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In this talk: 
 

1. The dynamics of quasinormal modes
 

2. Mathematical properties of black hole modes



1. The dynamics of quasinormal modes 

[De Amicis, Cannizzaro, Carullo, Sberna arXiv: 2506.21668]



New observations of the black hole ringdown

Heavy events (GW231123)

[LVK collaboration]

Loud gravitational wave events
(GW250114)
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A ringdown model ansatz from quasinormal modes

h ≃ ∑ Anℓme−iωnℓm(t−t0)+ϕnℓm

A superposition of  
quasinormal modes

t0

How do we build a more 
predictive model?

How do we choose ?t0

How do we predict the 
s?An, ϕn

What error are we 
making?

[Lucy Reading-Ikkanda]
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How many modes?



Simplifications: 

1) small mass ratio 

2) not spinning (Schwarzschild) 

3) linear order

Set up and simplifying assumptions

[Küchler+ 2025]



How do we currently model the ringdown?

[reviews: Berti Cardoso Carullo+ (including LS) 2025; Nollert 1999; Berti Cardoso Starinets 2009]



The technique: black hole perturbation theory

gαβ = g(0)
αβ + ϵg(1)

αβ + . . .

0th order

Kerr metric

[Fisher, Pfeiffer, Buonanno (SXS)]

1st order

Teukolsky equation* 

*linearised Einstein equation in vacuum, 
in terms of Weyl curvature scalars
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The dynamics of black hole perturbations

[∂2
t − ∂2

r*
+ Vℓm(r*)] Ψℓm(t, r*) = 0

[Leaver 1986]

[∂2
t − ∂2

r*
+ Vℓm(r*)] Gℓm(t, t′￼; r*, r*′￼) = δ(t − t′￼)δ(r* − r*′￼)

Green’s function
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First order black hole perturbations

[∂2
t − ∂2

r*
+ Vℓm(r*)] Ψℓm(t, r*) = 0

Frequency domain Green’s function

[−∂2
r*

− ω2 + Vℓm(r)] G̃ℓm(ω; r*, r′￼*) = δ(r* − r′￼*)

[Leaver 1986]L.Sberna - UoNottingham



branch cut

poles

Re(ω)

Im(ω)

ωnℓm

The analytic structure of the black hole Green’s function

[Leaver 1986]L.Sberna - UoNottingham

G̃(ω; r*, r′￼*) = G̃−(ω; r*, r′￼*) + G̃+(ω; r*, r′￼*)

Only a branch cut!



The QNM Green’s function

[Leaver 1986]

GQNM(t − t′￼; r*, r′￼*)
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Re(ω)

Im(ω)
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→ →

→ →

→ →
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RR
ωnℓm

∫
+∞+iϵ

−∞+iϵ
dω e−iωtG̃+(ω; r*, r′￼*)

= ∑ Resωnℓm {e−iω(t−r′￼)G̃+(ω; r*, r′￼*)} + branch cut + arc



Re(ω)

Im(ω)

→ →

→ →

→ →

→ →

!1!4

!3

!5

!6

!2

!→
2

RR

I should close the contour in the lower-
half plane when the arc=0.

What about the arc?

[De Amicis Cannizzaro Carullo LS 2025; see also: Chavda Lagos Hui 2024; Kuntz 2025; Arnaudo Carballo Withers 2025]

QNM “causality”

t − r* ≥ t′￼+ r′￼* − 2r+ log
r′￼− r+

r′￼

How: look at the asymptotics  
of  at large  G̃+ |ω |



blac
k hole 

horiz
on

distant observer

~light cone

r′￼ = remitter

~scattering

Quasinormal mode causality

lig
ht r

ing cr
ossi

ng

[De Amicis Cannizzaro Carullo LS 2025; see also: Chavda Lagos Hui 2024; Kuntz 2025; Arnaudo Carballo Withers 2025]



Causality in the QNM Green’s function

GQNMs(t − t′￼; r*, r′￼*) = θ [t − r* − 𝒞(t′￼, r′￼*)] ⋅ ∑
n

Resnψn(r′￼) e−iωn(t−r*−𝒞)

QNM “causality”

[De Amicis, Cannizzaro, Carullo, LS 2025]L.Sberna - UoNottingham



Even more dynamics: a companion’s source

[∂2
t − ∂2

r*
+ Vℓm(r*)] Ψℓm(t, r*) = 0𝒮ℓm(t, r*)

r*(t)

Sℓm(t, r*) ∼ e−imφ(t)[ fℓm(t, r*) δ(r* − r*(t))
+gℓm(t, r*) ∂r*

δ(r* − r*(t))]

source (test particle limit)
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Two types of source contributions

r*(t)

~speed

instantaneous

~position

retarded,  
non-local in time

f (t, r*) δ (r* − r* (t)) + g (t, r*) ∂r*
δ (r* − r* (t))

ΨQNM(t, r*) = ∫
∞

−∞
dt′￼∫

∞

−∞
dr′￼* GQNM × 𝒮

L.Sberna - UoNottingham



Convolution with the source

ΨQNM(t, r*) = ∫
∞

−∞
dt′￼∫

∞

−∞
dr′￼* GQNM × 𝒮 = ∑

n,±
e−iωℓmn±(t−r*) Bℓmn± [cℓmn±(t − r*) + iℓmn±(t − r*)]

iℓmnp(t − r*) =
[r̄2 − 8] uℓmnp(t̄, r̄*)gℓm(t̄, r̄*)

·̄r* [2r2
h − r̄2] − r̄2

“Impulsive” coefficient:

cℓmnp(t − r*) = − ∫
∞

r̄*(t−r*)
dr′￼*

1
·r*(t(r′￼*)) [uℓmnp fℓm − ∂r′￼*

(uℓmnpgℓm)](t(r′￼*),r′￼*)

“Excitation” coefficient: : QNM mode functionu

blac
k hole 

horiz
on

~distant observer

t − r*

t̄, r̄*

[De Amicis, Cannizzaro, Carullo, LS 2025]L.Sberna - UoNottingham



And now…some nice plots



The dynamical ringdown

The standard model: constant amplitudes

hringdown = ∑ Anℓme−iωnℓm(t−t0)+ϕnℓm

Dynamical excitationOur model: dynamical coefficients

tobs

n=0 mode

A0 source-driven

[De Amicis, Cannizzaro, Carullo, LS 2025]L.Sberna - UoNottingham



Activation and impulsive coefficients

impulsive coefficients

Fundamental mode (n=0)
excitation coefficient

[De Amicis, Cannizzaro, Carullo, LS 2025]L.Sberna - UoNottingham



Activation and impulsive coefficients

impulsive

Fundamental mode

activation

Higher modes

…divergence?

n=1

n=2

L.Sberna - UoNottingham



Activation and impulsive…waveform

impulsive

ΨQNM
ℓmn± = e−iωℓmn±(t−r*) Bℓmn± [cℓmn±(t − r*) + iℓmn±(t − r*)]

activation

No divergence :)

L.Sberna - UoNottingham



The dynamical ringdown

[Küchler+ 2025]

The standard model: divergence This model: smooth

hringdown = ∑ Anℓme−iωnℓm(t−t0)+ϕnℓm

tobs
tobs

Adding more 
poles/modes

[De Amicis, Cannizzaro, Carullo, LS 2025]L.Sberna - UoNottingham



Wait…what’s happening at late times?

Fundamental mode

Overtones

ΨQNM

???

L.Sberna - UoNottingham



Near horizon limit

blac
k hole 

horiz
on ~distant observer

ΨQNM(t, r*) = ∫
∞

−∞
dt′￼∫

∞

−∞
dr′￼* GQNM × 𝒮

quasinormal modes 

t − r*

t̄, r̄*

[De Amicis, Cannizzaro, Carullo, LS 2025; see also Price 1972, Mino and Brick 2008, Zimmerman and Chen 2011]

→ ∑
n=0

e−iωn(t−r*)

horizon redshift!

redshift modes ( horizon surface gravity)κH =

+e−κH(t−r*) ∑
k=0

e−κHk(t−r*)



Horizon/redshift “modes” in the waveform?

Fundamental mode

→ ∑
n=0

e−iωn(t−r*)

[however, see Zimmerman and Chen 2011, Oshita+ 2025]

Redshift “modes” Higher modes are dominated 
by the redshift “modes”  

at late times

+e−κH(t−r*) ∑
k=0

e−κHk(t−r*)

Overtones

ΨQNM



Other parts of the Green’s function?



The “prompt response”?

[Kuntz 2510.17954, Arnaudo, Carballo, Withers 2510.18956]

+ branch cut

branch cut/real line

G(ω; r*, r′￼*) = G+(ω; r*, r′￼*) + G−(ω; r*, r′￼*)



2. The mathematical properties of black hole modes

[reviews: Berti Cardoso Carullo+ (including LS) 2025; Nollert 1999; Berti Cardoso Starinets 2009]



The properties of black hole modes

Quasinormal/boundBound states  
(e.g. hydrogen atom)

spectral stability

Hermitian ωI < 0

orthogonal
[Leung+ 1994, Green, LS+ 2022]

non-positive productinner product

complete

discrete spectrum



Φ(r) ∼ e−iωt−ikr

Black hole modes of massive scalars:  
quasibound & quasinormal modes

with k = ± ω2 − μ2

□gμν
Φ + μ2Φ = 0

QBS

QNM

a
M

[figure adapted from A. Sousa’s]L.Sberna - UoNottingham



M

Other black hole modes: quasibound states

Non-relativistic limit 
: 

hydrogen atom spectrum
Mμ ≪ 1

The QBS be unstable around  
spinning black holes ( ):  

superradiance 
ωI > 0

QBS

QNM

a
M

[figure adapted from A. Sousa’s]L.Sberna - UoNottingham



Observational signatures of other black hole modes

[Ana Sousa]

Direct gravitational wave 
emission

[Baumann+ 2022]

Environmental effects
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Applications of mode products



2) Time-independent perturbation theory

[Cannizzaro, LS, Green, Hollands (PRL) 2023; Lestingi+, to appear; see also Yang+ 2014, Mark+ 2014, Zimmerman+ 2014]

ψ = e−i(ω(0)+ϵω(1))t (ψ(0) + ϵψ(1))

Mode ansatz:

𝒪(0)ψ + ϵ𝒪(1)ψ = 0

Perturbed problem:

ω(1)
n = i

∫ dΣata(Ψ4/3
2 𝒥ψ(0)

n )𝒪†(1)ψ(0)
n

⟨⟨ψ(0)
n , ψ(0)

n ⟩⟩

∼ E(1)
n = ⟨n(0) |V |n(0)⟩

p.s. also time-dependent perturbation theory: 
see Cannizzaro, LS+ 2023; Green+ 2024 

(“Extremal black hole weather”)



Application 2: Quasinormal-quasibound transitions

[Cannizzaro, Palleschi, LS, Green, Brito, 2512.15878] [figure adapted from A. Sousa’s]

QBS

QNM

Resonant excitation: suppressed

[Baumann+ 2022]

δV

circular orbit

Non-resonant excitation: enhanced

[Tomaselli, Spieksma, Bertone 2024]

δV

close encounter

cQNM ∼
⟨⟨ΦQNM, δVΦQBS⟩⟩
⟨⟨ΦQNM, ΦQNM⟩⟩



Application 2: Quasinormal-quasibound transitions

[Cannizzaro, Palleschi, LS, Green, Brito, 2512.15878] [figure adapted from A. Sousa’s]

QBS

QNM

Non-resonant excitation: enhanced

[Tomaselli, Spieksma, Bertone 2024]

δV

close encounter

cQNM ∼
⟨⟨ΦQNM, δVΦQBS⟩⟩
⟨⟨ΦQNM, ΦQNM⟩⟩



[Figures: L. Reading-Ikkanda/Simons Foundation; Fisher, Pfeiffer, Buonanno (SXS)]

The black hole ringdown: outlook

Tools and properties: 
 

- mode product & applications 

- Other mode products 

- Hyperboloidal slices 

- Completeness 

- Spectral instability

Dynamics: 
 

- dynamical QNMs 

- Other components of the 
Green’s function 

- Higher perturbative orders
 

- Horizon modes? 



To conclude…a fun fact:

George Green lived (and 
owned a mill) in Nottingham

Laura Sberna 
Anne McLaren Fellow,  

University of Nottingham


