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Introduction: the Generalized Bessel process

BESQα model

Consider a system of n independent squared Bessel paths BESQα

{X1(t), . . . , Xn(t)}
with parameter α > −1, conditioned never to collide.

The process { ~X(t)}t≥0 is a diffusion process on [0,+∞)n. Additionally, we
impose initial and final conditions

Xj(0) = a > 0 and Xj(T ) = 0 ∀j = 1, . . . , n.
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Introduction: the Generalized Bessel process

The joint probability density is given as

1

Zn,t
det
[
xj−1
k p

α+1−j(mod 2)
t (a, xk)

]n
j,k=1

det

[
xk−1
j e

−
xj

2(T−t)

]n
j,k=1

dx1 . . . dxn

=
1

n!
det [Kn(xi, xj ; t)]

n
i,j=1 dx1 . . . dxn

where pαt (x, y) is the transition probability pαt (x, y) = 1
2t

( y
x

)α/2
e−

x+y
2t Iα

(√
xy

t

)
and the correlation kernel Kn given in terms of MOP with weights depending on
the Bessel functions Iα.

Remark (Random Matrix interpretation)

Let M(t) be a p× n matrix with independent complex Brownian entries (with
mean zero and variance 2t).
The set of singular values

{λ1(t), . . . , λn(t)} , λi(t) ≥ 0 ∀i

i.e. the eigenvalues of the product M(t)∗M(t), has the same distribution as the
above noncolliding particle system BESQα with α = 2(n− p+ 1) (König,
O’Connell, ’01).
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Introduction: the Generalized Bessel process

(Double) Scaling limit

Starting from the kernel Kn, one can perform a double scaling limit as n↗ +∞
in different parts of the domain of the spectrum: the sine kernel appears in the
bulk, the Airy kernel at the soft edges and the Bessel kernel appears at the hard
edge x = 0 (Kuijlaars et al., ’09).

At a critical time t∗, there is a transition between the soft and the hard edges and
the local dynamics is described by a new critical kernel.
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Introduction: the Generalized Bessel process

The Generalized Bessel kernel

Theorem (Kuijlaars, Martinez-Finkelshtein, Wielonsky, ’11)

lim
n↗+∞

c∗

n3/2
Kn

(
c∗x

n3/2
,
c∗y

n3/2
; t∗ −

c∗τ
√
n

)
= Kcrit

α (x, y; τ) x, y ∈ R+, τ ∈ R,

with

Kcrit
α (x, y; τ) =

∫
Γ

du

2πi

∫
Σ

dv

2πi

e
xu+ τ

u
+ 1

2u2−yv−
τ
v
− 1

2v2

v − u

(u
v

)α
.
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Introduction: the Generalized Bessel process

Gap probabilities of the Generalized Bessel process

Our object of study are the gap probabilities, meaning the probability of finding
no points in a given domain.

For a determinantal process with kernel Kn, this boils down to calculating a
Fredholm determinant:

P (Xmin > s) = 1 +
∞∑
k=1

(−1)k

k!

∫
[0,s]k

det [Kn(xi, xj)]i,j=1,...,k dx1 . . . dxk

= det

(
IdL2(R+)−Kn

∣∣∣∣
[0,s]

)

and in the scaling limit regime

det

IdL2(R+)−Kn
∣∣∣∣[

0, c
∗s

n3/2

]
→ det

(
IdL2(R+)−K

crit
α

∣∣∣∣
[0,s]

)
as n↗ +∞.
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First result: differential identity for gap probabilities

Differential identity

Theorem (Girotti, ’14)

Let s > 0 and Kcrit
α be the integral operator acting on L2(R+) with kernel defined

above. Then, the following differential formula for gap probabilites holds

ds,τ ln det

(
IdL2(R+)−K

crit
α

∣∣∣∣
[0,s]

)
= (Y1)2,2 ds−

(
Ŷ −1

0 Ŷ1

)
2,2

dτ

where Y is the solution to a suitable RH problem and Y1 and Ŷj are the
coefficients appearing in the asymptotic expansion of Y at infinity and in a
neighbourhood of zero, respectively.
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First result: differential identity for gap probabilities

The Riemann-Hilbert problem for Y

Find a 2× 2 matrix-valued function Y = Y (λ; s, τ) such that

Y is analytic on C\ (Γ ∪ Σ)
Y admits a limit when approaching the contours from the left Y+ or from the
right Y− (according to their orientation), and the following jump condition
holds

Y+(λ) = Y−(λ)



[
1 −λ−αe−λs−

τ
λ
− 1

2λ2

0 1

]
λ ∈ Σ[

1 0

−λαeλs+
τ
λ

+ 1
2λ2 1

]
λ ∈ Γ

Y has the following (normalized) behaviour at ∞:

Y (λ) = I +
Y1(s, τ)

λ
+O

(
1

λ2

)
λ→∞.
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First result: differential identity for gap probabilities

Sketch of the proof

Sketch of the proof

Proposition

The following identity holds

det

(
IdL2(R+)−K

crit
α

∣∣∣∣
[0,s]

)
= det

(
IdL2(Σ∪Γ)−H

)
where H is an Its-Izergin-Korepin-Slavnov (’90) integral operator with kernel

H =
f(λ)T g(µ)

λ− µ

f(λ) =
1

2πi

[
e−

λs
2 χΣ (λ)
χΓ (λ)

]
g(µ) =

 µαe
µs+ τ

µ
+ 1

2µ2 χΓ (µ)

µ−αe
−µs

2
− τ
µ
− 1

2µ2 χΣ (µ)

 .
The result can be proved by noticing that Kcrit

α

∣∣∣∣
[0,s]

is unitarily equivalent (via

Fourier transform) to a certain integral operator that can be decomposed as the
above operator H.
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First result: differential identity for gap probabilities

Sketch of the proof

IIKS operators naturally carry an associated RH problem, whose solution Y is
tied to the invertibility of their resolvent operator.

Given such RH problem, we make use of a major (and more general) result due to
Bertola (’10) and Bertola-Cafasso (’11) which, if applied to our case, reads as
follows

Theorem (Bertola-Cafasso, ’11)

Define the quantity for ρ = s, τ

ω(∂ρ) :=

∫
Σ∪Γ

Tr
[
Y −1
− Y ′− (∂ρJ) J−1

] dλ

2πi
.

Then, we have the equality

ω(∂ρ) = ∂ρ ln det
(

IdL2(Σ∪Γ)−H
)
.

By expanding the solution Y at infinity and at zero, this identity can be further
simplified and explicitly calculated and it yields the final result:

ds,τ ln det
(

IdL2(Σ∪Γ)−H
)

= (Y1)2,2 ds−
(
Ŷ −1

0 Ŷ1

)
2,2

dτ.
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0 Ŷ1

)
2,2

dτ.

13 / 27



“Integrable” gap probabilities for the Generalized Bessel process

First result: differential identity for gap probabilities

Sketch of the proof

IIKS operators naturally carry an associated RH problem, whose solution Y is
tied to the invertibility of their resolvent operator.

Given such RH problem, we make use of a major (and more general) result due to
Bertola (’10) and Bertola-Cafasso (’11) which, if applied to our case, reads as
follows

Theorem (Bertola-Cafasso, ’11)

Define the quantity for ρ = s, τ

ω(∂ρ) :=

∫
Σ∪Γ

Tr
[
Y −1
− Y ′− (∂ρJ) J−1

] dλ

2πi
.

Then, we have the equality

ω(∂ρ) = ∂ρ ln det
(

IdL2(Σ∪Γ)−H
)
.

By expanding the solution Y at infinity and at zero, this identity can be further
simplified and explicitly calculated and it yields the final result:

ds,τ ln det
(

IdL2(Σ∪Γ)−H
)

= (Y1)2,2 ds−
(
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First result: differential identity for gap probabilities

A few more words on ω(∂)

The solution to the RH problem Y solves a rational ODE (up to a gauge
transformation)

dY

dλ
= A(λ)Y (λ)

With this extra property, it turns out that (Bertola, ’10) given

ω(∂) =

∫
Σ∪Γ

Tr
[
Y −1
− Y ′− (∂J) J−1

] dλ

2πi
,

then ω is the logarithmic total differential of the isomonodromic τ function:

dω = 0 and e
∫
ω = τJMU .

Conclusion

We give a specific geometrical meaning to a probabilistic quantity:

τJMU = det

(
IdL2(R+)−K

crit
α

∣∣∣∣
[0,s]

)
=


infinitesimal fluctuation of
smallest path of BESQα

at the critical time t∗


(up to a normalization constant).
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First result: differential identity for gap probabilities

What now?

Given
ds,τ ln det

(
IdL2(Σ∪Γ)−H

)
= (Y1)2,2 ds−

(
Ỹ −1

0 Ỹ1

)
2,2

dτ

we can further study our RH problem to draw some interesting conclusions:

asymptotic behaviour of gap probability (large/small gap, degeneration
regimes) → Deift-Zhou steepest descent method

integrability and differential equations (Tracy-Widom) → Lax pair,
hamiltonian formalism
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Painlevé and hamiltonian connection

Painlevé-type equation

The Lax triplet

From the RH problem Y associated to our critical kernel Kcrit
α

Y+(λ) = Y−(λ)



[
1 −λ−αe−λs−

τ
λ
− 1

2λ2

0 1

]
λ ∈ Σ[

1 0

−λαeλs+
τ
λ

+ 1
2λ2 1

]
λ ∈ Γ

we can derive the following Lax triplet:

A = A(λ) = A0 +
A−1

λ
+
A−2

λ2
+
A−3

λ3
,

B = B(s) = λB1 +B0,

C = C(τ) =
C−1

λ
.
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Painlevé and hamiltonian connection

Painlevé-type equation

Up to a change of variables λ 7→ 1
λ

, the Lax pair {A, C} is

A =
λ

2
σ3 +A0 +

A−1

λ
+
A−2

λ2
C =

λ

2
σ3 + C0

with coefficients

A0 =

[ τ
2

uw

− 1
w

[
vτ + u

(
v2 −Θ

)]
− τ

2

]
, A−2 =

[
v w

− 1
w

(
v2 −Θ

)
−v

]
,

A−1 =

[
u
[
vτ + u

(
v2 −Θ

)]
+ α

2
w
[
uτ − 2u2v + τu

]
1
w

[(
uτ − 4u2v + τu

) (
v2 −Θ

)
− 2uvvτ − αv + Θ̃

]
−u
[
vτ + u

(
v2 −Θ

)]
− α

2

]
,

C0 =

[
0 uw

− 1
w

[
vτ + u

(
v2 −Θ

)]
0

]
.

We can recognize the Lax pair associated to the second member of the Painlevé
III hierarchy defined by Sakka (’09):{

uττ = (6uv − τ)uτ − 6u3v2 + 2τu2v + 2Θu3 − (α+ 1)u+ 1

vττ = −(6uv − τ)vτ − 2u(3uv − τ)(v2 −Θ)− αv + Θ̃.
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Painlevé and hamiltonian connection

Garnier system

The quest for a Garnier system...

As in the classical Painlevé theory (Jimbo, Miwa, Ueno, ’81), we would like to find
a completely integrable (Hamiltonian) system associated with the Lax triplet
{A,B, C}.

In this case, we have two independent parameters that describe the flow,

the time τ and the space s,

therefore we need a 2-D version of Hamiltonian system (Garnier system, ’26) for
the canonical coordinates (µ1, µ2;λ1, λ2):

∂λj

∂τ
=
∂Hτ

∂µj
∂µj

∂τ
= −

∂Hτ

∂λj


∂λj

∂s
=
∂Hs

∂µj
∂µj

∂s
= −

∂Hs

∂λj

with rational Hamiltonians Hτ = Ht(λj , µj ; s, τ) and Hs = Hs(λj , µj ; s, τ).
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Painlevé and hamiltonian connection

Garnier system

Action plan

Step 1: we identify the canonical coordinates in our system

{λj}j=1,2 as the solutions of the equation (A(λ; s, τ))1,2 = 0

{µj}j=1,2 as µj = (A(λj ; s, τ))1,1

Step 2: the compatibility equations of the Lax triplet yield a system of 8
differential equations (4 for the variable s, 4 for the variable τ) which can be
represented as a Garnier system


∂λj

∂τ
=
∂Hτ

∂µj
∂µj

∂τ
= −

∂Hτ

∂λj


∂λj

∂s
=
∂Hs

∂µj
∂µj

∂s
= −

∂Hs

∂λj

with rational Hamiltonians Hτ = Hτ (λj , µj ; s, τ) and Hs = Hs(λj , µj ; s, τ).
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Painlevé and hamiltonian connection

Garnier system

Hτ = −
λ2

1µ
2
1

λ1 − λ2
+

λ2
2µ

2
2

λ1 − λ2
−
s2 (λ1 + λ2)

4λ2
1λ

2
2

+
τ2 (λ1 + λ2)

4
−

ks

λ1λ2

−
τ
(
λ2

1 + λ1λ2 + λ2
2

)
2

+
λ3

1

4
+
λ2

1λ2

4
+
λ1λ2

2

4
+
λ3

2

4
−

(α+ 1)λ1 + 2αλ2

2

Hs = −
λ1λ2

(
λ1µ2

1 + µ1

)
s (λ1 − λ2)

+
λ1λ2

(
λ2µ2

2 + µ2

)
s (λ1 − λ2)

+
τ2λ1λ2

4s
−
k (λ1 + λ2)

λ1λ2
−
αλ1λ2

2s

−
s (λ1 + λ2)

4λ2
1λ2

−
τλ2

(
λ2

1 + λ1λ2

)
2s

+
λ1λ2

(
λ2

1 + λ1λ2 + λ2
2 − 2

)
4s

−
s

4λ2
2

Remark

These Hamiltonians are different from the Hamiltonians of the K(2 + 3) system
defined in Okamoto-Kimura, ’86. The identification process is on-going...
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Conclusive remarks and open questions

New horizons

forwardback

Explicit connection between
Hamiltonians and gap probabilities/RH

problem for Kcrit
α ?

Quantization?

ds,τ ln det

(
IdL2(R+)−K

crit
α

∣∣∣∣
[0,s]

)
= L1 (Hτ , Hs) ds+ L2 (Hτ , Hs) dτ
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Conclusive remarks and open questions

New horizons

forwardback

Quantization?

Find a suitable canonical transformation of variables (µj , λj) 7→ (µ̃i, λ̃i) such that
the Hamiltonians become polynomials or of the form p2 + V (q).

Via the classical substitution of the operators
{
xj , ~ ∂

∂xj

}
into the canonical

coordinates (λ̃j , µ̃j), study the Schrödinger system

~
∂

∂τ
Φ(x; s, τ) = Ĥτ

(
xj , ~

∂

∂xj
; s, τ

)
Φ(x; s, τ)

~
∂

∂s
Φ(x; s, τ) = Ĥs

(
xj , ~

∂

∂xj
; s, τ

)
Φ(x; s, τ)
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Conclusive remarks and open questions

Further work:

what will the Lax pair {A,B} yield?

A = A0 +
A−1

λ
+
A−2

λ2
+
A−3

λ3
, B = λB1 +B0;

asymptotic behaviour?
Conjecture: degeneration of the gap probabilities of Kcrit

α into gap
probabilities of the Airy process (for τ ↘ −∞) or the Bessel process (for
τ ↗ +∞).
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Thanks for your attention!
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