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ZOOMing in on PBHs

• Monthly online seminar series, via Zoom


• (Normally) first Monday of every month, 3pm EU time


• Email me:


• Get added to the mailing list


• Volunteer to speak (or nominate someone else)


• sam.young@sussex.ac.uk


Next meeting:


Time: 3pm CEST, 01/12/2025


Speaker: Anish Ghoshal

Prof Bernard Carr, Inaugural meeting October 2022

mailto:sam.young@sussex.ac.uk


Talk overview

1.Methods to calculate the abundance


2.How to describe perturbations


3.Smoothing


4.Choosing the right window (ongoing work)

Its more important than ever to be 
able to accurately predict the PBH 
abundance and mass function, to 

compare with current and upcoming 
surveys. One of the largest 

uncertainties in the calculation 
comes from the choice of window 

function.

Generation of initial 
conditions (e.g. 

inflation)

Formation of PBHs 
(From collapse of 

density perturbations)

Observations/
constraints

Predicting observables for upcoming surveys

Using existing observations to constrain cosmological (inflation) models



Calculating the PBH abundance 
PBH abundance at formation:   

The PBH density parameter at :   

Fraction of dark matter composed of PBHs:  

PBH mass function: ,  

β (MH)

teq ΩPBH = ∫
dMH

MH (
Meq

MH )
1/2

β (MH)

fpbh =
ΩPBH

ΩDM

f (MPBH) =
1

ΩCDM

dΩPBH

dln(MPBH)
ψ (MPBH) =

1
ΩPBH

dΩPBH

dMPBH



PBHs from density perturbations
Super- and sub-horizon modes




• Density modes are strongly suppressed in the 
super-horizon regime


• Perturbations grow over time


• Reaches a peak around horizon entry


• PBH formation can occur at (about) this time if 
a region is dense enough


• Numerical simulations needed to model the 
non-linear evolution


• On sub-horizon scales, modes are damped by 
pressure forces (assuming no PBH formation)

ρ = ρ̄(1 + δ)
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Superhorizon Subhorizon

PBH formation

The x-axis can be read as either:

1. Time evolution of a single mode

2. Relative amplitude of different scales at a 

specific time

Nice, linear 
behaviour

Nasty, non-
linear behaviour

These scales 
shouldn’t affect 
PBH formation



PBH formation

Created in collaboration with Ilia Musco



Threshold statistics
The Press-Schechter approach

• Basic idea: PBHs form in regions where the density takes a 
value  above the critical value 


 

• To calculate the abundance, we want the expectation value: 


 


• The fraction of the universe composed of regions with 
density  (above ) is given by the PDF:


 


(Where I’m assuming Gaussian statistics)

δ̄ δc
n(δ) = δD (δ̄ − δ) θH(δ − δc)

𝒩 (δ̄) = ⟨n⟩ = ∫ dδn(δ)P(δ)

δ̄ δc

𝒩(δ̄) = P(δ̄) =
1

2πσ2
exp (−

δ̄2

2σ2 )
x

δ

δc

The PS approach assumes this volume will 
collapse to form PBHs



Threshold statistics
The Press-Schechter approach

• To calculate the abundance, integrate this over the range of 
values which form PBHs:





(We can also account for critical scaling here by including a term )


• The variance is given by an integral over the power spectrum





• PBHs are very rare in the early universe:

• even small changes to the power spectrum have a big 

impact on the abundance

β =
∞

∫
δc

dδ
1

2πσ2
exp (−

δ2

2σ2 )
MPBH /MH = K (δ − δc)γ

σ2 =
∞

∫
0

dk
k

𝒫δ(k)

Changing the power spectrum by 
10% has a big impact on the 

abundance

We’ll come back 
to this later



The theory of peaks
A BBKS approach

• Basic idea: PBHs form at peaks (in space) in the density above the critical value


 


 (  are first derivatives,  are second derivatives, and  is the peak height. All normalised to have unit variance.  is the smallest eigenvalue of the 
 matrix)


• We again want the expectation value of , which this time involves at 10D 
integral:


 


• Skipping over some non-trivial algebra, we arrive at the number density of peaks 
in the high peak limit:


 


• (We are interested in the high-peak limit due to the rarity of PBHs)

• This generally predicts more PBHs, due to sampling efficiency

n =
σ3

2

σ3
1

ζij δ(3)
D (ηi) θH (λ3) δD (ν̄ − ν) θH(δ − δc)

ηi ζij ν λ3
ζij

n

𝒩 = ⟨n⟩ = ∫ dνd3ηid6ζijnP(ν, ηi, ζij)

𝒩 =
1

33/2(2π)2

σ3
1

σ3
0

ν3 exp (−
ν2

2 ) x

δ

The BBKS approach assumes 1 PBH will form 
at this point in space

δc



log t

δ

Extended peaks
e.g. Young-Musso, or Germani-Sheth (2020)

• Basic idea: PBHs form at peaks in the density above the 
critical value, at the time of horizon entry*





• Again, we want the expectation value, which is





• This also solves the PBH cloud-in-cloud problem (see extra 
slides)


• Perturbation scale is typically defined as the scale at which 
the compaction peaks (we’ll discuss the compaction later)

• (But can also use curvature at centre of perturbation)

npk =
σ3

2σRR

σ3
1σR

ζ00
σ1R

σRR
ϕj

σ1R

σ2
ϕi ζij

δD(η0)θH(ζ00)δ(3)
D (ηi)θH(λ3)δD(ν − ν̄)

𝒩 =
16 2
33/2π5/2

σRRσ3
0

σ2σ3
1R7 1 − γ2

0,2

αν4 exp −
1 +

16σ2
0

R4σ2
2

−
8σ0γ0,2

R2σ2

1 − γ2
0,2

ν2

2

*technically, since different 
scale perturbations enter the 

horizon at different times, 
the calculation looks for the 

specific scale at which a 
perturbation is the largest, 
rather than specific times

NB. For illustrative 
purposes only. If a 

PBH forms, the 
perturbation isn’t 

damped out.

The standard calculation assumes 
PBHs form at all times when the 
density is above the threshold. In 

reality, exactly 1 PBH will form



Additional complications

• Critical scaling relationship





• Non-linearity between  and 


• Primordial non-Gaussianity


• Non-linear evolution of modes prior to PBH formation


• Phase transitions


• What is the appropriate parameter to determine where PBHs form?


• Smoothed vs unsmoothed quantities


• Depending on how the calculation is done, constraints on the power spectrum can vary by nearly an order of 
magnitude

MPBH = MHK (δ − δc)γ

ζ δ



PBH abundance is exponentially sensitive to the variance and the 
threshold for collapse: 

, β ∼
σ

2πδc

exp (−
δ2

c

2σ2 )
σ2 =

∞

∫
0

dk
k

𝒫(k)



Describing perturbations



Describing the amplitude of perturbations
Curvature perturbation ? Density contrast ? Compaction ? Smoothing?ζ δ C

• Many different parameterisations describe the amplitude of cosmological perturbations


• Simulations describe a single, isolated perturbation


• Many methods to calculate the PBH abundance


• One of the main differences is the collapse criterion used


• Is there a difference when we consider calculating the PBH abundance?


• Generally, we want to relate PBH abundance (which we can observe/constrain) to 
 to constrain the early universe - so lets first consider 𝒫ζ(k) ζ



The curvature perturbation ζ

 

• Can be useful for narrow power spectra

• Simple to use


• Inflationary models typically predict  
and its statistics


• Suffers from “background contamination”/
“environmental effects”

dS2 = − dt2 + a2(t)e2ζdX2

𝒫ζ(k)

x

ζ
Random  perturbations

PBH forming perturbation



The density contrast δ
Linear order

 


• Dominated by small-scale modes


• Time-dependent 


Typically determined at horizon 
entry with linear transfer function


• Again, not very useful except for 
narrow power spectra

δ = −
2(1 + ω)
5 + 3ω

1
(aH)2

∇2ζ

→

x
δ

x

ζ

NB. The equations I’m showing are valid in 
the super-horizon regime



The density contrast δ
Variations of the parameter

• The density can be split into time-dependant and 
time-independent components:





Where , , and 

 


• We can also consider the second derivative of , 
which is equivalent (up to multiplicative 
constants)





• But what about non-linearities?

δ(t, x) = ϵ2(t)δTI(x)

ϵ = 1/(aH) δ = − f(ω)∇2ζ
f(ω) =

2(1 + ω)
5 + 3ω

ζ

μ = ∇2ζ
x

δ

x

ζ



Density contrast and the problem with small scales
Can you spot which perturbation will form a PBH?



Density contrast and the problem with small scales
Can you spot which perturbation will form a PBH?



The density contrast
Non-linear




• Still dominated by small-scale modes


• Contamination by background 
perturbations


• Doesn’t increase monotonically with 



• Complicated statistics (which are 
often misleading anyway)

δ = −
2(1 + ω)
5 + 3ω

1
(aH)2

e−2ζ (∇2ζ +
1
2 ( ∇̄ζ)2)

ζ

x
δ

Whats happening here?

x

ζ



The compaction C

 


• Assuming spherical symmetry, and in the comoving gauge:





• This has a simple solution


 


• NB.  is the expression we would obtain if we just used the linear expressions


• Therefore, we can typically use the same tools as for linear calculations with some modifications

• Not very efficient at removing small-scale modes (see later)

• Spherical symmetry may not be justified

C = 2
δM
R

= R2H2 ∫ d3yδ(x − y)WTH(y)

C = −
2

aeζ(r)r
3H2

8π

r

∫
0

d (aeζ(r)r) [4π (aeζ(r)r)2] ×
4
9 ( 1

aH )
2

e−2ζ(r) (ζ′￼′￼(r) +
2
r

ζ′￼(r) +
1
2

(ζ′￼(r))2)

C = −
2
3

rζ′￼(r)(2 + rζ′￼(r)) = C1 −
3
8

C2
1

C1 = −
2
3

rζ′￼(r)

The time-dependance of these cancels out



WARNING

• Its tempting to look at  and think  is proportional to the first 

derivative of , and therefore 


• It is the surface term at radius , arising from integrating  over a spherical 
volume (and assuming spherical symmetry)


C1 = −
2
3

rζ′￼(r) C1

ζ C(k) ∝ kζ(k)

r ζ′￼′￼

C(k) ∝ k2W(k, r)ζ(k)



The compaction

• PBHs are rare in the early universe


• Large PBH forming perturbations are also rare


• Large peaks in  are rare


• The larger (and rarer) a peak is, the more spherical 
symmetry it has


• Do rare peaks in  also correspond to rare perturbations in ?


• Only for narrow power spectra


• We can’t assume spherical symmetry (for broad power 
spectra)


• The quadratic relation on the previous page may not be 
valid


• What do perturbations look like for broad/narrow power 
spectra?

C

C ζ
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Δ
γ c

ζ

𝒫ζ ∼ exp (−
ln(k)2

2Δ2 )
Perfect correlation

No correlation

SY 2022

Is spherical symmetry justified?



Rare perturbations and spherical symmetry
An example of a perturbation in  which will create a rare perturbation in ζ C

Narrow power spectrum Broad power spectrum

Approximately spherically symmetric Little spherical symmetry



Rare perturbations and spherical symmetry
An example of a perturbation in  which will create a rare perturbation in ζ C

Narrow power spectrum Broad power spectrum

Approximately spherically symmetric Little spherical symmetry

 

Is this equation still valid?

C = −
2
3

rζ′￼(r)(2 + rζ′￼(r)) = C1 −
3
8

C2
1



Smoothing 
Smoothing/window functions



How can we get rid of the small-scale 
modes to see different scale 

perturbations?

x

δ

NB. For 
simplicity, I’ll 
just consider 

the linear 
equations from 

here



Smoothing functions
Isolating modes of interest

• To isolate specific scale perturbations, smoothing functions are often used to remove small-scale modes


 


• The idea is average the density within a given volume, and the effect of small-scale perturbations should average out to 
zero


• Often used functions include top-hat or Gaussian:





• There is a priori no reason to think one is better than the other (ongoing work with IM)*


• Both have advantages


• Both have disadvantages

δR(x) = ∫ d3yδ(y)W(x − y, R)

WTH(x, R) =
3

4πR3
ΘH (R − x), WG(x, R) =

1
(2πR2)3/2

exp (−
x2

2R2 )

Recall that   depends 
on the second 
derivative of 

δ

ζ

* although the top-hat function arises naturally when considering the volume averaged density

NB. We can also 
consider the volume-

averaged compaction - 
the “universal 

threshold”

Escriva et al 2019



Which parameter is best?

• After smoothing, the equations for each look very similar

• (Here in Fourier space)











• Large-scale modes are all removed by the  term, whilst small-scale modes are removed by 


• We could equivalently also absorb  into the definition of our window function and work “directly” with 
:




• Generally, then, our choice of parameter boils down to a choice of window function (plus added 

complications arising from non-linearities)

δR(k) = f(ω)ϵ2(t)W(k, R)k2ζ
C(k) = f(ω)W(k, R)k2ζ

μ = W(k, R)k2ζ
k2 W(k, R)

k2

ζ
ζR = W̃(k, R)ζ(k)

 vs  vs  δR C μ = ∇2ζ

NB. The standard definition of the 
compaction corresponds to a top-hat 
smoothing function, but we can 
choose a different function if desired



Top-hat smoothing

x

ζ

Top-hat smoothing 
gives us nice 

relations when we 
consider non-

linearities, but isn’t 
very efficient



Gaussian smoothing
x

ζ

Gassing smoothing 
is more efficient 

but non-linearities 
are a problem



Gaussian vs top-hat
• Generally, the Gaussian window is 

preferable for calculations


• The top-hat window gives simple analytic 
relations when non-linearities are considered


• But, just because a window is more 
convenient, doesn't mean that it is correct


• Which window function is correct? (If any)


• How does smoothing affect the abundance 
calculation?

x

ζ

R

C
(R
)

The compaction blows up at 
large scales for the top-hat, 

even though there are no 
large-scale perturbations

There are multiple 
peaks above the 
threshold for the 

top-hat

NB. I’ve assumed spherical symmetry here, but there is no 
reason to assume this for the small-scale perturbation



Calculating the variance
• When calculating the abundance, we mostly care about the variance (of whichever variable we’re using)





• The transfer function  describes the time-evolution of the power spectrum, and is given at linear 
order by





• For super-horizon modes, 

• But PBH formation happens at horizon entry - so what happens to sub-horizon modes will affect PBH 

formation to some extent

• What we really want is one function which will tell us how important each different mode is, accounting 

for non-linearities in the density and the complex evolution at horizon crossing


• How should we choose the right window function?  we need to run some simulations

σ2 = ⟨X2⟩ =
∞

∫
0

dk
k

𝒫X(t, k) =
∞

∫
0

dk
k ( k

aH )
2

𝒫ζ(k)W2(k, R)T2(k, RH)

T(t, RH)

T(k, RH) = 3
sin (3−1/2kRH) + (3−1/2kRH) cos (3−1/2kRH)

(3−1/2kRH)3

T(k, RH) = 1

→



Choosing an appropriate window



What’s the “correct” window?

10-4 0.01 1 100 104
10-9

10-6

0.001

1

k RH

δ δ 0
Important modes? Unimportant modes?Unimportant modes?

An appropriate 
window 

functions will 
quantity how 

important 
different modes 

are to PBH 
formation



What does a window tell us?
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Lots of problems but no solutions (so far)

• Lets consider a PBH forming at this scale


• How important is e.g. this scale?


• How important is e.g the height of A 
compared to the height of B?


• e.g. If , can  be 0.1 smaller and still 
form a PBH? Or can A only be 0.01 smaller?


• The window assigns a weight to each Fourier 
mode


• To calculate the correct window, we’ll need 
some simulations

B = 0.1 A

A

B



Simulation set-up

• Basic idea:


1.Simulate PBH formation with a given density profile*


2.Perturb the profile with a perturbation of varying scale, and see how this affects PBH formation


3.Quantify the effect of different scales


• We have started by looking at density profiles, but will consider perturbations starting from ζ

+
=

*I’ll call this the 
“background” profile, though 

in reality it is, itself, a 
perturbation to the uniform 

background



Simulation set-up

• Background profile: 


• Perturbation to the profile: 


• Run simulations to find the critical value  for given 

• Giving a fiducial value  when 


• Assume that there is a “correct” window  which makes the critical value 
constant (i.e. it is “universal”):




 


δBG(r) = A (1 −
2
3

r2

r2
m ) exp (−

r2

r2
m )

δp(r) = Bk2 sin(kr)
kr

Ac {B, k}
Āc B = 0

W̃(k, R)

C̄w,c = CBG,w + Cp,w = constant
↓

c1Āc = c1Ac + c2Bk2W̃(k, R)

+ =

∝ Ā ∝ A ∝ Bk2



(Preliminary) results from simulations

• Expected: damped oscillatory 
behaviour


• Need more data and checks, but 
results coming soon 

• Moderately well fit by





• Linear transfer function seems to 
(surprisingly?) be a good fit

k2W̃(k, R) ∝ k2W̃TH(k, R)T(k, R)

PRELIMINARY

Using Albert Escriva’s code: [1907.13065]
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Conclusions
1. There are several parameters which can be used to calculate the abundance


• They are (mostly) equivalent. 


• (Don’t use  without extreme caution)


2. Ongoing work to determine the appropriate window function


• More work needed still


• It looks like top-hat+transfer function works well


• Also need to determine how this will affect the calculation of the abundance, which is non-trivial

• (e.g. The standard critical value used doesn’t include the effect of the transfer function)


• Don’t forget to email me about the monthly meeting! sam.young@sussex.ac.uk

ζ

mailto:sam.young@sussex.ac.uk


Appendix: The cloud-in-cloud 
problem and the excursion set
• A common problem faced in LSS is 

that small haloes may be located 
inside larger haloes, resulting in 
double counting 
• The small haloes are ‘swallowed’ by 

the larger haloes 
• We need to make sure we are looking 

at the correct scale 
• This is generally solved using the 

excursion set - which finds the largest 
smoothing scale at which a 
perturbation has the threshold value 

• Top plot: perturbations smoothed on a 
small scale. It looks like 3 small 
compact objects will form 

• Bottom plot: smoothed on a larger 
scale, we instead correctly find 1 large 
compact object

x

C
x

C



Appendix: The excursion set 
and PBHs II

• The excursion set approach doesn’t work


• All 3 perturbations have  at the same 
R, but each forms a different mass PBH


• Simulations define the scale of a perturbation 
as the smoothing scale at which the 
compaction peaks


• We need to include this in the calculation of 
the abundance

C = Cc



Appendix: defining perturbation scale

x

δ



Primordial black holes mass
The critical scaling relationship

• As the amplitude of the initial perturbation is increased, 
the PBH mass is found to increase 


,


with 


• As the scale is increased, PBH mass also increases





• Combining these gives the critical-scaling law:





• This equation will hold regardless of how the scale or 
amplitude is defined, but will need a different 

MPBH ∝ (δ − δc)γ

γ ∼ 0.36

MPBH ∝ R2 ∝ MH

MPBH = 𝒦MH (δ − δc)γ

𝒦


