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In this talk:

1. The dynamics of quasinormal modes

2. Mathematical properties of black hole modes




1. The dynamics of quasinormal modes




New observations of the black hole ringdown

Loud gravitational wave events

(GW250114)
Heavy events (GW231123)

10 Years Later: LIGO Hears Loud and Clear

Hanford

GW150914 — Sept. 2015 bl f\ A

| 0-

GW250114 — Jan. 2025

L.Sberna - UoNottingham |LVK collaboration]



A ringdown medel ansatz from quasinormal modes

Merger Ringdown
Inspira A superposition of
stage .
\/ quasinormal modes

|Lucy Reading-Ikkanda]

\4

How many modes? How do we choose #,?

How do we build a more What error are we How do we predict the
predictive model? making? A . s?
n? n-:*

L.Sberna - UoNottingham



Set up and simplifying assumptions

SXS:BBH:1220, ¢ =4, |Xeem| = 0.47 SXS:BBH:2477, ¢ =15, |Xeem| 2 0.19
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[Kiichler+ 2025]



How do we currently model the ringdown?




The technique: black hole perturbation theory

Oth order 1st order

Kerr metric Teukolsky equation”™

“linearised Einstein equation in vacuum,
in terms of Weyl curvature scalars

[Fisher, Pfeiffer, Buonanno (SXS)] L.Sberna - UoNottingham



The dynamics of black hole perturbations

[8? — a%* + me(l’*)] Tfm(t, l’°>x<) = 0

X

* ¥ K

/ Green’s function
107 = 07+ Vi, (r)| Gl s 1y 1) = 6(t — 1)5(r — 1)

L.Sberna - UoNottingham |Leaver 1986]



First order black hole perturbations

[8? — ai + me(l"*)] Tfm(t, l’°>x<) =0

~*"  Frequency domain Green’s function

»*
x

=07, — @° + V(0| Gl 15, 7) = 6(r — 1)

L.Sberna - UoNottingham |Leaver 1986]



The analytic structure of the black hole Green’s function

Im(w)

G(w; 1+, 14) = G_(@; 14, 14) + G (@5 1, T4

\ » Re(w)
X X

nt’m
Only a branch cut! S poles
X X
branch cut

L.Sberna - UoNottingham |[Leaver 1986]



The QONM Green’s function

+oo0+ic€
dow e "G (w: Fs. T,
J _|_( ) Py Vi) > Re(w)

—00+I€

— Z Res, {e "G (w;rs, ri)} + branch cut + arc

Gonm(t — 15 7, 1)

L.Sberna - UoNottingham |[Leaver 1986]



What about the arc?

I should close the contour in the lower- I (w)
half plane when the arc=0. I

ry

! r, Iy

, , p — }/‘_l_ > Re(w)
t—r« 2t +r.—2r_ log " — 3\ ;
I .
QNM “causality” x

How: look at the asymptotics
of G, at large |w|

[De Amicis Cannizzaro Carullo LS 2025; see also: Chavda Lagos Hui 2024; Kuntz 2025; Arnaudo Carballo Withers 2025]



Quasinormal mode causality

~light cone

90

—-—- Scattering

|

|

! — Light cone
s0{ |
|
|

/
r=1r emitter

[De Amicis Cannizzaro Carullo LS 2025; see also: Chavda Lagos Hui 2024; Kuntz 2025; Arnaudo Carballo Withers 2025]



Causality in the QNM Green’s function

GIMs(t ¢ p 1) =6 [t — e — 6(1, r;)] - Z Res w (1) e "l (I=1:=6)

QNM “causality”

L.Sberna - UoNottingham |[De Amicis, Cannizzaro, Carullo, LS 2025]



Even more dynamics: a companion’s source

[atz o a%* T me(r*)] Lme(L I’*) — §fm(t’ r*)

source (test particle limit) v

S, (t,1:) ~ e MO £, (1 1) 6(re — ru(D))
+g,, (t,7:) 0, 8(r« — r:(1))]

L.Sberna - UoNottingham



Two types of source contributions

PONM(z 1) = J dt’J dr. GAM ¢ ¢

— Q0

—

J@&, 1) 0(re = 1 (1)) + g (£, 7%) 0,0 (1 — 1:(1))

~position ~speed

retarded,

T Instantaneous
non-local in time

L.Sberna - UoNottingham



Convolution with the source

©9)

\PQNM(t, re) = J dt/J dr! GAWM g © Z e—iwfmni(t_r*) Bfmni [Cfmni(t — 7‘*) + ifmni(t — I”*)]

,—

“Excitation” coefticient: ,
u: QNM mode function

o0

Co (t— 1) = — dr: u —0..(u )
o J mry () L Jem = Oty Lty

“Impulsive” coetticient:

[72 - 8] ufmnp(fa f*)gfm(fa Is)

Fs (207 — P2| — 72

L.Sberna - UoNottingham |De Amicis, Cannizzaro, Carullo, LS 2025]



And now...some nice plots




The dynamical ringdown

The standard model: constant amplitudes Our model: dynamical coefficients
r
5.22 397 300227 201 2.001 2.000
n=0 mode
10~
_ —iw, 0, (1=10)+ D, o1,
hringdown — Z Amﬂme ’ ’ ’ AO
source-driven
102
10_3;
~50 -10 0 7 20 30 50
fobs

L.Sberna - UoNottingham |De Amicis, Cannizzaro, Carullo, LS 2025]



Activation and impulsive coefficients

r
5.22 3.97 3.00 2.27 2.01 2.001 2.000

|

Fundamental mode (n=0)

excitation coefficient

~50 10 0 7 20 30 50
T—TIR

L.Sberna - UoNottingham |De Amicis, Cannizzaro, Carullo, LS 2025]



5.22

Activation and impulsive coefficients

Fundamental mode

r
3.97 3.00 2.27

2.01 2.001

2.000 599

10_15

Higher modes

r

3.97 3.00 2.27

2.01 2.001 2.000

activation

~ '\
\‘
\‘
-2 rm G \;
10 II \\\ \‘
\ TN
(| \ \N -
. . \ :
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/7 - L AN
10734 77 I \
E_z’// : ,Il : : \ :
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T—7TIR

>0 —50

L.Sberna - UoNottingham
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No divergence :)

Activation and impulsive...waveform

PONM o =i (1=7) Bfmni [Cfmni(t — 7)) + ifmni(t - 7‘*)]

Cmnt

impulsive

r
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activation
r
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—~50 —50

L.Sberna - UoNottingham
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The standard model: divergence

_ —iw, ., (t—=1)+P, »,.
hringdown — Z Amfme ’ ’ ’

The dynamical ringdown

1 l 1 1 1 l 1

[Kiichler+ 2025]

This model: smooth

r
4.68 397 300 213 201  2.001 2.000
1.5- Numerical
4 .
1.01 \ Adding more
05 A poles/modes
.
(@\
@\
=, 0.0
D)
o
—0.5- /
~1.0PHA
" \
~1.5-
_25 ~10 0 10 20 30 50
tobs

L.Sberna - UoNottingham
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Wait...what’s happening at late times?

r
5.22 3.97 3.002.27 2.01 2.001 2.000

Fundamental mode

/

1073 n=0, + E '
104 g n=0, — |
NM — n=1
¥ L R— n=>2 -
10764 ae
n=3 Overtones
10774 —— n=4
08 T 1=
— n==0
10_9! T T T T T 1
—-50 —10 0O 7 20 30 50

T—TILR
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Near horizon limit

horizon redshift!

PONM(¢ 1) = J dt’J dr, GRNM x &

— Q0

N Z o ~iON(1=T) e—KH(l‘—I’*)Z o —Kpk(t=1:)

quasinormal modes redshift modes (ky = horizon surface gravity)

|De Amicis, Cannizzaro, Carullo, LS 2025; see also Price 1972, Mino and Brick 2008, Zimmerman and Chen 2011]



\_PQNM

Horizon/redshift “modes” in the waveform?

397 300227

r

2001

2.000

¥ e

l‘.“-

Fundamental mode

102 \
1073 §---=————--11-=0;+
10_4 T n=0 — ‘\\
0] =] e RN
— =2 N \,\
—6 NWINUNN N
10 —— n=3 Overtones ™™ \'\. '\.\
7 n_4 ) : NN\ N\ “
10 — n=
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[0S — n==06
~50 10 0 7
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Higher modes are dominated
by the redshift “modes”
at late times

[however, see Zimmerman and Chen 2011, Oshita+ 2025]
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The “prompt response”?

G(w; 1+, 1) = G (0; 1, i) + G_(w; T4, 15)

i

| = QNM sum
+ branch cut

=  branch cut/real line

4N

l = 0 (causality/

UHP analyticity)

|[Kuntz 2510.17954, Arnaudo, Carballo, Withers 2510.18956]



rdoso Carullo+ (includirw‘ ZOZ;NOHert 1999; Beiti rdoso Starinets 20(




discrete spectrum

Bound states
(e.g. hydrogen atom)

Quasinormal/bound

Hermitian

w; < 0

orthogonal

inner product

non-positive product
[Leung+ 1994, Green, LS+ 2022]

spectral stability

complete




Black hole modes of massive scalars:
quasibound & quasinormal modes

OBS

D+ 1o =0 . () ~ eTiwtikr

with k = i\/a)z—,uz

L.Sberna - UoNottingham

[figure adapted from A. Sousa’s]



Other black hole modes: quasibound states

OBS

The QBS be unstable around Non-relativistic limit
spinning black holes (w; > 0): My < 1:
superradiance hydrogen atom spectrum

Superradiant clouds

boson clouds I N

Gravitational Atoms

L.Sberna - UoNottingham [figure adapted from A. Sousa’s]



Observational signatures of other black hole modes

Direct gravitational wave
emission

Environmental effects

|[Baumann+ 2022]

L.Sberna - UoNottingham






2) Time-independent perturbation theory

Perturbed problem: Mode ansatz:
Oy + eOWy = 0 y = e~ i@V reoD)t (1 0) 4 oy (D)
b J9ZL Ty )0 Py Ot
“n = 0 /O Mechanics
(¥ ¥ ")) e

p.s. also time-dependent perturbation theory:
see Cannizzaro, LS+ 2023; Green+ 2024

(“Extremal black hole weather”)

|Cannizzaro, LS, Green, Hollands (PRL) 2023; Lestingi+, to appear; see also Yang+ 2014, Mark+ 2014, Zimmerman-+ 2014]



Application 2: Quasinormal-quasibound transitions

OBS

- <<(DQNM’ 5VCDQBS>>
NM ~
0 (D onm> Ponm) )

circular orbit __—close encounter

[Baumann+ 2022]

| Tomaselli, Spieksma, Bertone 2024]

[Cannizzaro, Palleschi, LS, Green, Brito, 2512.15878] [figure adapted from A. Sousa’s]



Application 2: Quasinormal-quasibound transitions

OBS

- <<(DQNM9 6V(DQBS>>
NM ~
0 (D onm> Ponm) )

107 . . . .
—QNM
1077 _ ----QBS
5 107 R
4 e
< jo1t
o = 0.339
10-13¢ ?
o= 0.33 ~_— close encounter
a=0.3
10-PL—— 20 — 4'0 — 6IO ' | 810 — 100 | Tomaselli, Spieksma, Bertone 2024]

ry/ M
[Cannizzaro, Palleschi, LS, Green, Brito, 2512.15878] [figure adapted from A. Sousa’s]



The black hole ringdown: outlook

Tools and properties: :
Dynamics:

- mode product & applications :
- dynamical QNMs

- Other mode products
- Other components of the

- Hyperboloidal slices 1o 8 HINCHOR

- Higher perturbative orders

- Completeness

: . - Horizon modes?
- Spectral instability

[Figures: L. Reading-Ikkanda/Simons Foundation; Fisher, Pfeiffer, Buonanno (5XS)]
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George Green lived (and
owned a mill) in Nottingham
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