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e Powered by Ricci flow theory, our understanding of the role of Ricci cur-
vature in geometry & physics has undergone remarkable developments in
recent years. We have seen the conjunction of a variety of ideas from

topology, geometric analysis, optimal transport, synthetic geometry, and
renormalization group theory.

The Ricci curvature as
the solid angle spanned
by a pencil of geodesics

e In this talk (partly based on joint work with Christine Guenther) we touch
upon some of these themes as well as on some unconventional aspects that
Ricci curvature still holds in store.



e The CLASSICAL FRAMEWORK:

e (M,g) a C°° compact or complete n—dimensional manifold, (n > 3), en-
dowed with a Riemannian metric g, the associated Levi—Civita connection

V, and its Riemann curvature
Rm(9)(X,Y)Z := (VxVy — VyVx —Vixy) Z,
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o Ric(g)(Y,Z) := trace, (X — Rm(g)(X,Y)Z) ,
e R(g) := tracey (Ric(g)) : Scalar curvature

e Fquivariance under
the action of Dif f(M): /,

e Ric(¢*g) = ¢*Riclg) = ViIRy = LV, R : ¢
contracted Bianchi identity (D.Hilbert, J. Kazdan, role in prescribing Ricci
curvature D. DeTurck)




If we think of the Christoffel symbols I'V.(¢9) = 3 ¢ (5% g1 + 52 91i — 51 9ij)
as the components of a so(n)-valued 1-form, we have the familiar expression

for Ric(g) requiring a...meditative approach ...

Elementary insight in the Ricci curvature
is provided by its expression in normal
geodesic coordinates based at p € M,
(Ffj(g) , = 0) (Puiseaux)

dp g : Euclidean measure on 1, M

e Ricci curvature: distortion (w.r.t. dug)
of the solid angle subtended by a small
pencil of geodesics issued from p in the
direction X = exp, '(q).

asequence \
of metric balls '



Given the interplay between Ric(g) and dug, it is not surprising that in geo-
metric analysis and physics (scaling & diffeomorphisms group, diffusive evolu-
tion, QFT) the analysis of Ricci curvature often calls for weighted Riemannian
manifolds (or Riemannian measure spaces) (M, g, dw) i.e. smooth n—dim Rie-
mannian manifolds endowed with a probability measure dw, (not necessarily
absolutely continuous with respect to the Riemannian measure; but here we
assume dw << d )

A weighted Riemannian manifold
(Riemannian measure space)

A Riemannian manifold

e We shall see the rationale for (M, g,dw). For now, notice that in the
extension (M, g) = (M,,dw = e~ ¥dpu,) the role of Ric(g) is taken over
by the Bakry—Emery Ricci curvature

RicPY (g, dw) := Ric(g) + Hess, f



In such a setting the familiar (second contracted) Bianchi identity

ViRik = sViR = (o) RiZZ = 3 Vi RY", where

R (g, f) = R(g) + 28, f — [VfI2 = R(g) + 245" f + |Vf]:

1s Perelman’s modified scalar curvature.

The Einstein-Hilbert functional [, R(g)du, becomes

Jus RPN(g, £ dw = [y (R(g) + [VF[2) e Tdpy =: Flg, f]

is Perelman’s F—energy associated with (M, g, dw). If we take its inf

inf{f: f dwzl} .7:[9, f] = f[g]
we get Perelman’s F—energy
(entropy) associated with (M, g).

Best constant in a
Poincaré type inequality.

Notation

V(w)o = el V (e‘fo) : the dw—weighted divergence
Agw) Y= (Ay; —Vf-V)y: the dw-weighted Laplacian on (M, g, dw)



Ric(g) and RicP¥(g) carry a few Laplacians with them...

From the point of view of geometric analysis insight on the nature of Ricci
curvature is provided by the expression of its components in local harmonic
coordinates (U, {z'}; Ay 2' = 0), (C. Lanczos, D. DeTurck, J. Kazdan, ...):

Rik =har — %A(g) (f(ik)) + Qik (9_1a 59) ; f(ik) = Gik

Hence in harmonic coordinates the Ricci curvature acts as a semi-linear elliptic
operator on each scalar function f(;) := gix: the metric tensor components g;y
have maximal regularity in harmonic coordinates (Jost—Karcher).

% A( g):generator Brownian
motion...Ricci and diffusion.

(M, g,dw)’s lurk in the
background.

When passing from normal geodesic coordinates to harmonic coordinates we
gain control on the components of the metric tensor in terms of the Ricci cur-
vature rather than of the full Riemann tensor.



Since Ric(g) and RicP¥(g, f) can be seen as pde operators acting on metrics

and measures it is useful to take the appropriate co—dimensional perspective.
To begin with...

e Met(M): the space of all smooth Riemannian metrics over M.
o Oy = {g e Met(M)| g' = ¢"(9)| ¢ € Diff(M)},

e O, c % defines the Riemannian Structure associated with the Rie-
mannian manifold (M, g). Met (M)

orbits under
g  diffeomorphisms



More generally we can use the Space of weighted Riemannian manifolds (M, g, dw),
ie. Met(M) x [Prob(M),d;"], where Prob(M) denotes the space of proba-
bility measures dw over M endowed with the quadratic Wasserstein distance
dgV (dwy, dws).

Prob(M)




Intuitively, d;”(dwl,dwg) represents, as we consider all possible couplings be-
tween the measures dw; and dws, the minimal cost needed to transport dw; into
dw, provided that the cost to transport the point x into the point y is given by
d2(x,y). The distance d¥ (dw1, dwz) metrizes Prob(M) turning it into a geodesic

space.

d (d(o1, do
T I

Construction site

The quadratic Wasserstein distance d"g" (dwq, dws) plays a basic role in the Monge-
Kantorovich problem of optimally transporting one distribution of mass dw+,
(say from an excavation site on the manifold (M, g)) onto another distribution
dws, (realized at the construction site on (M, g)), where optimality is measured

against the cost function d2(z,y).



Met (M) x Prob(M ) is modelled on its tangent space T,Met(M )& 1T;,Prob(M, g).
Tangent vectors h € TyMet(M ) are symmetric 2-tensor fields on M. There is a
Dif f(M) induced factorization

TyMet(M)=ker o,dIm o,

(The L?(M, g) orthogonal
Berger—Ebin decomposition)

Notation

The divergence operator —d,
and its L?(M, g) formal adjoint
04: (1/2 of) the Lie derivative of
the metric g along a vector field.

Oy (Wadz®) = = Ly#g

0y (hap dz® @ dz®) = — g¥ V;hjp da®



...for the T, Prob,.(M) factor we have...

T.,Proba.(M,g) ~{h € C*(M,R), [,, hdw =0},

This can be parametrized a la Otto in
terms of the solutions v of the elliptic pde

dg (doy, do,) |
. ) :
Nyt = —h = V(e ! Vi) = —he ! = -
< 2|

3 : N ® \ﬁ%ﬁi .- ‘I 5

under the equivalence relation & | “ | ocobability A{Lg
. e . . S ' 5 AN
identifying any two such solutions 70

differing by an additive constant.

One considers the Hilbert space
completion of T;,Prob,.(M, g)
with respect to the L?(M, dw)
Otto metric

(V@b,qu)(g’dw) — fM gikvikaqbdw

T.Proby (M, g) i= {6 € CR(MR) /R A, 0 = —h, he TLProbe(M,g)}



Also to T,,Prob(M) we can associate a Dif f(M )—-induced factorization

(Tqufo(M), <7 >(qb,dw)) = (TwPrOb(M)7 (7 >(Otto))@(T¢Dfow (M)a <a >(q§,dw))
induced by the fibration
Prob(M) ~ Dif f(M)/Dif fu(M)  _Diffw

and with respect to which

Diff(D(M)

7w Dif f(M) — Prob(M)

1s a Riemannian submersion
(see e.g. Boris Khesin)

Notation

Diffo,(M): dw—preserving
Diffeomorphisms

<u7 v)((b,dw) F= fM g(uav)qb(a:) dw(cb(:c))

The L*(M, dw) weak Riemannian metric
on Dif f(M). (Arnol’d, Ebin, Marsden)



Ric(g) (as well as RicP¥(g)) € T,Met(M).
[s it a vector field Met(M) > g — Ric(g) € TMet(M)?

If we linearize the Ricci tensor in the direction of the metric variation h €
C5° (M, @21 M) = T,Met(M)

(—€,€) 3 A —> g(A\):=g + Ah € Met(M),
d 1

o RigO) | = =3 (ALhij = LBianchiy(n) 9ij)

DRic - hij =

o where Aph;; = Ah;; + QRkijlhkl — thjk — Rg?hik is the Lichnerowicz
Laplacian operator

e { := — Bianchig(h) := 5Viry(h) — divh is the Bianchi (operator)

mapping symmetric 2-tensors to vector fields

———
L—t¢
@




Similarly, the linearization of Ric”% (g, f), (dw preserving: % dw = 0), provides

. 1 w
DRicPY - hyy = — 5 (AS; "hij = Lainern gz'j)

e where A(Lw)hij = A(w)hij + QRkijlhkl - (RBE)chk - (RBE)éﬁh@k 1s the
weighted Lichnerowicz Laplacian operator, and where

e the dw preserving constraint yields the induced linearization of f

[inearizations Linearizations M. o+ h
of Ricci of Ricci BE ( > 8 )



We also have an induced linearization for Perelman’s scalar curvature R ¢€"

AR (gx, )
d\

DRPeT . h’U = = vj V?w)h/jk — (R’LCBE)jkth ,

0 (w)

from which we get

L3
ax

f R (gas ) dw = — / (RicPF) . h*dw .
A=0J M M ’

M, g(A) )




Ric (and RicP¥) is a collection of (weakly) elliptic operators in disguise

e The Lichnerowicz Laplacian Ay acts on symmetric bilinear forms h;; =

hii in the same way the Hodge-DeRham Laplacian Ay := —(dd, + d,d)
acts on antisymmetric 2-forms wgp = —Wpg, i-6. Dgwap = A wap, (D.
Knopf)

e Natural to associate (m.c.) to the linearization of Ric(g) the multiplet of
elliptic operators (g; f,&,h) — Aq(f, &, h)

e Laplace—Beltrami:

Adfiﬁgf

e (co)Vector Laplacian:

Adga = Agga, - Rg fb

e Lichnerowicz Laplacian:
Aghay = Aphap




Met(M) — TMet(M)
g — —2TRic(g)

e can be seen as a non-linear weakly—elliptic 2nd order operator acting on
the metric, (i.e. its linearization is elliptic were not for the presence of the

Lie derivative term Lp;ancni,(n) g generated by Dif f(M )-equivariance).

e This, well before the advent of Ricci flow, raised the question of the exis-
tence of a flow on Met(M) associated with the Ricci tensor thought of as
a tangent vector field on Met(M), (A. Lichnerowicz, J-P, Bourguignon,...)

a non-trivial
deformation

May we interpret —2Ric(g) as a non—trivial Vector Field on Met(M)?



... Yes, but flow me gently: The interplay between SCALING and Diff (M)

Besides diffeomorphisms, the metric g is naturally acted upon also by overall
rescalings according to

g— Ag, VYA€ R-gy,

(in local coordinates (U, x*), gix — A gir and g% — A71 g'%).

dy(p,q) =  dxg(p,q) = A2 dy(p,q)
Vol,(B) = Voly,(X) = A2 Vol,(%),

v =y
Hessgy = Hess,
D(xg) AT Ag) -
Rm(Ag) Rm(g)
Sec(Ag)(X,Y) A7 Sec(9)(X,Y)
Ric(Ag) Ric(g)
R(Ag) AT R(g)




e Subtle interplay between Diffeomorphisms and scaling equivariance

e A further aspect of the Ricci curvature: Not only Einstein, but also Quasi-
Einstein Metrics do matter.

e A Riemannian metric g is Einstein if its Ricci tensor Ric(g) = p(,) g for
some constant p(g).

e The Einstein constant p(,) scales non-trivially: Since Ric(g) is scale—
invariant, we must have p(yq) — A1 P(qg)-



(Quasi—Einstein metrics are characterized by a Ricci tensor which can be written
as

: 1 1
Ric(g) = pg) 9 — §£V(9) 9= "9~ 3 (ViVie + ViVi) |

for some constant p(,) and some complete vector field V(, € C°°(M,TM).

o If V is a gradient, V¢ = ¢g**9 f for some f € C*°(M,R), then the quasi
—FEinstein condition becomes

Ric® " (g,dw) := Ric(g) + Hessy, f = p(g) g

e i.e. the isotropy of the Bakry—Emery Ricci curvature of the Riemannian
manifold with density

(M, g, dw = e~ dp,))



e For 0 < f<e< QP:tg) define A(3) = (1 —2py B).

e Consider the one-parameter family of diffeomorphisms ¢g : M — M
solution of the non—autonomous ordinary differential equation

0 1 .
%Gbﬁ(m =30 Vig(6s(p), ¢p=0 = idnm ,

e and the one—parameter family of metrics

defined by
9(B) = A(B) ¢39 -

e By scale invariance and Dif f (M )—equivariance /_
we compute \4//

55 9(8) = —2p(e(8)) 9(B) + Ly, 9(B) = —2Ric(g(B)) -



... THE RICCI FLOW EMERGES ...

Hence, under the combined action of this family of diffeomorphisms and of the

scaling, the quasi-Einstein metric g generates a self-similar solution ¢(3)
A(B) &5 g, 0 < B <e, of the Ricci flow , (R. Hamilton, 1982)

2 9a(8) = —2Ra(B).

gab(/8 — O) = Jab 0 < /8 < 20(9)




... AS A NATURAL DYNAMICAL SYSTEM ON Met(M) ...

The Ricci flow can be thought of as a
(weakly—parabolic) dynamical
system on Met(M).

Met(M) —s  Met(M)
(M,g) — (M, g(B)),
defined by deforming the metric
(M, g) in the direction of —2Ric(g) Lk;.‘f

thought of as a (non-trivial)
vector in T, Met(M), i.e.,

%gab<ﬂ> — _ZRabw)a

Jar(3 = 0) = gap,

0<6< 6" <To



A RENORMALIZATION GROUP PERSPECTIVE ...

e Quasi-Einstein metrics originated from theoretical physics (D. Friedan,
1980), in the (perturbative) analysis of the Renormalization Group for
(Dilatonic) Non-Linear o Model (NLoM), the quantum field theory avatar
of harmonic map theory.

e

e A non-trivial point of view on the nature of (Ricci) curvature.



ROOTS IN HARMONIC MAP THEORY

El¢, gl = [g e(@)dun = 5[5 tracep (0%9) dpn

Conformally invariant N Ot () 0" ()
Energy density of the e(d)(z) = 9 W () Ok Oxv gik(9(z)) dup
map ¢:

duy, := Vdet h dotdz?




IN PHYSICS: NON-LINEAR ¢ MODEL

In QFT this translates into the Non-linear o model action

1 1 .
Siosali= < Blo.glosan = 5= [ VR H0,6'0,6

where a ~ [L]? and the curvature |Riem(g)| of (M, g), (together with the injec-
tivity radius inj(M, g)), set the scale at which (X, k) perturbatively probes the
manifold (M, g) in the point-like limit

2

® a,?“o_ << ]_

ro := min {% ing (M),

k: the upper bound to
the sectional curvature of (M, g),

(1/y/K := oo, when k < 0).




If the manifold M carries the structure of a Riemannian metric measure space
(M, g, dw) with dw = e~ dyi, then we can consider the extension of E[¢, g]s an
associated with the dilatonic coupling f € C°°(M,R) corresponding to the mea-
sure dw = e~/ ditg.

This extension is provided by the dilatonic non—-linear c—model action



Stos 0. f.al = 2 Bl gl + [ Kn (&) dun

= (2a)7! fz [trh(q;) (0" g) — 2a Kp, In ¢* (%)] dup,
g

1
=5 d%:\/_ (W 0,0"0,0% gir + 2a Kn(z) f(¢p(z))]
KCr, : Gauss curvature of (X, h) (M, g, dw)

f: M — R, the dilaton coupling

dilaton coupling not
conformally invariant.

The measure dw couples

with the (curvature) length
scale of (=, h)




If, for dim>. = 2, we assume the existence of a (typically non existant) reference
functional measure D|¢| on the non—linear space Map(3, M), (see however R.
Leandre, JMP44, 2003; C. Taubes, JDG70, 2005; J. Weitsman,CMP277, 2008),
then

e QFT Heuristics in dim > = 2:

D|¢]-random fluctuations of ¢ : ¥ — M around a classical configuration ¢gp,,
(a center of mass of a large collection (— o0) of D[¢p] — i.i.d. constant maps

{¢@i)}), can modify the geometry of (M, g): they can actually generate the
Riemannian structure, (D. Friedan)




... RENORMALIZATION GROUP FLOW (IDEAS) AT WORK...

e via a scale-dependent 8 := at,t > 0, perturbative renormalization group
flow, ([a] = [L?] a dimensionful coupling of the theory).

The RG-Flow is controlled by a large deviation mechanism w.r.t. the Gaussian
fluctuations around the (classical) background ¢, (i.e. by the control of the
exponential decline of large field fluctuations, around ¢.,,, as the energy (=
length?) scale 3 varies). (M, 9(8))

\

/6 — (gab(ﬁ)v f(ﬁ))




... AN ALTERNATIVE VIEW TO RIEMANNIAN GEOMETRY ...

e This procedure (re)constructs perturbatively the geometry in a ball around
®em as a function of the parameter 8 according to

0
o8 gik(B) = =2 Rix(8) — 2V, Vi f — g (RitmnRI™™) + O(a®)
0
o3 (B) = Af(B) = IVF(B)?+0(a®).
()‘\“ M)
/\

Ric(g(B +63))

e Extension of Ricci flow via non—perturbative RG flow arguments difficult
to handle. Perhaps, more sophisticated ideas needed.



.. (Almost) THE SAME WITHOUT QFT:
A WASSERSTEIN GEOMETRY PERSPECTIVE

The role of Ricci curvature as a generator of a natural RG flow has a rigorous
mathematical avatar: Many of its feature follow from a heat kernel localization
mechanism by exploiting the Wasserstein geometry of the space of probability
measures on (M, g).




The idea is to use the (weighted) heat kernel of (M, g, dw), (t,6,) — p¥ (o, x),
with source at z € M, to generate an injective embedding of (M, g, dw)

e+ (M,g) < (Prob(M), dgv)
T o pe(x) = pf(o,x).

in the space (Prob(M), d}" ) of all probability measures over M endowed with
the quadratic Wasserstein distance dgv, (N.Gigli-C. Mantegazza, for the pure
Riemannian case, M.C. for the general case of (M, g,dw) and the relation with
Renorm group for NLoM).

)
" R S (Prob (M), d}¥)

W
\© !

e And pull-back, via vy, the Wasserstein distance to a {—dependent metric
tensor g; on M, (Gigli-Mantegazza for the pure Riemannian case, with a
peripheral contribution by M. C. in the Riemannian metric measure space
case.)



For any smooth vector field v over M, and ¢ > 0, there exists a unique smooth
solution % . .y, smoothly depending on the data ¢, z, v, of the elliptic PDE

b (P2 0.2 VI ey ) = =" (@) VI 9 (5, 2)

and with Vz(.y) 17)\@,2,1,) (y) # 0 for all v # 0.

(D - :7 4 "
P2 FEAN R

v(y) {p\(t,z,'v) (y)

T, (M) — Tpe Prob(M)

e

v(z) = VY P (¥)



By exploiting this heat kernel parametrization of the vector fields of (M, g), one
defines, for all t € (0,00), a t—dependent metric tensor g; on M according to
(Gigli-Mantegazza, m.c.)

g (v(2), w(x)) = /M 9% )V Dt 0.0y ) Vi D0 (1) 95 (9, %) dpig (y) -
This is the scale dependent metric induced on M by the heat kernel immersion.
As t 0, the metric g; reduces to g, ¢.e. limy o g¢(v,v) = g(v,v), v € T, M,
y € M, and

gt(’U,’U) S B_QKE_Etg(UJU)n

where K QJ,B ~F denotes the lower bound of the Bakry-Emery Ricci curvature of
(M, g,dw)), Ric® *¥(g,dw) := Ric(g) + Hess, f.

/
g /
| f—— - ;
=

7

bm' { /
oy /
7
/

(MxT ? G)



t — (M, g¢) induces a corresponding flow in the harmonic map energy ,

t— Elo, gtl(s,m) + a /2 Kn ft(¢) dpn

= a¢ S[h, ¢; as, fi, g¢] .

with

S[h,@, at, ft:gt] < 6_2K§_Et‘9[hn¢; a, f7 g]

A rather sophisticated use of the (weak) Riemannian geometry of the Wasser-
stein space (Prob(M, g), dgv)), (related to the Riemannian geometry of the
diffeomorphisms group Dif f(M) a’ la Arnold), allows to compute



full-fledged flows for the metric ¢ — ¢(¢) and for the dilaton field t — f(¢):

0

g gt(u,w) = —2 Ric®) (w,w) — 2 Hessyy) fi (u,v)

—2 / (H ess Uty - Hess J(t,w)) P (y, 2) dw(y) |
M

where Ric®*) denotes the Ricci curvature of the evolving metric (M, g;)

Ric™® (u,v) = / Ric (Vuy, Viuw)) pg“’)(y, z)dw(y)
M

0 . (w) ) W) 2 (w) 2
o I = AP f, —5Wﬁ|g

w i w 2 w
= AP = VUV = IV




Moreover, for almost every ¢, one computes

o 2
agab(t)’tzo = —2R.p — 2V, Vi f + gvafvbf

0 2+ q
I W)]mo = 8,8 = 22 (P2

The ¢ — oo corresponds to the point—like limit for the localization. In this case
we recover the standard RG computation.

(M, g_(t) )




The flow

0

o 9t(u,w) = =2 Ric'") (u, w) — 2 Hessyq [y (u,v)

-9 / (Hess {b\(t,u) - Hess J(t,w)) pgw)(yjz) dw(y)
M

has a number of remarkable properties:

good behaviour under Gromov—Hausdorff convergence

(potential) better control on singularity generation w.r.t. standard Ricci
flow

it extends naturally to measure metric space not generated by smooth
Riemannian metrics

It is a gradient flow w.r.t. an entropy functional that generalizes Perel-
man’s F energy

However: very hard to provide explicit non-trivial examples. Lot of terri-
tory to explore. :

Heat kern,
injection




