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Stationary Black Holes

By now, stationary black holes are rather well-understood. We have

explicit solutions for a number of black holes (Schwarzschild, Kerr, etc.).

uniqueness theorems (under certain assumptions) suggesting that stationary vacuum black holes can be
described with only four parameters: M , a, Q, P .
e.g. Carter 1971; Robinson 1975; Mazur 1982; reviewed in Chruściel et al. 2012

some mathematically-rigorous understanding of their stability, especially in the case of Schwarzschild, and
numerical evidence of stability for Kerr.
e.g. Dafermos et al. 2019, 2021; Klainerman & Szeftel 2023; Press & Teukolsky 1973

constraints on the topologies that stationary black holes may have on a spacelike hypersurface.
Hawking 1972, Galloway & Schoen 2005
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Dynamical Black Holes

What about dynamical black holes?

No more symmetries

No more exact solutions

No more genus constraints

No more smooth horizons

We can get useful insights by studying the non-smooth structures that may develop at the horizon. It turns out
that this analysis can be done mathematically!
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Introduction

I Generic Non-Smooth Horizons: how to mathematically study non-smooth horizons

Assumptions

Classification of non-smooth structures

Evolution of such structures (‘perestroikas’)

II Kerr Merger in the Infinite Mass Ratio Limit: a specific example

Methodology

Results

Comparison with the mathematical predictions
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Part I: Generic Non-Smooth Horizons
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Definitions and Assumptions

The event horizon H is a null hypersurface that is achronal, i.e. no timelike curve can connect any two
points of the horizon.

There exists a future-inextendible null geodesic (generator) through each point p ∈ H. This implies that
once a null geodesic joins onto the horizon, it will stay on it. (For a white hole horizon, we would assume the
generators are past-inextendible instead.)

Spacetime is globally hyperbolic.

There exists a time t⋆ at which the horizon is smooth. This encapsulates the expectation that black holes
settle down to a stationary black hole after a sufficiently long time.
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Finding Past Endpoints

Start from our smooth horizon cross-section H⋆ at t⋆.
Smoothness implies that there is exactly one generator through
each point on H⋆. Beem and Królak 1998

Now trace the generators backwards in time.

Eventually, at some point, two (or more) generators may
intersect. This is a past endpoint of the horizon.

Past endpoints are precisely where non-smoothness arises.

There are two main types of past endpoints: caustic points
(points conjugate to H⋆) and non-caustic points.
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Classification in Four Dimensions

We are interested in generic non-smooth features, i.e. features that are stable under
perturbations of the metric. We assume that this is equivalent to stability under
perturbations of the null hypersurface.

In four dimensions, we obtain the following list of possibilities:

Type Dimension # of generators
Non-caustic A1 Regular point 3 1
Non-caustic (A1,A1) Normal crease point 2 2
Non-caustic (A1,A1,A1) Normal corner point 1 3
Non-caustic (A1,A1,A1,A1) 0 4
Caustic A3 1 1
Caustic (A3,A1) 0 2

Siino & Koike 2011
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Perestroikas
Let us now focus on normal crease points, which are non-caustic points at which exactly two generators
enter the horizon. Such points form a smooth, 2-dimensional spacelike submanifold in spacetime.

Choose a time function τ . Then we can foliate our spacetime with Cauchy surfaces Στ of constant τ .

Generically, these Στ will intersect the crease submanifold transversely.

However, at special moments of time the intersection will be tangential, resulting in a qualitative change in
the non-smooth structure. Such changes are known as perestroikas.

Σ⋆

τ
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Crease Perestroikas
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Crease Perestroikas
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Caustic Perestroikas
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Caustic Perestroikas
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Part II: Kerr Merger in the Infinite Mass Ratio Limit
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Why this limit?

The curvature of a Kerr black hole of mass ML is relevant on scales ∼ ML.

Consider a merger of a small black hole, of mass M = 1, with a much
larger black hole with ML ≫ 1. Then near the small black hole (i.e. on
scales much smaller than ML), the metric is Kerr with some small
corrections from the curvature of the large black hole.

In the limit ML → ∞, these corrections vanish, so the metric is exactly
Kerr! Emparan et al. 2018

However, the horizon of the combined system is now asymptotic to a
Rindler or acceleration horizon, rather than the usual Kerr horizon.

The correct null hypersurface is the one that asymptotes to a null plane at
late times, representing the infinitely-large black hole that has settled
down after merger.
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Equations of Motion
The equations of motion are simply the null geodesic equations in Kerr, with appropriate final conditions. With
an affine parameter τ , these read

Σ

E

dt

dτ
=

r 2 + a2

∆
(r 2 + a2 − aλ) + a(λ− a sin2 θ)

Σ

E

dr

dτ
= ±r

[
r 4 +

(
a2 − λ2 − η

)
r 2 + 2M

(
(λ− a)2 + η

)
r − a2η

]1/2
Σ

E

dθ

dτ
= ±θ

[(
a2 − λ2 csc2 θ

)
cos2 θ + η

]1/2
Σ

E

dϕ

dτ
=

a

∆
(r 2 + a2 − aλ) +

λ

sin2 θ
− a

where E , λ and η are constants of motion, and where

∆ = r 2 − 2Mr + a2 , Σ = r 2 + a2 cos2 θ.

For null geodesics we can always rescale the affine parameter to set E = 1.

We also introduce two impact parameters α, β which span the null plane at infinity (which is at an angle θo),

α = − λ

sin θo
β = ±o

√
(a2 − λ2 csc2 θo) cos2 θo + η.
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Perturbative vs Numerical Methods

Perturbative Method

Expand the equations (in integral form) in inverse
powers of λ, b ≡

√
λ2 + η and rs , where rs is the

initial r coordinate of the geodesic.

Can then determine the coordinates of caustic and
crease points perturbatively.

Holds for large impact parameter and large radius,
i.e. it is best suited to study the non-smoothness
of the large black hole.

Nevertheless gives the correct qualitative
behaviour near the point of merger, when the
series expansion is expected to break down.

Numerical Method

Solve the ODEs numerically, starting from late
time and evolving backwards in time.

Determine when two geodesics intersect to find
crease points.

Can quantitatively probe up to and beyond the
time of merger. However, at early times, the
geodesics forming creases intersect with an angle
that is almost π, causing difficulties in identifying
crease points.

Does not give us formulae that can illuminate the
physics.
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True and False Creases
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Crease and Caustic Sets
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Horizon Cross-Sections
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Structure in Parameter Space
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Properties of the Crease

It extends to the infinite past t → −∞.

The caustic lines bordering the crease submanifold have infinite proper length.

Nevertheless, the crease submanifold has finite area. We can compute the area perturbatively for the large
black hole’s section of the crease submanifold for some cutoff radius rmin,

ACrease =
15πa2(1− cos2 θo)

64

√
M

4rmin

[
1 +

15π

64

√
M

4rmin
+ · · ·

]
.

In a constant t cross-section, the length of the crease increases near the time of merger, as the crease is
stretched towards the other black hole. In the infinite past, the large black hole’s crease has zero length, but
the small black hole’s crease has finite length. Perturbatively, for the large black hole,

ℓCrease = −15πa2(1− cos2 θo)

128 t
+O(t−2).

Near the caustic points, the opening angle of the crease tends to π, as is expected.
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Crease Angle in the Local Model
In a neighbourhood of a normal crease point, the horizon can be locally described as the union of two null
hypersurfaces. We can use Riemannian normal coordinates (T ,X 1,X 2,Z ) at the point of merger to give a local
description of how the opening angle should behave.

The two null hypersurfaces can be written as

kτ = Z +

(
bAB − 1

2
KAB

)
XAXB + . . . kτ = −Z +

(
b̂AB − 1

2
KAB

)
XAXB + . . .

where τ ≡ t − tmerger is our time function, bAB and b̂AB describe the shear and expansion of the null
hypersurfaces, and KAB describes the extrinsic curvature of the τ = 0 slice at the origin.

From these equations we can find the crease submanifold

2kτ = (bAB + b̂AB − KAB)X
AXB +O(|XA|3) 2Z = (b̂AB − bAB)X

AXB +O(|XA|3)

and find the normals there:

n1 = dZ + [(2bAB − KAB)X
B +O(|XB|2)]dXA n2 = −dZ + [(2b̂AB − KAB)X

B +O(|XB|2)]dXA.

M. Gadioux (University of Cambridge) Non-Smooth Horizons in Kerr Black Hole Mergers IFPU, 16 January 2026 23 / 28



Crease Angle in the Local Model

The crease’s opening angle Ω can then be obtained from

cos(π − Ω) =
n1 · n2

||n1|| ||n2||
.

We obtain
Ω2 = 4µABX

BµACX
C +O(|XA|3), µAB = bAB + b̂AB − KAB .

µAB must have indefinite signature for a merger perestroika, so it has eigenvalues −λ−, λ+ for λ± > 0. Hence,
by suitably rotating XA,

Ω2 = 4
[
λ2
−(X

1)2 + λ2
+(X

2)2
]
+O(|XA|3).

After some further manipulation we can write the angle as a function of proper length along the crease, with
parametric solution

Ω =
√

8kλ±|τ |f±(ξ) + . . . ℓ =

√
2k|τ |
λ∓

∫ ξ

0

f±(x)dx + . . .

where

f±(x) =

(
cosh2 x +

λ∓

λ±
sinh2 x

)1/2
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Crease Angle in the Extreme Kerr Merger
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Crease Angle in the Extreme Kerr Merger
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Merger of a Black Hole and a Cosmological Horizon
Our results on creases and caustics apply to any future horizon. Suppose a black hole disappears behind the
cosmological horizon of some observer. The combined horizon can be obtained in a similar way to that of the
black hole merger. MG & H. Wang, arXiv:2412.04551
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Summary and Future Directions

Summary

We have classified all types of non-smooth structures that can occur generically on a black hole horizon, and
have shown how these evolve.

These structures provide useful insights into the otherwise very complicated dynamics that black holes may
undergo, e.g. in a merger.

We have provided an exact local description of the event horizon when black holes merge.

The extreme mass ratio merger allows us to employ the well-known properties of the Kerr spacetime to
obtain a precise view of how the merger occurs.

The properties of the crease are consistent with the predictions of the local model.

Future Directions

The area of the crease submanifold is a geometric invariant of the spacetime. Is there a physical
interpretation of it?

Implications of non-smooth structures on black hole entropy?

Non-smooth horizons in higher dimensions or higher-derivative theories of gravity?
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Non-smooth horizons in higher dimensions or higher-derivative theories of gravity?
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