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2. INFLATON VELOCITY REVERSAL EREASES DIPS
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3. TALLER PEAKS IMPLY DEEPER DIPS
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4. FASTER ROLL => TALLER WIGGLES

POTENTIAL
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* same inflationary timeline (SR to USR to SR) [ 2305.09630 Karam et al |



BEYOND INSTANTANEOUS TRANSITIONS
4. FASTER ROLL => TALLER WIGGLES
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BEYOND INSTANTANEOUS TRANSITIONS
4. FASTER ROLL => TALLER WIGGLES
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NESSECITY for 1. abundance exponentially sensitive to peak height
TUNING:

2. peak height sensitive to parameters of the model
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0.3845 0.3850 0.3855 0.3860

[ 2305.09630 Karam et al, 2304.01997 Byrnes et al]



NESSECITY for 1. abundance exponentially sensitive to peak height

TUNING: 2. peak height sensitive to parameters of the model
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SEARCHING FOR MODELS

OF SINGLE FIELD INFLATION
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* Find a potential that gives CMB with

Ngr = 020 — 40) e-folds.
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* Find a potential that gives CMB with
Ngr = 020 — 40) e-folds.
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¢ Induce a localized feature that slows the S ) P
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* Find a potential that gives CMB with
Ngr = 020 — 40) e-folds.
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¢ Inflation could resume after the feature for
N; e-folds, so
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* Find a potential that gives CMB with
Ngr = 020 — 40) e-folds.

¢ Induce a localized feature that slows the
inflation and adds N, e-folds.

¢ Inflation could resume after the feature for
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SINGLE-FIELD MODELS for CMB and PBHs:
A QUCK GUIDE TO MODEL BUILDING
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SINGLE-FIELD MODELS for CMB and PBHs:
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SINGLE-FIELD MODELS for CMB and PBHs:

A QUCK GUIDE TO MODEL BUILDING
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NON-MINIMAL POLYNOMIAL INFLATION: Jd“x\ﬁ [ ——Q(¢)R+~ (6cb)2 V(cb)]
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SINGLE-FIELD MODELS for CMB and PBHs:
SCANNING for MODELS

MOCK-LIKELIHOOD
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[ Allegrini, lovino, HV 2510.18791 ]



SINGLE-FIELD MODELS for CMB and PBHs: -
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- NMC + PLANCK
] B NMC+ ACT
. A T T ~ MC + Planck
BN MC+ ACT

I
i

a5 [1072]

MOCK-LIKELIHOOD I A R e
Z(D) = Lcpp(D |0) X Lppy(D | Plky)) X Z(D | Ny) A s ;N | ¥ 1
| NN
;; N, € [17,37] 3.0 tn T a1
= I % I O 14
P,k € [1072,107] - 0@ @ L .
T T T B L S R e
L e T
Ll Nk DRI

&1 3 a as a5 [1077] g [1077] Ny logyg(kpk)  logi(Pe(kpk)) s Qs

[ Allegrini, lovino, HV 2510.18791 ]



10~ e
Py : NMC + PLANCK
2 —— NMC + ACT
@’ - ] MC + PLANCK
10~3 g 3 — MC + ACT
0.98
. 0.97 F
<
0.96 }
= OfF
S
5 —2F Planck + ACT
101 s
10—2 V]
&~ ~ §\
10—3 \ \ \“
\‘Q‘ “
/q) Q

[ Allegrini, lovino, HV 2510.18791 |



NMC + PLANCK
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SINGLE-FIELD MODELS for CMB and PBHs:
SCANNING for MODELS
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INFLATION AT AN INFLECTION POINT
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INFLATION AT AN INFLECTION POINT

V(&) = pu (Vo + ps+8°) + 6(5%
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INFLATION AT AN INFLECTION POINT
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INFLATION AT AN INFLECTION POINT T T
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NON-GAUSSIANITY

IN SINGLE FIELD INFLATION




often described with the local expansion
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often described with the local expansion
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a non-polynomial relation known in USR models:

Atal, Germani [ 1811.07857 ], Taoso, Urbano [2102.03610], Tomberg [2304.10903]
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NON-GAUSSIAN RANDOM FIELDS

often described with the local expansion

3 9
§(X) = ¢p(X) + ngL (CG(X)Z — <Cg(X)2>) + EgNLCG(X)B + ...

a non-polynomial relation known in USR models: —4ey m 4(ngcp — 1

Atal, Germani [ 1811.07857 ], Taoso, Urbano [2102.03610], Tomberg [2304.10903]
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how to approach it without perturbation theory?
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NON-GAUSSIAN RANDOM FIELDS: the 2-point function in USR £(x) =
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SUMMARY

* Peaks of inflationary spectra depend on the SR-to-USR
transition

* (polynomial) single field models work only for asteroid mass
PBHs? - need for tools for systematic searches

* strong local non-Gaussianity could be treated semi-
analytically
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