*-polynomials of twisted $GL(n, \mathbb{C})$ -character varieties.
- (Mereb, 2015): *E*-polynomials of twisted $SL(n, \mathbb{C})$ -character varieties.
- (Hausel, Letellier and R-Villegas, 2011): E-polynomials of parabolic $GL(n, \mathbb{C})$ -character varieties.

• \mathcal{U}_n^{ξ} is smooth and equidimensional.

- lacksquare \mathcal{U}_n^{ξ} is smooth and equidimensional.
- lacksquare Let $X\in \mathcal{U}_n^\xi,\ T_X$ its stabiliser. Then $Z(G)\leq T_X\leq \mu_2^n$

- \mathcal{U}_n^{ξ} is smooth and equidimensional.
- Let $X \in \mathcal{U}_n^{\xi}$, T_X its stabiliser. Then $Z(G) \leq T_X \leq \mu_2^n$ $\Rightarrow \mathcal{M}_n^{\xi}$ is a geometric quotient

On the E-polynomial of parabolic Sp_{2n} -character varieties

- \mathcal{U}_n^{ξ} is smooth and equidimensional.
- Let $X \in \mathcal{U}_n^{\xi}$, T_X its stabiliser. Then $Z(G) \leq T_X \leq \mu_2^n$ $\Rightarrow \mathcal{M}_n^{\xi}$ is a geometric quotient $\Rightarrow \mathcal{M}_n^{\xi}$ is equidimensional.

- \mathcal{U}_n^{ξ} is smooth and equidimensional.
- Let $X \in \mathcal{U}_n^{\xi}$, T_X its stabiliser. Then $Z(G) \leq T_X \leq \mu_2^n$ $\Rightarrow \mathcal{M}_n^{\xi}$ is a geometric quotient $\Rightarrow \mathcal{M}_n^{\xi}$ is equidimensional.
- For $Z(G) \le H \le \mu_2^n$, the set

$$\widetilde{\mathcal{U}}_{n,H}^{\xi} := \left\{ X \in \mathcal{U}_n^{\xi} \mid H = T_X \right\}$$

is T-stable and locally closed

- \mathcal{U}_n^{ξ} is smooth and equidimensional.
- Let $X \in \mathcal{U}_n^{\xi}$, T_X its stabiliser. Then $Z(G) \leq T_X \leq \mu_2^n$ $\Rightarrow \mathcal{M}_n^{\xi}$ is a geometric quotient $\Rightarrow \mathcal{M}_n^{\xi}$ is equidimensional.
- For $Z(G) \le H \le \mu_2^n$, the set

$$\widetilde{\mathcal{U}}_{n,H}^{\xi} := \left\{ X \in \mathcal{U}_n^{\xi} \mid H = T_X \right\}$$

is T-stable and locally closed \Rightarrow the geometric free quotient

$$\widetilde{\mathcal{M}}_{n,H}^{\xi} := \widetilde{\mathcal{U}}_{n,H}^{\xi} / (T/H)$$

is well defined.

- ullet \mathcal{U}_n^{ξ} is smooth and equidimensional.
- Let $X \in \mathcal{U}_n^{\xi}$, T_X its stabiliser. Then $Z(G) \leq T_X \leq \mu_2^n$ $\Rightarrow \mathcal{M}_n^{\xi}$ is a geometric quotient $\Rightarrow \mathcal{M}_n^{\xi}$ is equidimensional.
- For $Z(G) \le H \le \mu_2^n$, the set

$$\widetilde{\mathcal{U}}_{n,H}^{\xi} := \left\{ X \in \mathcal{U}_n^{\xi} \mid H = T_X \right\}$$

is T-stable and locally closed \Rightarrow the geometric free quotient

$$\widetilde{\mathcal{M}}_{n,H}^{\xi} := \widetilde{\mathcal{U}}_{n,H}^{\xi} / (T/H)$$

is well defined.

 $\qquad \left\{\widetilde{\mathcal{M}}_{n,H}^{\xi}\right\}_{Z(G) < H < \mu_n^{\eta}} \text{ is a stratification of } \mathcal{M}_n^{\xi}$

For $Z(G) \leq H \leq \mu_{\mathbf{2}}^n$, define the closed subset of \mathcal{U}_n^{ξ}

$$\mathcal{U}_{n,H}^{\xi} := \left\{ X \in \mathcal{U}_n^{\xi} \mid H \subseteq T_X \right\}.$$

ntroduction Results Conclusions

Geometry of \mathcal{M}_n^{ξ}

For $Z(G) \leq H \leq \mu_2^n$, define the closed subset of \mathcal{U}_n^{ξ}

$$\mathcal{U}_{n,H}^{\xi} := \left\{ X \in \mathcal{U}_n^{\xi} \mid H \subseteq T_X \right\}.$$

Proposition

There exists a well defined partition $\lambda = (\lambda_1, \dots, \lambda_l) \vdash n$, depending on H, such that

$$\mathcal{U}_{\mathsf{n},H}^{\xi}\cong\prod_{i=1}^{l}\mathcal{U}_{\lambda_{i}}^{\xi_{i}}$$

where the ξ_i 's are generic elements.

Main Theorem

Denote q := xy

Denote q := xy

Theorem

The E-polynomial of \mathcal{M}_n^{ξ} satisfies

$$E\left(\mathcal{M}_n^{\xi};q\right) = \frac{1}{\left(q-1\right)^n} \sum_{\tau} \left(H_{\tau}(q)\right)^{2g-1} C_{\tau}.$$

Denote q := xy

Theorem

The E-polynomial of \mathcal{M}_n^{ξ} satisfies

$$E\left(\mathcal{M}_n^{\xi};q\right) = \frac{1}{\left(q-1\right)^n} \sum_{\tau} \left(H_{\tau}(q)\right)^{2g-1} C_{\tau}.$$

Explicitly:

 $lacksquare H_{ au}(q) \in \mathbb{Z}[q] ext{ and } C_{ au} \in \mathbb{Z}.$

Denote q := xy

Theorem

The E-polynomial of \mathcal{M}_n^{ξ} satisfies

$$E\left(\mathcal{M}_n^{\xi};q\right) = \frac{1}{\left(q-1\right)^n} \sum_{\tau} \left(H_{\tau}(q)\right)^{2g-1} C_{\tau}.$$

Explicitly:

- $lacksquare H_{ au}(q) \in \mathbb{Z}[q] ext{ and } C_{ au} \in \mathbb{Z}.$
- \bullet $(q-1)^n$ divides $H_{\tau}(q)$.

Denote q := xy

Theorem

The E-polynomial of \mathcal{M}_n^{ξ} satisfies

$$E\left(\mathcal{M}_n^{\xi};q\right) = \frac{1}{\left(q-1\right)^n} \sum_{\tau} \left(H_{\tau}(q)\right)^{2g-1} C_{\tau}.$$

Explicitly:

- $lacksquare H_{ au}(q) \in \mathbb{Z}[q] \ ext{and} \ C_{ au} \in \mathbb{Z}.$
- $\blacksquare (q-1)^n$ divides $H_{\tau}(q)$.
- The range of the summation only depends on n.

Topology of $\overline{\mathcal{M}_n^{\xi}}$

Corollary

The E-polynomial of \mathcal{M}_n^{ξ} is palindromic and monic. In particular, \mathcal{M}_n^{ξ} is connected.

Topology of \mathcal{M}_n^{ξ}

Corollary

The E-polynomial of \mathcal{M}_n^{ξ} is palindromic and monic. In particular, \mathcal{M}_n^{ξ} is connected.

Corollary

The Euler characteristic $\chi\left(\mathcal{M}_n^{\xi}\right)$ of \mathcal{M}_n^{ξ} vanishes for $g \geqslant 1$. For g=1, we have

Topology of \mathcal{M}_n^{ξ}

Corollary

The E-polynomial of \mathcal{M}_n^{ξ} is palindromic and monic. In particular, \mathcal{M}_n^{ξ} is connected.

Corollary

The Euler characteristic $\chi\left(\mathcal{M}_n^{\xi}\right)$ of \mathcal{M}_n^{ξ} vanishes for $g \geqslant 1$. For g=1, we have

$$\sum_{n\geq 0} \frac{\chi(\mathcal{M}_n^{\xi})}{2^n n!} T^n = \prod_{k\geq 1} \frac{1}{(1-T^k)^3} = 1 + 3T + \cdots.$$

Example

For n = 1, the *E*-polynomial looks like:

$$E\Big(\mathcal{M}_1^{\xi};q\Big)$$

troduction Results Conclusions

Example

For n = 1, the *E*-polynomial looks like:

$$E(\mathcal{M}_{1}^{\xi};q) = (q^{3}-q)^{2g-2}(q^{2}+q) + (q^{2}-1)^{2g-2}(q+1) + (2^{2g}-2)(q^{2}-q)^{2g-2}q.$$

troduction Results Conclusions

Example

For n = 1, the *E*-polynomial looks like:

$$E(\mathcal{M}_{1}^{\xi};q) = (q^{3}-q)^{2g-2}(q^{2}+q) + (q^{2}-1)^{2g-2}(q+1) + (2^{2g}-2)(q^{2}-q)^{2g-2}q.$$

$$\chi\left(\mathcal{M}_{1}^{\xi}\right) = E\left(\mathcal{M}_{1}^{\xi}; 1\right) = \begin{cases} 6 & \text{if } g = 1\\ 0 & \text{if } g \geqslant 1 \end{cases}$$

■ By additive property of the *E*-polynomial w.r.t. stratifications, we have

■ By additive property of the *E*-polynomial w.r.t. stratifications, we have

$$E\left(\mathcal{M}_{n}^{\xi};q\right)=\sum_{Z(G)\leq H\leq \mu_{2}^{n}}E\left(\widetilde{\mathcal{M}}_{n,H}^{\xi};q\right).$$

■ By additive property of the *E*-polynomial w.r.t. stratifications, we have

$$E\left(\mathcal{M}_{n}^{\xi};q\right)=\sum_{Z(G)\leq H\leq \mu_{2}^{n}}E\left(\widetilde{\mathcal{M}}_{n,H}^{\xi};q\right).$$

■ Define $\widetilde{N}_{n,H}^{\xi}(q) := \left| \widetilde{\mathcal{U}}_{n,H}^{\xi}(\mathbb{F}_q) \right|$.

■ By additive property of the *E*-polynomial w.r.t. stratifications, we have

$$E\left(\mathcal{M}_{n}^{\xi};q\right)=\sum_{Z(G)\leq H\leq \mu_{2}^{n}}E\left(\widetilde{\mathcal{M}}_{n,H}^{\xi};q\right).$$

lacksquare Define $\widetilde{N}_{n,H}^{\xi}(q):=\left|\widetilde{\mathcal{U}}_{n,H}^{\xi}(\mathbb{F}_q)
ight|.$ Then

$$E\left(\widetilde{\mathcal{M}}_{n,H}^{\xi};q\right)=\frac{\widetilde{N}_{n,H}^{\xi}(q)}{\left(q-1\right)^{n}}.$$

■ Define $N_{n,H}^{\xi}(q) := \left| \mathcal{U}_{n,H}^{\xi}(\mathbb{F}_q) \right|$.

lacksquare Define $N_{n,H}^{\xi}(q):=\left|\mathcal{U}_{n,H}^{\xi}(\mathbb{F}_q)
ight|.$ Then

$$N_{n,H}^{\xi}(q) = \sum_{H \leq \mathcal{S} \leq oldsymbol{\mu}_{n}^{g}} \widetilde{N}_{n,\mathcal{S}}^{\xi}(q)$$

lacksquare Define $N_{n,H}^{\xi}(q):=\left|\mathcal{U}_{n,H}^{\xi}(\mathbb{F}_q)
ight|.$ Then

$$N_{n,H}^{\xi}(q) = \sum_{H \leq \mathcal{S} \leq oldsymbol{\mu}_{n}^{g}} \widetilde{N}_{n,\mathcal{S}}^{\xi}(q)$$

$$\stackrel{M.I.}{\Rightarrow} \widetilde{N}_{n,H}^{\xi}(q) = \sum_{H \leq S \leq \mu_n^{\eta}} \mu(H,S) N_{n,S}^{\xi}(q)$$

lacksquare Define $N_{n,H}^{\xi}(q):=\left|\mathcal{U}_{n,H}^{\xi}(\mathbb{F}_q)
ight|.$ Then

$$N_{n,H}^{\xi}(q) = \sum_{H \leq \mathcal{S} \leq oldsymbol{\mu}_{n}^{2}} \widetilde{N}_{n,\mathcal{S}}^{\xi}(q)$$

$$\stackrel{M.I.}{\Rightarrow} \widetilde{N}_{n,H}^{\xi}(q) = \sum_{H \leq S \leq \mu_2^n} \mu(H,S) N_{n,S}^{\xi}(q)$$

(μ is the Möbius function of the poset of subgroups of μ_2^n).

■ Define
$$N_n^{\xi}(q) := \left| \mathcal{U}_n^{\xi}(\mathbb{F}_q) \right|$$
.

■ Define $N_n^\xi(q) := \left| \mathcal{U}_n^\xi(\mathbb{F}_q) \right|$. Then, by previous Proposition, we have

$$N_{n,S}^{\xi}(q) = \prod_{i} N_{\lambda_{i}}^{\xi_{i}}(q)$$

■ Define $N_n^\xi(q) := \left| \mathcal{U}_n^\xi(\mathbb{F}_q) \right|$. Then, by previous Proposition, we have

$$N_{n,S}^{\xi}(q) = \prod_{i} N_{\lambda_i}^{\xi_i}(q)$$

• We reduce to compute $\frac{1}{(q-1)^n}N_n^{\xi}(q)$ for any $n \in \mathbb{N}$ and any generic ξ .

■ Define $N_n^\xi(q) := \left| \mathcal{U}_n^\xi(\mathbb{F}_q) \right|$. Then, by previous Proposition, we have

$$N_{n,S}^{\xi}(q) = \prod_{i} N_{\lambda_{i}}^{\xi_{i}}(q)$$

■ We reduce to compute $\frac{1}{(q-1)^n}N_n^{\xi}(q)$ for any $n \in \mathbb{N}$ and any generic ξ . Eventually, it turns out that

$$E\Big(\mathcal{M}_n^{\xi};q\Big)=rac{1}{(q-1)^n}\mathcal{N}_n^{\xi}(q)$$

Frobenius formula:

$$\frac{1}{(q-1)^n} N_n^{\xi}(q) = \frac{1}{(q-1)^n} \sum_{\chi \in \operatorname{Irr}(\operatorname{Sp}_{2n}(\mathbb{F}_q))} \chi(\xi) \left(\frac{|\operatorname{Sp}_{2n}(\mathbb{F}_q)|}{\chi(1)} \right)^{2g-1}.$$

Frobenius formula:

$$\frac{1}{(q-1)^n} N_n^{\xi}(q) = \frac{1}{(q-1)^n} \sum_{\chi \in \operatorname{Irr}(\operatorname{Sp}_{2n}(\mathbb{F}_q))} \chi(\xi) \left(\frac{|\operatorname{Sp}_{2n}(\mathbb{F}_q)|}{\chi(1)} \right)^{2g-1}.$$

Here, \mathbb{F}_q is a finite field such that $\operatorname{Sp}_{2n}(\mathbb{F}_q)$ admits ξ .

Final comments

■ $E(\mathcal{M}_n^{\xi}; q)$ does not depend on the choice of the generic ξ , so actually we have computed the E-polynomial of a very large family of Sp_{2n} -character varieties.

Final comments

- $E(\mathcal{M}_n^{\xi}; q)$ does not depend on the choice of the generic ξ , so actually we have computed the E-polynomial of a very large family of Sp_{2n} -character varieties.
- The order of the abelianization of $\operatorname{Sp}_{2n}(\mathbb{F}_q)$ counts connected components of \mathcal{M}_n^{ξ} . This seems to be a more general phenomenon, occurring for character varieties defined over simple algebraic group.

Thank you for your attention.

