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ZOOMing in on PBHSs

(Quasar Lensing

 Monthly online seminar series, via Zoom

Caustic crossing Multiply lensed quasar

* (Normally) first Monday of every month, 3pm EU time

e Email me:
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Time: Spm CEST, 01/12/2025 Prof Bernard Carr, Inaugural meeting October 2022

Next meeting:

Speaker: Anish Ghoshal
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Talk overview
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¢ Its more important than ever to be
¢ able to accurately predict the PBH #
f abundance and mass function, to
, Compare with current and upcomlng i

1.Methods to calculate the abundance

2.How to describe perturbations {  surveys. One of the largest
¢ uncertainties in the calculation
3.Smoothing 1 comes from the choice of window |

b §
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4.Choosing the right window (ongoing work) e s

Predicting observables for upcoming surveys

——————— e ——

Formation of PBHSs
(From collapse of
density perturbations)

-—

Using existing observations to constrain cosmological (inflation) models



Calculating the PBH abundance

PBH abundance at formation: (MH)

1/2
. dMy [ M
The PBH density parameter at 7, : Qopr = p (MH)

My \ My
: _ _ QppH
Fraction of dark matter composed of PBHs: ];bh =
Qpum
| dC2 1 dO
PBH mass function: f (MPBH) = 84l W ( MPBH) _ PBH

Qcpyr Ain(Mpgy) , Qppy AMpgy



PBHs from density perturbations

Super- and sub-horizon modes

p=p(l+0)

* Density modes are strongly suppressed in the
super-horizon regime

e Perturbations grow over time © |

* Reaches a peak around horizon entry

 PBH formation can occur at (about) this time if
a region is dense enough

e Numerical simulations needed to model the
non-linear evolution

* On sub-horizon scales, modes are damped by
pressure forces (assuming no PBH formation)

Superhorizon Subhorizon
1 . . .
> Nasty, non- |
PBH formation linear behaviour
0.001F
Nice, linear
" behaviour
10-6 |
These scales m |
\shouldn’t affect
PBH formation
10—9 4 1 I 1 1 1 |
10~ 0.01 1 100 104

The x-axis can be read as either:

K Ry

1. Time evolution of a single mode
2. Relative amplitude of different scales at a

specific time
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Threshold statistics

The Press-Schechter approach

- Basic idea: PBHs form in regions where the density takes a
value 0 above the critical value 0.

n(8) = 8p (6 — 8) O(8 — 8,)

- Jo calculate the abundance, we want the expectation value:

N (6) = (n) = Jd&n(é)P(é)

\Q

- The fraction of the universe composed of regions with
density 0 (above 0,) is given by the PDF: X

_ _ 1 52 The PS approach assumes this volume will
N (0) = P(O) = exp| — collapse to form PBHs
\/ 2702 202

(Where I’'m assuming Gaussian statistics)




Threshold statistics

The Press-Schechter approach

* To calculate the abundance, integrate this over the range of

values which form PBHs:
Q)

52
20%

D=

exp

[ a6—
- \/ 2762

C
(We can also account for critical scaling here by including a term Mpg /My = K (5 — 5C)y)

* The variance is given by an integral over the power spectrum
o0

We'll come back |

;[ dk
k
0
 PBHSs are very rare in the early universe:

* even small changes to the power spectrum have a big
impact on the abundance

P(0)

l'o:.

Changing the power spectrum by
10% has a big impact on the
abundance



The theory of peaks

A BBKS approach

The BBKS approach assumes 1 PBH will form
at this point in space

-+ Basic idea: PBHs form at peaks (in space) in the density above the critical value /
3
¢ _ ®
=" ol 857 (1) 04 (45) 6 B = 1) 045 = 8
1

(r7; are first derivatives, Cl-j are second derivatives, and v is the peak height. All normalised to have unit variance. 4, is the smallest eigenvalue of the
g;; matrix)

- We again want the expectation value of n, which this time involves at 10D
integral: ©

— () = [t | U
- Skipping over some non-trivial algebra, we arrive at the number density of peaks '
in the high peak limit:
1 o7 ; 2
= vvexp| — X
332(2r)? o 2

- (We are interested in the high-peak limit due to the rarity of PBHS)
- This generally predicts more PBHSs, due to sampling efficiency



. “technically, since different }
{ scale perturbations enter the

Extended peaks
e.g. Young-Musso, or Germani-Sheth (2020)

t specific scale at which a
. perturbation is the largest,
|_rather than specific times |

Basic idea: PBHs form at peaks in the density above the
critical value, at the time of horizon entry*

®

O1R
030 Coo E@
Moy = — 3p(10)01(C00) 8 )O3 (v — D)

3 O1R
OIOR | |—¢; &
2
¥ NB. For illustrative }
Z purposes only. If a §
- PBH forms, the |

Again, we want the expectation value, which is

1667 860702

3 1+ - 2  " perturbation isn’t §
= 1;;/32 D exp | ——— | _dampedout |
This also solves the PBH cloud-in-cloud problem (see extra
slides)
Perturbation scale is typically defined as the scale at which log t\

I The standard calculation assumes £
¢ PBHs form at all times when the §
¢ density is above the threshold. In |
1 reality, exactly 1 PBH will form 3

S

the compaction peaks (we’ll discuss the compaction later)
(But can also use curvature at centre of perturbation)




Additional complications

» Critical scaling relationship
Y

« Non-linearity between ¢ and o

* Primordial non-Gaussianity

* Non-linear evolution of modes prior to PBH formation

* Phase transitions

 What is the appropriate parameter to determine where PBHs form?
¢ Smoothed vs unsmoothed quantities

 Depending on how the calculation is done, constraints on the power spectrum can vary by nearly an order of
magnitude



PBH abundance is exponentially sensitive to the variance and the
threshold for collapse:

5 o 52
~ exp| —— |,
\/ 270, ’ 20°
[ dk
O = 7@(]{)
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Describing perturbations



Describing the amplitude of perturbations

Curvature perturbation {? Density contrast 6? Compaction C? Smoothing?

 Many different parameterisations describe the amplitude of cosmological perturbations
* Simulations describe a single, isolated perturbation
 Many methods to calculate the PBH abundance

* One of the main differences is the collapse criterion used

* |s there a difference when we consider calculating the PBH abundance?

* (Generally, we want to relate PBH abundance (which we can observe/constrain) to
&P (k) to constrain the early universe - so lets first consider ¢



The curvature perturbation

iy

L. 1
— 'r

dS? = — dt* + a*(H)e**dX?
 Can be useful for narrow power spectra
e Simple to use

» Inflationary models typically predict & (k)

and Its statistics

« Suffers from “background contamination”/
“environmental effects”

|

a cfom perturbations

X



The density contrast 6

Linear order

2(1 + 1
5=_M V¢
5+ 3w (aH)?

» Dominated by small-scale modes

* [ime-dependent < | {AIn Ik l\ (RITAr

— Typically determined at horizon
entry with linear transfer function

* Again, not very useful except for

narrow power spectra X

NB. The equations I’'m showing are valid in
the super-horizon regime



The density contrast 6

Variations of the parameter

* The density can be split into time-dependant and

time-independent components:

5(t, x) = €°(£)57(x)

Where € = 1/(aH), § = — f(w) V*¢, and
2(1 + w)
fw) = R
S+ 3w

» We can also consider the second derivative of _,

which is equivalent (up to multiplicative
constants)

u=V=i¢

« But what about non-linearities? X



Density contrast and the problem with small scales
Can you spot which perturbation will form a PBH?




Density contrast and the problem with small scales
Can you spot which perturbation will form a PBH?
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The density contrast

Non-linear

50 sy 1

5+3w (aH)? 2

» Still dominated by small-scale modes

* Contamination by background
perturbations ©

 Doesn’t increase monotonically with

C

 Complicated statistics (which are

often misleading anyway) X
Whats happening here?



The COmpaCtiOn C The time-dependance of these cancels out

oM 2172 | 43
C=2—=R"H"|dyo(x — y)Wru(y)

R
 Assuming spherical symmetry, and in the comoving gauge:
2 3H? | - a4 1\ > 1
( = d aeé(r)r 4 Cleg(r)r X — | —— 6—25(1’) ues 4 = (1 4 — (v 9)
ae@(r>r8ﬂj< ) |47 (ae™r)"| x5 — () + =L + = ()
0

* This has a simple solution

2 3
C = =212+ () = € = 2C

. NB. C; = — —r('(r) is the expression we would obtain if we just used the linear expressions

3

* Therefore, we can typically use the same tools as for linear calculations with some modifications
* Not very efficient at removing small-scale modes (see later)
* Spherical symmetry may not be justified



WARNING

. Its tempting to look at C; = — Er{f’(r) and think C is proportional to the first

derivative of {, and therefore C(k) o k((k)

e It is the surface term at radius r, arising from integrating " over a spherical
volume (and assuming spherical symmetry)

C(k) x kK*W(k, r)¢(k)



The compaction

Is spherical symmetry justified?
In(k)?

P ~ €Xp A2

 PBHs are rare in the early universe

» Large PBH forming perturbations are also rare Pertect correlation

 Large peaks in C are rare 1.0

* The larger (and rarer) a peak is, the more spherical
symmetry it has 0.8

* Do rare peaks in C also correspond to rare perturbations in {?

0.6

 Only for narrow power spectra E” :

* We can’t assume spherical symmetry (for broad power 04l
spectra) |

* The quadratic relation on the previous page may not be 02!

valid L

* What do perturbations look like for broad/narrow power - | | |
spectra? O'O(I)""1|"||2||||3IIII4I

No correlation

SY 2022



Rare perturbations and spherical symmetry

An example of a perturbation in { which will create a rare perturbation in C

Narrow power spectrum Broad power spectrum

Approximately spherically symmetric Little spherical symmetry



Rare perturbations and spherical symmetry

An example of a perturbation in { which will create a rare perturbation in C

Narrow power spectrum Broad power spectrum
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C=-— gré”(r)(Z +r¢'(r)) = C, — §C1

Is this equation still valid?
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Approximately spherically symmetric Little spherical symmetry



Smoothing

Smoothing/window functions



How can we get rid of the small-scale
modes to see different scale
perturbations?

NB. For /
i simplicity, I'll §
¢ just consider
the linear |
equations from ¢§
| here |

i ”', l. 1 I ..l!!. ]
| I H N

| |
||‘}“|




Recall that 6 depends
on the second

derivative of

Smoothing functions

Isolating modes of interest

* Jo isolate specific scale perturbations, smoothing functions aye often used to remove small-scale modes

Op(X) = Jd3y5 y)W(x -y, R)

* The idea is average the density within a given volume, and the effect of small-scale perturbations should average out to
Zero e ]

,‘ NB. We can also
i consider the volume-
I averaged compaction - §
the “universal
threshold” i
! Escrivaetal 2019

e Often used functions include top-hat or Gaussian:

)C2

2R?

CXP

3
W%, R) = =503y (R =0, Wo(x,R) = e

4R

* There is a priori no reason to think one is better than the other (ongoing work with IM)*
* Both have advantages

 Both have disadvantages

* although the top-hat function arises naturally when considering the volume averaged density



Which parameter is best?
Spvs Cvs j = V(

* After smoothing, the equations for each look very similar
* (Here in Fourier space)

5x(K) = flw)eX (W ik, R
C(k) = flw)W(k, R)k*¢
u = Wk, R)k*¢

* Large-scale modes are all removed by the k? term, whilst small-scale modes are removed by W(k, R)

I NB. The standard definition of the X
£ compaction corresponds to a top-hat §
¢ smoothing function, but we can 4
'choose a different function if desired §

 We could equivalently also absorb k? into the definition of our window function and work “directly” with
C:
Cr = Wik, R)C(k)

* Generally, then, our choice of parameter boils down to a choice of window function (plus added
complications arising from non-linearities)



Top-hat smoothing WWW

r=0.01

. Top-hat smoothing |
glvesusnice
. relations when we |
consider non- |
| linearities, but isn’t !
. very efficient |

OR TH




Gaussian smoothing

r=0.01

Gassing smoothing |
. is more efficient |
. but non-linearities |
. are aproblem |

OR TH




Gaussian vs top-hat

* (Generally, the Gaussian window is
preferable for calculations

* The top-hat window gives simple analytic
relations when non-linearities are considered

 But, just because a window Is more
convenient, doesn't mean that it iIs correct

 Which window function is correct? (If any)

 How does smoothing affect the abundance
calculation?

{ There are multiple |

C(R)

peaks above the | The compaction blows up at |
ton-hat ;; i large scales for the top-hat, |
R S SR even though therearé no |
A | large-scale peruroations _|

Y TV

V
s ]
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Calculating the variance

 When calculating the abundance, we mostly care about the variance (of whichever variable we’re using)
o0 o0

dk dk [ k \*
o° = (X?) = J7 (1, k) = J7 (TH) PAYW-(k, R)T(k, Ry;)

0 0

e The transfer function 7(#, R;;) describes the time-evolution of the power spectrum, and is given at linear
order by

sin (3_1/2kRH) (3_1/2kRH) COS (3_1/2kRH)

(3—1/2kRH)
» For super-horizon modes, T(k, R;;) = 1

 But PBH formation happens at horizon entry - so what happens to sub-horizon modes will affect PBH
formation to some extent

 What we really want is one function which will tell us how important each different mode is, accounting
for non-linearities in the density and the complex evolution at horizon crossing

 How should we choose the right window function? — we need to run some simulations



Choosing an appropriate window



What’s the “correct” window?

An appropriate
window
functions will
quantity how
Important
different modes
are to PBH
formation



5 (k)

What does a window tell us?

Lots of problems but no solutions (so far)

Oc (k)

12
1.0 -
0.8 -
0.6 -
0.4 -
0.2 -

0.0 -

0.1

L1
10

1 L1
50

100

* Lets consider a PBH forming at this scale
* How important is e.g. this scale?

* How important is e.g the height of A
compared to the height of B?

ee.g.lf B=0.1, can A be 0.1 smaller and still
form a PBH? Or can A only be 0.01 smaller?

* The window assigns a weight to each Fourier
mode

* To calculate the correct window, we’ll need
some simulations



Simulation set-up

_|_
N
e Basic idea: “I'll call this the
“background” profile, though
. : . . . . In reality it is, itself, a
1.Simulate PBH formation with a given density profile* perturbaﬂg’n to the uniform

background
2.Perturb the profile with a perturbation of varying scale, and see how this affects PBH formation

3.Quantify the effect of different scales

» We have started by looking at density profiles, but will consider perturbations starting from ¢



Simulation set-up

. 2 1’ r? +
, Background profile: 65-.(r) =A| 1 —~ |exp| —— Y,V

3 r r,

sin(kr)
kr

. Perturbation to the profile: 6,(r) = Bk*

» Run simulations to find the critical value A.. for given { B, k}
» Giving a fiducial value A . when B = 0

. Assume that there is a “correct” window W(k, R) which makes the critical value
constant (i.e. it is “universal’):

oc_A x BI?

x A
Cye= Cpowt+ C,,, = constant

!
CIAC — CIAC + C2Bk2W(k, R)



(Preliminary) results from simulations
Using Albert Escriva’s code: [1907.13065]

 EXxpected: damped oscillatory
behaviour

* Need more data and checks, but
results coming soon

 Moderately well fit by
k*W(k, R) « k*Wo(k, R)T(k, R)

e Linear transfer function seems to o
(surprisingly?) be a good fit

Top-Hat+transfer



Conclusions

1. There are several parameters which can be used to calculate the abundance

* They are (mostly) equivalent.

 (Don’t use ¢ without extreme caution)

2. Ongoing work to determine the appropriate window function
 More work needed still
* |t looks like top-hat+transfer function works well

 Also need to determine how this will affect the calculation of the abundance, which is non-trivial

 (e.g. The standard critical value used doesn’t include the effect of the transfer function)

 Don’t forget to email me about the monthly meeting! sam.young@sussex.ac.uk
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Appendix: The cloud-in-cloud
problem and the excursion set

« A common problem faced in LSS is
that small haloes may be located
Inside larger haloes, resulting in
double counting

 The small haloes are ‘swallowed’ by
the larger haloes

 We need to make sure we are looking
at the correct scale

 This Is generally solved using the
excursion set - which finds the largest
smoothing scale at which a
perturbation has the threshold value

* Top plot: perturbations smoothed on a
small scale. It looks like 3 small
compact objects will form

 Bottom plot: smoothed on a larger
scale, we instead correctly find 1 large
compact object




Appendix: The excursion set
and PBHs li

The excursion set approach doesn’t work

All 3 perturbations have C = C, at the same
R, but each forms a different mass PBH

Simulations define the scale of a perturbation
as the smoothing scale at which the
compaction peaks

We need to include this in the calculation of
the abundance




Appendix: defining perturbation scale




Primordial black holes mass

Initial Conditions

The critical scaling relationship

As the amplitude of the initial perturbation is increased,
the PBH mass is found to increase -

Mppy < (6=36,)",

with y ~ 0.36

- As the scale Is increased, PBH mass also increases

Final PBH mass

2
Mppy x R* ox My
- Combining these gives the critical-scaling law:

Mppy = HMy (6-36,)

MpaH

- This equation will hold regardless of how the scale or
amplitude is defined, but will need a different &




