"Integrable" gap probabilities for the Generalized Bessel process

Manuela Girotti

SISSA, Trieste, June 7th 2017

Table of contents

1 Introduction: the Generalized Bessel process

First result: differential identity for gap probabilitiesSketch of the proof

³ Painlevé and hamiltonian connection (joint with M. Cafasso, U. Angers)

- Painlevé-type equation
- Garnier system

Onclusive remarks and open questions

1 Introduction: the Generalized Bessel process

- First result: differential identity for gap probabilities
 Sketch of the proof
- Painlevé and hamiltonian connection (joint with M. Cafasso, U. Angers)
 Painlevé-type equation
 - Garnier system

Description Conclusive remarks and open questions

$BESQ^{\alpha} \mod$

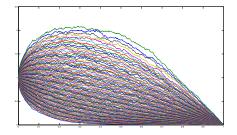
Consider a system of n independent squared Bessel paths BESQ^α

$$\{X_1(t),\ldots,X_n(t)\}\$$

with parameter $\alpha > -1$, conditioned never to collide.

The process $\{\vec{X}(t)\}_{t\geq 0}$ is a diffusion process on $[0, +\infty)^n$. Additionally, we impose initial and final conditions

$$X_j(0) = a > 0$$
 and $X_j(T) = 0$ $\forall j = 1, ..., n$.



${\rm BESQ}^{\alpha}$ model

Consider a system of n independent squared Bessel paths BESQ^α

$$\{X_1(t),\ldots,X_n(t)\}\$$

with parameter $\alpha > -1$, conditioned never to collide.

The process $\{\vec{X}(t)\}_{t\geq 0}$ is a diffusion process on $[0, +\infty)^n$. Additionally, we impose initial and final conditions

$$X_j(0) = a > 0$$
 and $X_j(T) = 0 \quad \forall j = 1, \dots, n.$

$BESQ^{\alpha} \mod$

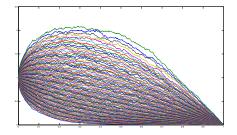
Consider a system of n independent squared Bessel paths BESQ^α

$$\{X_1(t),\ldots,X_n(t)\}\$$

with parameter $\alpha > -1$, conditioned never to collide.

The process $\{\vec{X}(t)\}_{t\geq 0}$ is a diffusion process on $[0, +\infty)^n$. Additionally, we impose initial and final conditions

$$X_j(0) = a > 0$$
 and $X_j(T) = 0$ $\forall j = 1, ..., n$.



The joint probability density is given as

$$\frac{1}{Z_{n,t}} \det \left[x_k^{j-1} p_t^{\alpha+1-j \pmod{2}}(a, x_k) \right]_{j,k=1}^n \det \left[x_j^{k-1} e^{-\frac{x_j}{2(T-t)}} \right]_{j,k=1}^n \mathrm{d}x_1 \dots \mathrm{d}x_n$$
$$= \frac{1}{n!} \det \left[K_n(x_i, x_j; t) \right]_{i,j=1}^n \mathrm{d}x_1 \dots \mathrm{d}x_n$$

where $p_t^{\alpha}(x, y)$ is the transition probability $p_t^{\alpha}(x, y) = \frac{1}{2t} \left(\frac{y}{x}\right)^{\alpha/2} e^{-\frac{x+y}{2t}} I_{\alpha}\left(\frac{\sqrt{xy}}{t}\right)$ and the correlation kernel K_n given in terms of MOP with weights depending on the Bessel functions I_{α} .

Remark (Random Matrix interpretation)

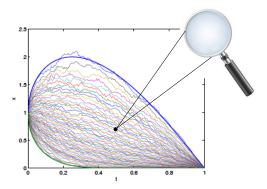
Let M(t) be a $p \times n$ matrix with independent complex Brownian entries (with mean zero and variance 2t). The set of singular values

$$\{\lambda_1(t),\ldots,\lambda_n(t)\}, \quad \lambda_i(t) \ge 0 \ \forall i$$

i.e. the eigenvalues of the product $M(t)^*M(t)$, has the same distribution as the above noncolliding particle system $BESQ^{\alpha}$ with $\alpha = 2(n - p + 1)$ (König, O'Connell, '01).

(Double) Scaling limit

Starting from the kernel K_n , one can perform a double scaling limit as $n \nearrow +\infty$ in different parts of the domain of the spectrum: the sine kernel appears in the bulk, the Airy kernel at the soft edges and the Bessel kernel appears at the hard edge x = 0 (Kuijlaars *et al.*, '09).



At a critical time t^* , there is a transition between the soft and the hard edges and the local dynamics is described by a new critical kernel.

"Integrable" gap probabilities for the Generalized Bessel process Introduction: the Generalized Bessel process

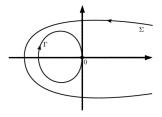
The Generalized Bessel kernel

Theorem (Kuijlaars, Martinez-Finkelshtein, Wielonsky, '11)

$$\lim_{n \neq +\infty} \frac{c^*}{n^{3/2}} K_n\left(\frac{c^*x}{n^{3/2}}, \frac{c^*y}{n^{3/2}}; t^* - \frac{c^*\tau}{\sqrt{n}}\right) = K_\alpha^{\operatorname{crit}}(x, y; \tau) \qquad x, y \in \mathbb{R}_+, \tau \in \mathbb{R},$$

with

$$K_{\alpha}^{\mathrm{crit}}(x,y;\tau) = \int_{\Gamma} \frac{\mathrm{d}u}{2\pi i} \int_{\Sigma} \frac{\mathrm{d}v}{2\pi i} \, \frac{e^{xu + \frac{\tau}{u} + \frac{1}{2u^2} - yv - \frac{\tau}{v} - \frac{1}{2v^2}}}{v - u} \left(\frac{u}{v}\right)^{\alpha}.$$



Gap probabilities of the Generalized Bessel process

Our object of study are the **gap probabilities**, meaning the probability of finding no points in a given domain.

For a determinantal process with kernel K_n , this boils down to calculating a Fredholm determinant:

$$\mathbb{P}(X_{\min} > s) = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k}{k!} \int_{[0,s]^k} \det [K_n(x_i, x_j)]_{i,j=1,\dots,k} \, \mathrm{d}x_1 \dots \mathrm{d}x_k$$

= $\det \left(\mathrm{Id}_{L^2(\mathbb{R}_+)} - K_n \Big|_{[0,s]} \right)$

and in the scaling limit regime

$$\det\left(\mathrm{Id}_{L^{2}(\mathbb{R}_{+})}-K_{n}\Big|_{\left[0,\frac{c^{*}s}{n^{3/2}}\right]}\right)\to\det\left(\mathrm{Id}_{L^{2}(\mathbb{R}_{+})}-K_{\alpha}^{\mathrm{crit}}\Big|_{\left[0,s\right]}\right)\qquad\text{as }n\nearrow+\infty.$$

1 Introduction: the Generalized Bessel process

First result: differential identity for gap probabilitiesSketch of the proof

Painlevé and hamiltonian connection (joint with M. Cafasso, U. Angers)

- Painlevé-type equation
- Garnier system

Description Conclusive remarks and open questions

Differential identity

Theorem (Girotti, '14)

Let s > 0 and K_{α}^{crit} be the integral operator acting on $L^2(\mathbb{R}_+)$ with kernel defined above. Then, the following differential formula for gap probabilites holds

$$\mathbf{d}_{s,\tau} \ln \det \left(\left[\mathrm{Id}_{L^2(\mathbb{R}_+)} - K_{\alpha}^{\mathrm{crit}} \right]_{[0,s]} \right) = (Y_1)_{2,2} \, \mathrm{d}s - \left(\hat{Y}_0^{-1} \hat{Y}_1 \right)_{2,2} \mathrm{d}\tau$$

where Y is the solution to a suitable RH problem and Y_1 and \hat{Y}_j are the coefficients appearing in the asymptotic expansion of Y at infinity and in a neighbourhood of zero, respectively.

The Riemann-Hilbert problem for Y

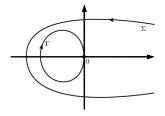
Find a 2 × 2 matrix-valued function $Y = Y(\lambda; s, \tau)$ such that

- Y is analytic on $\mathbb{C} \setminus (\Gamma \cup \Sigma)$
- Y admits a limit when approaching the contours from the left Y₊ or from the right Y₋ (according to their orientation), and the following jump condition holds

$$Y_{+}(\lambda) = Y_{-}(\lambda) \begin{cases} \begin{bmatrix} 1 & -\lambda^{-\alpha}e^{-\lambda s - \frac{\tau}{\lambda} - \frac{1}{2\lambda^{2}}} \\ 0 & 1 \end{bmatrix} & \lambda \in \Sigma \\ \begin{bmatrix} 1 & 0 \\ -\lambda^{\alpha}e^{\lambda s + \frac{\tau}{\lambda} + \frac{1}{2\lambda^{2}}} & 1 \end{bmatrix} & \lambda \in \Gamma \end{cases}$$

• Y has the following (normalized) behaviour at ∞ :

$$Y(\lambda) = I + \frac{Y_1(s,\tau)}{\lambda} + \mathcal{O}\left(\frac{1}{\lambda^2}\right) \qquad \lambda \to \infty.$$



Sketch of the proof

Proposition

The following identity holds

$$\det\left(\mathrm{Id}_{L^{2}(\mathbb{R}_{+})}-K_{\alpha}^{\mathrm{crit}}\Big|_{[0,s]}\right)=\det\left(\mathrm{Id}_{L^{2}(\Sigma\cup\Gamma)}-\mathbb{H}\right)$$

where \mathbbm{H} is an Its-Izergin-Korepin-Slavnov ('90) integral operator with kernel

$$\mathbb{H} = \frac{f(\lambda)^T g(\mu)}{\lambda - \mu}$$

$$f(\lambda) = \frac{1}{2\pi i} \begin{bmatrix} e^{-\frac{\lambda s}{2}} \chi_{\Sigma}(\lambda) \\ \chi_{\Gamma}(\lambda) \end{bmatrix} \qquad g(\mu) = \begin{bmatrix} \mu^{\alpha} e^{\mu s + \frac{\tau}{\mu} + \frac{1}{2\mu^2}} \chi_{\Gamma}(\mu) \\ \mu^{-\alpha} e^{-\frac{\mu s}{2} - \frac{\tau}{\mu} - \frac{1}{2\mu^2}} \chi_{\Sigma}(\mu) \end{bmatrix}.$$

The result can be proved by noticing that $K_{\alpha}^{\text{crit}}\Big|_{[0,s]}$ is unitarily equivalent (via Fourier transform) to a certain integral operator that can be decomposed as the above operator \mathbb{H} .

IIKS operators naturally carry an associated RH problem, whose solution Y is tied to the invertibility of their resolvent operator.

Given such RH problem, we make use of a major (and more general) result due to Bertola ('10) and Bertola-Cafasso ('11) which, if applied to our case, reads as follows

Theorem (Bertola-Cafasso, '11)

Define the quantity for $\rho = s, \tau$

$$\omega(\partial_{\rho}) := \int_{\Sigma \cup \Gamma} \operatorname{Tr} \left[Y_{-}^{-1} Y_{-}' \left(\partial_{\rho} J \right) J^{-1} \right] \frac{\mathrm{d}\lambda}{2\pi i}$$

Then, we have the equality

$$\omega(\partial_{\rho}) = \partial_{\rho} \ln \det \left(\mathrm{Id}_{L^{2}(\Sigma \cup \Gamma)} - \mathbb{H} \right).$$

By expanding the solution Y at infinity and at zero, this identity can be further simplified and explicitly calculated and it yields the final result:

$$\mathbf{d}_{s,\tau} \ln \det \left(\mathrm{Id}_{L^2(\Sigma \cup \Gamma)} - \mathbb{H} \right) = (Y_1)_{2,2} \, \mathrm{d}s - \left(\hat{Y}_0^{-1} \hat{Y}_1 \right)_{2,2} \mathrm{d}\tau$$

IIKS operators naturally carry an associated RH problem, whose solution Y is tied to the invertibility of their resolvent operator.

Given such RH problem, we make use of a major (and more general) result due to Bertola ('10) and Bertola-Cafasso ('11) which, if applied to our case, reads as follows

Theorem (Bertola-Cafasso, '11)

Define the quantity for $\rho = s, \tau$

$$\omega(\partial_{\rho}) := \int_{\Sigma \cup \Gamma} \operatorname{Tr} \left[Y_{-}^{-1} Y_{-}' \left(\partial_{\rho} J \right) J^{-1} \right] \frac{\mathrm{d}\lambda}{2\pi i}.$$

Then, we have the equality

$$\omega(\partial_{\rho}) = \partial_{\rho} \ln \det \left(\mathrm{Id}_{L^{2}(\Sigma \cup \Gamma)} - \mathbb{H} \right).$$

By expanding the solution Y at infinity and at zero, this identity can be further simplified and explicitly calculated and it yields the final result:

$$\mathbf{d}_{s,\tau} \ln \det \left(\mathrm{Id}_{L^2(\Sigma \cup \Gamma)} - \mathbb{H} \right) = (Y_1)_{2,2} \, \mathbf{d}s - \left(\hat{Y}_0^{-1} \hat{Y}_1 \right)_{2,2} \mathbf{d}\tau.$$

IIKS operators naturally carry an associated RH problem, whose solution Y is tied to the invertibility of their resolvent operator.

Given such RH problem, we make use of a major (and more general) result due to Bertola ('10) and Bertola-Cafasso ('11) which, if applied to our case, reads as follows

Theorem (Bertola-Cafasso, '11)

Define the quantity for $\rho = s, \tau$

$$\omega(\partial_{\rho}) := \int_{\Sigma \cup \Gamma} \operatorname{Tr} \left[Y_{-}^{-1} Y_{-}' \left(\partial_{\rho} J \right) J^{-1} \right] \frac{\mathrm{d}\lambda}{2\pi i}.$$

Then, we have the equality

$$\omega(\partial_{\rho}) = \partial_{\rho} \ln \det \left(\mathrm{Id}_{L^{2}(\Sigma \cup \Gamma)} - \mathbb{H} \right).$$

By expanding the solution Y at infinity and at zero, this identity can be further simplified and explicitly calculated and it yields the final result:

$$\mathbf{d}_{s,\tau} \ln \det \left(\mathrm{Id}_{L^2(\Sigma \cup \Gamma)} - \mathbb{H} \right) = (Y_1)_{2,2} \, \mathrm{d}s - \left(\hat{Y}_0^{-1} \hat{Y}_1 \right)_{2,2} \mathrm{d}\tau.$$

A few more words on $\omega(\partial)$

The solution to the RH problem Y solves a rational ODE (up to a gauge transformation)

$$\frac{\mathrm{d}Y}{\mathrm{d}\lambda} = A(\lambda)Y(\lambda)$$

With this extra property, it turns out that (Bertola, '10) given

$$\omega(\partial) = \int_{\Sigma \cup \Gamma} \operatorname{Tr} \left[Y_{-}^{-1} Y_{-}'(\partial J) J^{-1} \right] \frac{\mathrm{d}\lambda}{2\pi i},$$

then ω is the logarithmic total differential of the isomonodromic τ function:

$$\mathrm{d}\omega=0\quad \mathrm{and}\quad e^{\int\omega}=\tau_{\rm JMU}.$$

Conclusion

We give a specific geometrical meaning to a probabilistic quantity:

$$\tau_{\rm JMU} = \det \left(\left. {\rm Id}_{L^2(\mathbb{R}_+)} - K^{\rm crit}_\alpha \right|_{[0,s]} \right) = \begin{cases} {\rm infinitesimal fluctuation of} \\ {\rm smallest \ path \ of \ BESQ^\alpha} \\ {\rm at \ the \ critical \ time \ } t^* \end{cases}$$

(up to a normalization constant).

What now?

Given

$$\mathrm{d}_{s,\tau} \ln \det \left(\mathrm{Id}_{L^2(\Sigma \cup \Gamma)} - \mathbb{H} \right) = (Y_1)_{2,2} \, \mathrm{d}s - \left(\tilde{Y}_0^{-1} \tilde{Y}_1 \right)_{2,2} \mathrm{d}\tau$$

we can further study our RH problem to draw some interesting conclusions:

- asymptotic behaviour of gap probability (large/small gap, degeneration regimes) \rightarrow Deift-Zhou steepest descent method
- $\bullet\,$ integrability and differential equations (Tracy-Widom) \rightarrow Lax pair, hamiltonian formalism

What now?

Given

$$\mathrm{d}_{s,\tau} \ln \det \left(\mathrm{Id}_{L^2(\Sigma \cup \Gamma)} - \mathbb{H} \right) = (Y_1)_{2,2} \, \mathrm{d}s - \left(\tilde{Y}_0^{-1} \tilde{Y}_1 \right)_{2,2} \mathrm{d}\tau$$

we can further study our RH problem to draw some interesting conclusions:

- asymptotic behaviour of gap probability (large/small gap, degeneration regimes) \rightarrow Deift-Zhou steepest descent method
- $\bullet\,$ integrability and differential equations (Tracy-Widom) \rightarrow Lax pair, hamiltonian formalism

1 Introduction: the Generalized Bessel process

First result: differential identity for gap probabilities
 Sketch of the proof

Painlevé and hamiltonian connection (joint with M. Cafasso, U. Angers)
 Painlevé-type equation

• Garnier system

Onclusive remarks and open questions

"Integrable" gap probabilities for the Generalized Bessel process Painlevé and hamiltonian connection Painlevé-type equation

The Lax triplet

From the RH problem Y associated to our critical kernel K_{α}^{crit}

$$Y_{+}(\lambda) = Y_{-}(\lambda) \begin{cases} \begin{bmatrix} 1 & -\lambda^{-\alpha} e^{-\lambda s - \frac{\tau}{\lambda} - \frac{1}{2\lambda^{2}}} \\ 0 & 1 \end{bmatrix} & \lambda \in \Sigma \\ \begin{bmatrix} 1 & 0 \\ -\lambda^{\alpha} e^{\lambda s + \frac{\tau}{\lambda} + \frac{1}{2\lambda^{2}}} & 1 \end{bmatrix} & \lambda \in \Gamma \end{cases}$$

we can derive the following Lax triplet:

$$\mathcal{A} = \mathcal{A}^{(\lambda)} = A_0 + \frac{A_{-1}}{\lambda} + \frac{A_{-2}}{\lambda^2} + \frac{A_{-3}}{\lambda^3},$$
$$\mathcal{B} = \mathcal{B}^{(s)} = \lambda B_1 + B_0,$$
$$\mathcal{C} = \mathcal{C}^{(\tau)} = \frac{C_{-1}}{\lambda}.$$

"Integrable" gap probabilities for the Generalized Bessel process Painlevé and hamiltonian connection Painlevé two sounding

Up to a change of variables $\lambda \mapsto \frac{1}{\lambda}$, the Lax pair $\{\mathcal{A}, \mathcal{C}\}$ is

$$\mathcal{A} = \frac{\lambda}{2}\sigma_3 + A_0 + \frac{A_{-1}}{\lambda} + \frac{A_{-2}}{\lambda^2} \qquad \mathcal{C} = \frac{\lambda}{2}\sigma_3 + C_0$$

with coefficients

$$A_{0} = \begin{bmatrix} \frac{\tau}{2} & uw \\ -\frac{1}{w} \left[v_{\tau} + u \left(v^{2} - \Theta \right) \right] & -\frac{\tau}{2} \end{bmatrix}, \quad A_{-2} = \begin{bmatrix} v & w \\ -\frac{1}{w} \left(v^{2} - \Theta \right) & -v \end{bmatrix},$$
$$A_{-1} = \begin{bmatrix} u \left[v_{\tau} + u \left(v^{2} - \Theta \right) \right] + \frac{\alpha}{2} & w \left[u_{\tau} - 2u^{2}v + \tau u \right] \\ \frac{1}{w} \left[\left(u_{\tau} - 4u^{2}v + \tau u \right) \left(v^{2} - \Theta \right) - 2uvv_{\tau} - \alpha v + \tilde{\Theta} \right] & -u \left[v_{\tau} + u \left(v^{2} - \Theta \right) \right] - \frac{\alpha}{2} \end{bmatrix},$$
$$C_{0} = \begin{bmatrix} 0 & uw \\ -\frac{1}{w} \left[v_{\tau} + u \left(v^{2} - \Theta \right) \right] & 0 \end{bmatrix}.$$

We can recognize the Lax pair associated to the second member of the Painlevé III hierarchy defined by Sakka ('09):

$$\begin{cases} u_{\tau\tau} = (6uv - \tau)u_{\tau} - 6u^3v^2 + 2\tau u^2v + 2\Theta u^3 - (\alpha + 1)u + 1\\ v_{\tau\tau} = -(6uv - \tau)v_{\tau} - 2u(3uv - \tau)(v^2 - \Theta) - \alpha v + \tilde{\Theta}. \end{cases}$$

1 Introduction: the Generalized Bessel process

First result: differential identity for gap probabilities
 Sketch of the proof

Painlevé and hamiltonian connection (joint with M. Cafasso, U. Angers)
 Painlevé-type equation

• Garnier system

Conclusive remarks and open questions

"Integrable" gap probabilities for the Generalized Bessel process Painlevé and hamiltonian connection Garnier system

The quest for a Garnier system...

As in the classical Painlevé theory (Jimbo, Miwa, Ueno, '81), we would like to find a completely integrable (Hamiltonian) system associated with the Lax triplet $\{\mathcal{A}, \mathcal{B}, \mathcal{C}\}$.

In this case, we have two independent parameters that describe the flow,

the time τ and the space s,

therefore we need a 2-D version of Hamiltonian system (Garnier system, '26) for the canonical coordinates $(\mu_1, \mu_2; \lambda_1, \lambda_2)$:

$$\begin{cases} \frac{\partial \lambda_j}{\partial \tau} = \frac{\partial H_\tau}{\partial \mu_j} \\ \frac{\partial \mu_j}{\partial \tau} = -\frac{\partial H_\tau}{\partial \lambda_j} \end{cases} \qquad \begin{cases} \frac{\partial \lambda_j}{\partial s} = \frac{\partial H_s}{\partial \mu_j} \\ \frac{\partial \mu_j}{\partial s} = -\frac{\partial H_s}{\partial \lambda_j} \end{cases}$$

with rational Hamiltonians $H_{\tau} = H_t(\lambda_j, \mu_j; s, \tau)$ and $H_s = H_s(\lambda_j, \mu_j; s, \tau)$.

"Integrable" gap probabilities for the Generalized Bessel process Painlevé and hamiltonian connection Garnier system

The quest for a Garnier system...

As in the classical Painlevé theory (Jimbo, Miwa, Ueno, '81), we would like to find a completely integrable (Hamiltonian) system associated with the Lax triplet $\{\mathcal{A}, \mathcal{B}, \mathcal{C}\}$.

In this case, we have two independent parameters that describe the flow,

the time τ and the space s,

therefore we need a 2-D version of Hamiltonian system (Garnier system, '26) for the canonical coordinates $(\mu_1, \mu_2; \lambda_1, \lambda_2)$:

$$\begin{cases} \frac{\partial \lambda_j}{\partial \tau} = \frac{\partial H_\tau}{\partial \mu_j} \\ \frac{\partial \mu_j}{\partial \tau} = -\frac{\partial H_\tau}{\partial \lambda_j} \end{cases} \qquad \qquad \begin{cases} \frac{\partial \lambda_j}{\partial s} = \frac{\partial H_s}{\partial \mu_j} \\ \frac{\partial \mu_j}{\partial s} = -\frac{\partial H_s}{\partial \lambda_j} \end{cases}$$

with rational Hamiltonians $H_{\tau} = H_t(\lambda_j, \mu_j; s, \tau)$ and $H_s = H_s(\lambda_j, \mu_j; s, \tau)$.

$$K(1+1+1+1+1) \to K(1+1+1+2) \xrightarrow{K(1+2+2) \to K(2+3)} K(5) \to K\left(\frac{9}{2}\right)$$

"Integrable" gap probabilities for the Generalized Bessel process Painlevé and hamiltonian connection Garnier system Action plan

Step 1: we identify the canonical coordinates in our system

$$\begin{split} \{\lambda_j\}_{j=1,2} \text{ as the solutions of the equation } (\mathcal{A}(\lambda;s,\tau))_{1,2} &= 0\\ \{\mu_j\}_{j=1,2} \text{ as } \mu_j = (\mathcal{A}(\lambda_j;s,\tau))_{1,1} \end{split}$$

Step 2: the compatibility equations of the Lax triplet yield a system of 8 differential equations (4 for the variable s, 4 for the variable τ) which can be represented as a Garnier system

$$\begin{cases} \frac{\partial \lambda_j}{\partial \tau} = \frac{\partial H_\tau}{\partial \mu_j} \\ \frac{\partial \mu_j}{\partial \tau} = -\frac{\partial H_\tau}{\partial \lambda_j} \end{cases} \qquad \begin{cases} \frac{\partial \lambda_j}{\partial s} = \frac{\partial H_s}{\partial \mu_j} \\ \frac{\partial \mu_j}{\partial s} = -\frac{\partial H_s}{\partial \lambda_j} \end{cases}$$

with rational Hamiltonians $H_{\tau} = H_{\tau}(\lambda_j, \mu_j; s, \tau)$ and $H_s = H_s(\lambda_j, \mu_j; s, \tau)$.

"Integrable" gap probabilities for the Generalized Bessel process Painlevé and hamiltonian connection Garnier system

$$\begin{aligned} H_{\tau} &= -\frac{\lambda_{1}^{2}\mu_{1}^{2}}{\lambda_{1} - \lambda_{2}} + \frac{\lambda_{2}^{2}\mu_{2}^{2}}{\lambda_{1} - \lambda_{2}} - \frac{s^{2}\left(\lambda_{1} + \lambda_{2}\right)}{4\lambda_{1}^{2}\lambda_{2}^{2}} + \frac{\tau^{2}\left(\lambda_{1} + \lambda_{2}\right)}{4} - \frac{ks}{\lambda_{1}\lambda_{2}} \\ &- \frac{\tau\left(\lambda_{1}^{2} + \lambda_{1}\lambda_{2} + \lambda_{2}^{2}\right)}{2} + \frac{\lambda_{1}^{3}}{4} + \frac{\lambda_{1}^{2}\lambda_{2}}{4} + \frac{\lambda_{1}\lambda_{2}^{2}}{4} + \frac{\lambda_{2}^{3}}{4} - \frac{(\alpha + 1)\lambda_{1} + 2\alpha\lambda_{2}}{2} \end{aligned}$$
$$\begin{aligned} H_{s} &= -\frac{\lambda_{1}\lambda_{2}\left(\lambda_{1}\mu_{1}^{2} + \mu_{1}\right)}{s\left(\lambda_{1} - \lambda_{2}\right)} + \frac{\lambda_{1}\lambda_{2}\left(\lambda_{2}\mu_{2}^{2} + \mu_{2}\right)}{s\left(\lambda_{1} - \lambda_{2}\right)} + \frac{\tau^{2}\lambda_{1}\lambda_{2}}{4s} - \frac{k\left(\lambda_{1} + \lambda_{2}\right)}{\lambda_{1}\lambda_{2}} - \frac{\alpha\lambda_{1}\lambda_{2}}{2s} \end{aligned}$$

$$-\frac{s\left(\lambda_{1}-\lambda_{2}\right)}{4\lambda_{1}^{2}\lambda_{2}}-\frac{\tau\lambda_{2}\left(\lambda_{1}^{2}+\lambda_{1}\lambda_{2}\right)}{2s}+\frac{\lambda_{1}\lambda_{2}\left(\lambda_{1}^{2}+\lambda_{1}\lambda_{2}+\lambda_{2}^{2}-2\right)}{4s}-\frac{s}{4\lambda_{2}^{2}}$$

Remark

These Hamiltonians are different from the Hamiltonians of the K(2+3) system defined in Okamoto-Kimura, '86. The identification process is on-going...

1 Introduction: the Generalized Bessel process

- First result: differential identity for gap probabilities
 Sketch of the proof
- Painlevé and hamiltonian connection (joint with M. Cafasso, U. Angers)
 Painlevé-type equation
 - Garnier system

4 Conclusive remarks and open questions

"Integrable" gap probabilities for the Generalized Bessel process Conclusive remarks and open questions

New horizons

Explicit connection between Hamiltonians and gap probabilities/RH problem for K_{α}^{crit} ? $\mathbf{d}_{s,\tau} \ln \det \left(\mathbf{Id}_{L^{2}(R_{+})} - K_{\alpha}^{\text{crit}} \Big|_{[0,s]} \right) = \mathcal{L}_{1} \left(H_{\tau}, H_{s} \right) \mathbf{d}s + \mathcal{L}_{2} \left(H_{\tau}, H_{s} \right) \mathbf{d}\tau$

"Integrable" gap probabilities for the Generalized Bessel process Conclusive remarks and open questions

New horizons

Quantization?

Find a suitable canonical transformation of variables $(\mu_j, \lambda_j) \mapsto (\tilde{\mu}_i, \tilde{\lambda}_i)$ such that the Hamiltonians become polynomials or of the form $p^2 + V(q)$.

Via the classical substitution of the operators $\left\{x_j, \hbar \frac{\partial}{\partial x_j}\right\}$ into the canonical coordinates $(\tilde{\lambda}_j, \tilde{\mu}_j)$, study the Schrödinger system

$$\begin{split} &\hbar\frac{\partial}{\partial\tau}\Phi(x;s,\tau) = \hat{H}_{\tau}\left(x_{j},\hbar\frac{\partial}{\partial x_{j}};s,\tau\right)\Phi(x;s,\tau) \\ &\hbar\frac{\partial}{\partial s}\Phi(x;s,\tau) = \hat{H}_{s}\left(x_{j},\hbar\frac{\partial}{\partial x_{j}};s,\tau\right)\Phi(x;s,\tau) \end{split}$$

Further work:

• what will the Lax pair $\{\mathcal{A}, \mathcal{B}\}$ yield?

$$\mathcal{A} = A_0 + \frac{A_{-1}}{\lambda} + \frac{A_{-2}}{\lambda^2} + \frac{A_{-3}}{\lambda^3}, \qquad \qquad \mathcal{B} = \lambda B_1 + B_0;$$

• asymptotic behaviour?

Conjecture: degeneration of the gap probabilities of K_{α}^{crit} into gap probabilities of the Airy process (for $\tau \searrow -\infty$) or the Bessel process (for $\tau \nearrow +\infty$).

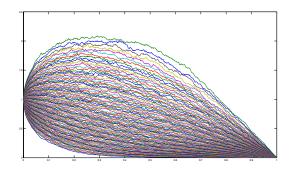
Further work:

• what will the Lax pair $\{\mathcal{A}, \mathcal{B}\}$ yield?

$$\mathcal{A} = A_0 + \frac{A_{-1}}{\lambda} + \frac{A_{-2}}{\lambda^2} + \frac{A_{-3}}{\lambda^3}, \qquad \qquad \mathcal{B} = \lambda B_1 + B_0;$$

• asymptotic behaviour?

Conjecture: degeneration of the gap probabilities of K_{α}^{crit} into gap probabilities of the Airy process (for $\tau \searrow -\infty$) or the Bessel process (for $\tau \nearrow +\infty$).



References

- M. Bertola, Comm. Math. Phys. **294**(2), 539–579, 2010.
- M. Bertola, M. Cafasso. Int. Math. Res. Not., **2012**(7), 2012.
- M. Girotti, Math. Phys. Anal. Geom., 17 (1), 183-211, 2014.
- A.R. Its, A.G. Izergin, V.E. Korepin, N.A. Slavnov. Int. J. Mod. Phys., B4, 1990.
- W. König, N. O'Connell, *Electron. Commun. Probab.*, 6(11), 107-114, 2001.
- A.B.J. Kuijlaars, A. Martinez-Finkelshtein, F. Wielonsky, Comm. Math. Phys., 286, 217–275, 2009 and Comm. Math. Phys., 308(1), 227–279, 2011.
- M. Jimbo, T. Miwa, K. Ueno, Phys. D, 2(3), 407-448, 1981 and Phys. D, 2(2), 306-352, 1981.
- **K**. Okamoto, H. Kimura, *Quart. J. Math. Oxford*, **2**(37), 61-80, 1986.
- A.H. Sakka. J. Phys. A: Math. Theor., 42, 1–19, 2009.

Thanks for your attention!