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CONSTRAINTS ON THE PBH PARAMETER SPACE

[ github.com/vianvask/PBHconstraints ]
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PBHs as all dark matter
MPBH ≈ 1017 − 1022 g

observed BH binaries 

 
    

MPBH ≈ 1 − 100 M⊙
fPBH ≈ 10−3

PBHs as SMBH seeds 
 MPBH ≈ 103 − 106 M⊙

fPBH ≈ 10−10 MPBH

103M⊙
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[ 2405.05732 M. Andrés-Carcasona et al, 2511.xxxxx M. Andrés-Carcasona et al ]

MASS FUNCTION 

ψ ∝ exp [−
ln2(m /mc)

2σ2 ]



here, some LVK 
binaries could be 

primordial

[ 2405.05732 M. Andrés-Carcasona et al, 2511.xxxxx M. Andrés-Carcasona et al ]

MASS FUNCTION 

ψ ∝ exp [−
ln2(m /mc)

2σ2 ]



SPECTRAL SHAPES 
IN SINGLE FIELD INFLATION
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CMB

≈ 10−9
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1. SLOW-ROLL (SR)                  
lasts  e-folds𝒪(30)
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1. SLOW-ROLL (SR)                  
lasts  e-folds𝒪(30)

2. TRANSITION from SR to USR 
lasts  e-folds   ≲ 1
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1. SLOW-ROLL (SR)                  
lasts  e-folds𝒪(30)

2. TRANSITION from SR to USR 
lasts  e-folds   ≲ 1

3. ULTRA-SLOW-ROLL (USR)      
lasts  e-folds     𝒪(3)
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1. SLOW-ROLL (SR)                  
lasts  e-folds𝒪(30)

2. TRANSITION from SR to USR 
lasts  e-folds   ≲ 1

3. ULTRA-SLOW-ROLL (USR)      
lasts  e-folds     𝒪(3)

4. TRANSITION from USR to CR
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1. SLOW-ROLL (SR)                  
lasts  e-folds𝒪(30)

2. TRANSITION from SR to USR 
lasts  e-folds   ≲ 1

3. ULTRA-SLOW-ROLL (USR)      
lasts  e-folds     𝒪(3)

4. TRANSITION from USR to CR

5. CONSTANT-ROLL (CR)             
…or SR
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[ 2001.08220 Ballesteros et al ]

POLYNOMIALS -ATTRACTORSα GAUSSIAN BUMPSmodels:
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   (SMALL) BUMP  
in the potential
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[ 2001.08220 Ballesteros et al ]

POLYNOMIALS -ATTRACTORSα GAUSSIAN BUMPSmodels:
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POLYNOMIALS -ATTRACTORSα GAUSSIAN BUMPSmodels:
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u′￼′￼k + ( z′￼′￼

z
− k2) uk = 0
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Ã(k) ≡ ∫
τII

τI

dτ′￼eikτ′￼
z′￼′￼

z
(τ′￼)

Pζ(k)

P(CR)
ζ (k; νII)

= 1 +
1
k

Re {eiπνII [Ã(2k) + i
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SEARCHING FOR MODELS 
OF SINGLE FIELD INFLATION



SINGLE-FIELD MODELS for CMB and PBHs

ns = 0.9641 ± 0.0044 (Planck)
ns = 0.9743 ± 0.0034 (ACT+Planck)

αs = − 0.010 ± 0.004 (Planck)
αs = 0.0062 ± 0.0052 (ACT+Planck)

r ≲ 0.08 (Planck)
r ≲ 0.05 (ACT+Planck)
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SINGLE-FIELD MODELS for CMB and PBHs: 
A QUCK GUIDE TO MODEL BUILDING
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SINGLE-FIELD MODELS for CMB and PBHs: 
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•Find a potential that gives CMB with 
 e-folds.NSR ≈ 𝒪(20 − 40)

•Induce a localized feature that slows the 
inflation and adds  e-folds.N2

•Inflation could resume after the feature for 
 e-folds, soN3

            Ntot = NSR + N2 ≈ 55 (NSR = N1 + N3)

•Choose  to fix N1 MPBH ≃ 1M⊙ × e−2(N1−18)

MPBH ≃ [10−17,10] M⊙ ⇔ N1 ∈ (17,37)
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SINGLE-FIELD MODELS for CMB and PBHs: 
A QUCK GUIDE TO MODEL BUILDING
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up to ϕ6 up to ϕ2

(7 - 3) + 2 = 6 parameters
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SINGLE-FIELD MODELS for CMB and PBHs: 
SCANNING for MODELS

ℒ(D) = ℒCMB(D |θ) × ℒPBH(D | Pζ(kpk)) × ℒ(D | N1)

MOCK-LIKELIHOOD

ns, αs, r

Pζ(kpk) ∈ [10−2,10−3]

N1 ∈ [17,37]
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SINGLE-FIELD MODELS for CMB and PBHs: 
SCANNING for MODELS

10
6

10
10

10
14

kpk [Mpc°1]

10°3

10°2

10°1

r

°2

0

Æ
s
[1

0°
2
]

0.96

0.97

0.98

n
s

10°3

10°2

P
≥
(k

p
k
)

10
°3

10
°2

P≥(kpk)

0.
96

0.
97

0.
98

ns

°2 0

Æs [10°2]

Planck

Planck + ACT

NMC + PLANCK

NMC + ACT

MC + PLANCK

MC + ACT



[ Allegrini, Iovino, HV 	 2510.18791 ]

SINGLE-FIELD MODELS for CMB and PBHs: 
SCANNING for MODELS

10
6

10
10

10
14

kpk [Mpc°1]

10°3

10°2

10°1

r

°2

0

Æ
s
[1

0°
2
]

0.96

0.97

0.98

n
s

10°3

10°2

P
≥
(k

p
k
)

10
°3

10
°2

P≥(kpk)

0.
96

0.
97

0.
98

ns

°2 0

Æs [10°2]

Planck

Planck + ACT

NMC + PLANCK

NMC + ACT

MC + PLANCK

MC + ACT one model found for 
ACT-Planck



[ Allegrini, Iovino, HV 	 2510.18791 ]

SINGLE-FIELD MODELS for CMB and PBHs: 
SCANNING for MODELS

10
6

10
10

10
14

kpk [Mpc°1]

10°3

10°2

10°1

r

°2

0

Æ
s
[1

0°
2
]

0.96

0.97

0.98

n
s

10°3

10°2

P
≥
(k

p
k
)

10
°3

10
°2

P≥(kpk)

0.
96

0.
97

0.
98

ns

°2 0

Æs [10°2]

Planck

Planck + ACT

NMC + PLANCK

NMC + ACT

MC + PLANCK

MC + ACT

  ??r ∝ − α2
s

one model found for 
ACT-Planck



[ Allegrini, Iovino, HV 	 2510.18791 ]

SINGLE-FIELD MODELS for CMB and PBHs: 
SCANNING for MODELS

★★★★★★★★ ★★★★★★★★ ★★★★★★★★ ★★★★★★★★ ★★★★★★★★ ★★★★★★★★★★★★★★ ★★★★★★★★★★★★★★★★★★★★★★ ★★★★★★★★★★★★★★★★★★★★★★★★ ★★★★ ★★★★★★★★★★★★★★★★ ★★★★ ★★★★★★★★★★★★★★★★★★★★★★★★ ★★★★★★★★★★★★★★★★★★★★★★★★★★★★ ★★★★★★★★★★★★★★★★ ★★★★★★ ★★★★★★★★★★★★★★★★★★★★★★★★ ★★★★★★ ★★★★ ★★★★★★★★ ★★★★ ★★★★★★★★ ★★★★★★ ★★★★★★★★★★★★★★ ★★★★★★★★



[ Allegrini, Iovino, HV 	 2510.18791 ]

INFLATION AT AN INFLECTION POINT

★★★★



[ Allegrini, Iovino, HV 	 2510.18791 ]

INFLATION AT AN INFLECTION POINT

★★★★

V̄(δ) = μ (V̄0 + βδ + δ3) + 𝒪(δ4)

δ ≡ (ϕ̄ − ϕ̄i)/MPl



[ Allegrini, Iovino, HV 	 2510.18791 ]

INFLATION AT AN INFLECTION POINT

★★★★

V̄(δ) = μ (V̄0 + βδ + δ3) + 𝒪(δ4)

δ ≡ (ϕ̄ − ϕ̄i)/MPl

αs ≃ −
12β
V2

0
−

36δ2
⋆

V2
0

r ≃
8β2

V2
0

+
48δ2

⋆β
V2

0

ns ≃ 1 +
12δ⋆

V0
−

(3β + 12C − 4)β
V2

0



[ Allegrini, Iovino, HV 	 2510.18791 ]

INFLATION AT AN INFLECTION POINT

★★★★

V̄(δ) = μ (V̄0 + βδ + δ3) + 𝒪(δ4)

δ ≡ (ϕ̄ − ϕ̄i)/MPl

★

◆

▲

★

◆

▲

★

◆

▲

★

◆

▲

★

◆

▲

★

◆

▲

★

◆

▲

★
◆

▲

◆

★

▲

★◆

▲

★◆ ▲

★◆ ▲
★◆ ▲

★◆
▲

★◆ ▲
★◆ ▲★◆ ▲

★
◆ ▲

★◆ ▲
★◆ ▲

★◆ ▲

★◆ ▲

★◆ ▲★◆ ▲★◆ ▲

αs ≃ −
12β
V2

0
−

36δ2
⋆

V2
0

r ≃
8β2

V2
0

+
48δ2

⋆β
V2

0

ns ≃ 1 +
12δ⋆

V0
−

(3β + 12C − 4)β
V2

0



NON-GAUSSIANITY 
IN SINGLE FIELD INFLATION
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NON-GAUSSIAN RANDOM FIELDS

often described with the local expansion

how to approach it without perturbation theory?
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NON-GAUSSIAN RANDOM FIELDS: the 2-point function in USR ζ(x) = −
1

2β
ln |1 − 2βζG(x) |
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SUMMARY

•Peaks of inflationary spectra depend on the SR-to-USR 
transition 

•(polynomial) single field models work only for asteroid mass 
PBHs? - need for tools for systematic searches 

•strong local non-Gaussianity could be treated semi-
analytically


