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Introduction
Testing GR with black hole binaries

New physics?
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Introduction
GR as an Effective Field Theory

Agnostic and universal approach to include new physics

S = R+ 'R+ R+ ..

1
d4 /

Einstein Beyond Einstein
. scale of new physics

1. It's not ruled out by other experiments

2. It has full predictive power

3. It CAN be tested with GWs
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Introduction

Ringdown as a test of new physics 1

W =wp+Iiw, O=——
¢
N\ R}

T
— —lwy,, I
Y = Z A, e
QNM frequencies == underlying gravitational theory

[.m,n

Challenge: QNMs of rotating black holes in theories beyond GR
— . Kerr + 5
Dpyn = a)lmn Dlmn

 Modified Teukolsky equations [Li, Wagle, Chen, Yunes *22][Hussain, Zimmerman '22][PAC, Fransen,
Hertog, Maenaut '23],...

 Spectral methods [Chung, Yunes 24] [Blazquez-Salcedo+ '24],...

* No method yet can probe the near-extremal regime



Introduction

Near-extremal black holes: amplification of new physics?

Classical GR:

0.07

* Aretakis instabillity | n=0
_ ~0.2|
* QNM spectrum: long-lived modes - =l
o —04/
\g/ " n=2
— _o6!
n=3
~0.8}
n=4
02 04 06

Re(w)



Introduction

Near-extremal black holes: amplification of new physics?

Classical GR:

* Aretakis instability

* QNM spectrum: long-lived modes

New physics:

e Quantum effects [Heydeman, lliesiu, Turiaci, Zhaol

* Divergence of tidal forces [Horowitz, Kolanowski,
Remmen, Santos]

* Singular horizon [Kleihaus, Kunz, Mojica, Radu}

 QNM spectrum???
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Introduction
Plan of the talk

1. Spectrum of near-extremal Kerr

|Isospectral EFTs

BH perturbations in isospectral EFTs

> WD

Results for QNMs



Part 1: QNM spectrum of near-
extremal Kerr




Spectrum of near-extremal Kerr

Kerr metric

A d 2 : 29

A=r*=2Mr+a* X=r*+a*cos*6
M — mass, a — angular momentum per mass

Extremal limit:a = M

a
Near-extremal regime: € = 1 — v, <1



Spectrum of near-extremal Kerr

Teukolsky equation

Decoupled, 2nd order equation for curvature perturbations on top of Kerr
OW) =0, Y = component of the Weyl tensor
Separable: ¥ = ¢~ ‘@t+ime 7,,(0; aw)y,, (1)
7,,(0; aw) — Spin-weighted spheroidal harmonics (s = spin = £2)

;. (r) — Satisfies master radial equation

+ V(ny,,

d d
AS+2— A2—S_
dr [ dr Vi

V(r) effective potential



Spectrum of near-extremal Kerr
Definition of QNMs

os- .~ 1 Nowaves coming
- el et@Wr 1 from the horizon or
0.4 —> | from infinity
0.3+ .
N ' Solutions only for
| 02f . discrete family of
I complex w
0.1F
Horizon <—.0}- . . | — Infinity
10 -5 0 5 10




Spectrum of near-extremal Kerr
Eikonal limit and WKB method

In the eikonal limit [ — 0o, QNMs are related to the maximum of the potential

V= (00 +a) —am]” = A (A, = 2maw + @0)?)

WKB formula: h
v i 202V
V(ry) = = o = 0, W; = — (n + 5) A oV,
Real part of @ Imaginary part of @
Modes labeled by the ratio u = ﬁ where L=[+1/2

L



Spectrum of near-extremal Kerr
Eikonal limit and WKB method

Maximum of the potential in the extremal limit?



Spectrum of near-extremal Kerr

Eikonal Iimit and WKB method

Maximum of the potential in the extremal limit?

Foru > u.. ~ 0.74, r, = M at extremality. Modes
live near the horizon and are long lived

— Zero-damping modes (ZDMs)

0.00

—V./L?

~0.10/

—0.1?_

~0.05!

IIIIIIIIIIIIIIIIIIIIIIIIIII

Figure taken from 1212.3271



Spectrum of near-extremal Kerr
Eikonal limit and WKB method

Maximum of the potential in the extremal limit?

Foru > u.. ~ 0.74, r, = M at extremality. Modes
live near the horizon and are long lived

0.00-

— Zero-damping modes (ZDMs) _005.

—V./L?

For u < u.., the maximum is located outside the |
horizon ~0.10;

— Damped modes (DMs)
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Figure taken from 1212.3271



Spectrum of near-extremal Kerr
Eikonal limit and WKB method

Maximum of the potential in the extremal limit?

Foru > u.. ~ 0.74, r, = M at extremality. Modes
live near the horizon and are long lived

0.00-

— Zero-damping modes (ZDMs) —005.

—V./L?

For u < u.., the maximum is located outside the |
horizon ~0.10;

— Damped modes (DMs)

—0.1;

In addition, ZDMs also exist for 0 < u < p_., but

they are unrelated to the maximum of the potential Figure taken from 1212.3271
[Yang+ 12, “13]



Spectrum of near-extremal Kerr

Branching of the spectrum

Conclusion: the QNM spectrum of near-extremal Kerr bifurcates in two families of
modes [Yang, Zhang, Zimmerman, Nichols, Berti, Chen ’12, ‘13]

Zero-damping modes (ZDMS) (exist for u > 0)

l 1 € a
w=mfd—— | n+— —, €c=1——
M( 2) 2 M

Infinitely long-lived

Damped modes (DMs) (exist for u < 0.744)— finite damping times



A = only ZDMs exist (GR)
® = ZDMs and DMs exist (GR)
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Branching of the spectrum

20

15

10




€
©
(-
O
—
O
o AN
o O <
S -=RE
T » e <
O X O %
- @ y— ﬂ
+2 O
0 A = |
=% 3 Q
N © O —
N o WJml_l
> = ©
[<ya S N
O N =
N m
40 O
)
S
i -
0

- 44 qCCC\|0e 0000000000000 00000 [
444 <C<4AQ9 000000000000 00000o0
44 <q<\oooeooocoo0co0co0000o0 o0
444 <dAoooooooooocooocoo o
444 <qN 0000000000000 00 0
44449 0000000000000 0 o0
REREEEEEFEFEE XX NY
Cd4<<4<<doocoococoocoooco o o
4440000000000 00o0
4449000000000 00 0

RER XK EEEEXEXE:
RPN NY
REATEEEEEEXXXS
«4<<p00000000 o0
REEEEEEXEXEXXX]

RECEEEXXXX:

RAEEEREEERXXS

<<\ oeoeoo oo

20

15

10

Spectrum of near-extremal Kerr

Branching of the spectrum




Part 2: Isospectral EFIs




EFT extension of GR

R+ €% (A Ry + AoaaRs) + £° (€,R5 + 6,R3 + €3R,R,) +

|
St = d*x
EFT 167z,[ \/|8\

.. : ) _ po Oy J72% > J po oy MU
Two cubic invariants: &3 = R ,/"R R(Sy , R3=R, "R R(Sy

Three quartic invariants: formed from R, = lep GRWP", R2 — RWPO_RWM
1 paf

Dual Riemann tensor K, ; = o Cuvap™ " po

(Aey> €1, €5) €ven parity  (A,4q, €3) 0dd parity

cv?



EFT extension of GR

Breaking of isospectrality

Special property in GR: isospectrality

BH perturbatlons

AN

Axial Polar

N/

Identical QNM spectrum

0.60

0.55|

0.50/
0.45

0.40

Isospectrality in GR

—— Kerr (axial and polar)
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EFT extension of GR

Breaking of isospectrality

Special property in GR: isospectrality

BH perturbatlons

AN

Axial Polar

N/

Identical QNM spectrum

Not true in extensions of GR!

0.60

0.5

0.50}
0.45

0.40

Isospectrality breaking

beyond GR

—— Kerr (axial and polar)

Higher-derivative axial

Higher-derivative polar

02 04

0.6

0.8



Is there an isospectral theory?



Is there an isospectral theory?

Unique eikonal-isospectral extension of GR to eight derivatives



Is there an isospectral theory?

1 8
S = 1 | ey TeT [R+ (RS + 73)|

Unique eikonal-isospectral extension of GR to eight derivatives
Key feature: dispersion relation for large-momentum GWs is non-birefringent

k* = 64aR* " RPPlk k k,

p

Remark: k? #+ () - GWs no longer follow null geodesics



Eikonal QNMs and photon sphere

In GR eikonal QNMs are related to unstable photon sphere geodesics
[Cardoso+ '08] [Yang+ '12]

Real frequency <€+——» COrbital frequency
Damping time  <€4—» | yapunov exponent




Eikonal QNMs and photon sphere

In GR eikonal QNMs are related to unstable photon sphere geodesics
[Cardoso+ '08] [Yang+ '12]

Real frequency <€+——» COrbital frequency
Damping time  <€4—» | yapunov exponent

Beyond GR: Generalized correspondence

QNMs <«—» Unstable GW orbits
(not geodesic!)

|Isospectrality Non-birefringence



Summary

Siso —
167G

Jd4x\/|g\ [R +a (R; +R%)]

1. Non-birefringent dispersion relation |
} Isospectral EFTs Generalizable to

2. |sospectral eikonal QNMs higher orders



Summary

Siso —
167G

Jd4x\/|g\ [R +a (R; +R%)]

1. Non-birefringent dispersion relation |
} Isospectral EFTs Generalizable to

2. |sospectral eikonal QNMs higher orders

Isospectrality related to String Theory

Siso — Sstring theory, 0 = C(3 ) a/B
i 256

Supersymmetry? Duality? Born-Infeld-like gravity?



Part 3: BH perturbations In the
Isospectral EFT



Master equation for perturbations

Dispersion relation for GWs

2 __ A aoc
k* = 64aR” " RP*Plk k k,

Intuitive idea: effective scalar equation that yields the same dispersion relation



Master equation for perturbations

Dispersion relation for GWs

k> 64aRﬂa'7 ﬁRP“(’ﬁk k Kk,

Intuitive idea: effective scalar equation that yields the same dispersion relation

(v2+64aRﬂ ! RPPY Y,V Y )cI>=o

p



Master equation for perturbations

Dispersion relation for GWs

k> 64aRﬂa'7 ﬁRP“(’ﬁk k Kk,

Intuitive idea: effective scalar equation that yields the same dispersion relation

(v2+64aRﬁ ! RPPY Y,V Y )cI>=0
|—|
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More rigorously: & hﬂy = () (diagonal operator=isospectrality)



Master equation for perturbations

Dispersion relation for GWs

k? = 64aR” " ﬁRP“(’ﬁk k Kk,

Intuitive idea: effective scalar equation that yields the same dispersion relation

(v2+64aRﬁ ! RPPY Y,V Y )<D=O

I—I
@2

: _ 21.TT __ : : :
More rigorously: & hﬂy = () (diagonal operator=isospectrality)

Remark: it is enough to consider the Kerr background (w/o corrections)



Solving the equation

Step 1: decompose the field in spheroidal harmonics

O = 7'M | S (x;am)y;, (1) + o 2 Sym(Xs aw)yy, (1)
=



Solving the equation

Step 1: decompose the field in spheroidal harmonics

O = 7'M | S (x;am)y;, (1) + o 2 Sym(Xs aw)yy, (1)
=

Step 2: project the equation on §,,,

1
J dxS;, (x; aw)(r* + a’x*)D*® = (
-1



Solving the equation

Step 1: decompose the field in spheroidal harmonics

O = 7'M | S (x;am)y;, (1) + o 2 Sym(Xs aw)yy, (1)
['£l

Step 2: project the equation on §,,,

d [ d
AL [A ull
dr

+ (V— &AUlm) W, = 0

Uy, = — 1152M° (A, — 2maw + (aw)*

) 2 J ! dx Slm(xa aa))z
" | C ) 2x(r? + a?x?)
/Il

m



Solving the equation
Step 3: simplify the potential

7 S (X; czcc))2
l 27(r2 + a2x2)4

m

1
= — 1152M8/1§n[ dx
—1



Solving the equation
Step 3: simplify the potential

7 S (X; cza))2
’ 27(r2 + a2x2)4

m

1
= — 1152M8/1§n[ dx
—1

do




Solving the equation

Step 3 extended. We modify the integrand exploiting a gauge freedom

I I
I, = ZLJ' dxS, (x;aw)”f(x) = LJ dxS, (x;aw)” [f(x) + F [h(x)]]
T J_q 2T _1

F | h] is certain 3rd order differential operator and /4(x) any smooth function such that A(*£1) = 0

Then, [, is the only constant for which the differential equation
fx) + Fh(x)] = 1,
admits a smooth solution that vanishes on x = £ 1.

In the eikonal regime,  [h] becomes of first order and the equation can be solved analytically.



Solving the equation

QNMs through the WKB formula

Real part of the frequency: V (1) = y
r

Fo,(WR

Imaginary part of the frequency: @w; = — (n + —



Part 4: Results for QNMs




Results for QNMs

Generalities

o
. We write @ = @™ + @éw, o= —
M©6

» Result dependson y =m/¢Z andony =J/J ..

» Foru > u.. ~ 0.74 we have “zero damping modes” in the extremal limit

e For u < u.. the modes are damped

» There are also ZDMs for 4 < u.. , but these are not captured by the WKB
analysis [yang+ 12, '13]



M&UR/LS

Comparison with modified Teukolsky

Convergence for I=m

Real part Imaginary part

0.00
—0.05¢
—0.10

—-0.15¢
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M&UR/LS

Results as a function of u

Real part: Kerr
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Results as a function of u
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Results as a function of the temperature

Real part: Kerr
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Results as a function of the temperature
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Expansion near the critical point

Reminder: effective potential

d dy
A— | A— |+ V y =0
dr dr

V, = [a)(r2 +a®) — am]2 — A (/Ilm + &Ulm)
We look first for perturbative corrections to the Kerr QNMs
0 = o " + @dw
We consider e < 1 and |y — .. | < 1

There are three different regimes depending on the relative size of € and |y — ey \3



Expansion near the critical point

. _ . _
Regime lie << |u—p..|”yu> ji

Sw = 0" + i0(¢)

No qualitative change to the GR prediction



Expansion near the critical point

Regimell: |y —j | <e<x 1

""" = mQ [1 — 362/3] L (n + l) > 60

2

L2—2
EellP—i (n+—> i Eeox ., £~ — 601




Expansion near the critical point

Regime lll: ¢ < |u —/Zcr\3 < 1, p<pg
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Expansion near the critical point

Summary: amplification of new physics

The corrections to @, diverge for modes near o

the critical line « T oo ——— 0.78 0.82
/N‘ 0.75 0.70 053
50)] 0 1

— ! x he 13 L —— 076 —— 0.8 0.84
Wy E . —— 077 0.81
_ 3 i C\,‘q ~10}
(‘/’t_:ucr‘ e ) <
§ ~100F
S
50) ~1000}
1 A — =1
— X A|p— fl]
60] ~10000}
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Non-perturbative analysis

Modification of the critical point

Observation: r = M is always an extremum of V, fora = M, w = m£).

Condition for the existence of DMs is

1 d*V,
E, =—
2 dr?

r=M.,a=M ,o=m¢C2

The phase boundary is modified




Non-perturbative analysis
Full QNMs

When |u — ji..| ~ aou.., the perturbative expansion in & for the QNM
frequencies breaks down.

We need to obtain the exact solution. For instance, in regime llI:

3/2
7]3/2 ‘/’t — Her ‘

w; ~ —(n+1/2) (1+06(a))

2M

3/2 3/2
‘3/2 31 T 1/2

Wy n R
AM aélucrl/“t — My

1 S T oy T P

+ ...,

— The divergence is a consequence of the change in the critical point
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Non-perturbative analysis

Qualitative change in the spectrum
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IuCI’ — /ZCI’_I_ &EIMCI'

® = ZDMs and DMs exist (GR)
m
C+1/2

A = only ZDMs exist (GR)

ase boundary obtained from the eikonal limit
H
New phase boundary in higher-derivative gravity
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Non-perturbative analysis

Qualitative change in the spectrum



Critical band |y — i .| S |aou,., |
higher-derivative gravity

Phase boundary in GR

Modes In the critical band recelve order-one

The number of DMs is modified
corrections

——_ New phase boundary In
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Regime of validity

Are there modes in the critical band within the regime of validity of the EFT?
Remark: 4 = m/L is rational

Dirichlet theorem = many modes with |u — j..| ~ 1/L7
On the other hand the critical band is |y — fi..| < |@du..| ~ 71.4|a|L?

714a|L* > 1

Condition for modes in the band

Observe: it can be satisfied evenif |a| < 1



Regime of validity

EFT regime 1: Wilsonian point of view

We assume a ~ fSV, with £y = EUV related to massive degrees of freedom

The EFT is only reliable for resolving distances grater than £’y

1 _ Lo
a| = —=

6 < 1 (BH radius larger than £y

—~1/6
[ (

L |a wavelength larger than £ ;v)

1/3

= 71.4|a|L* < |@|"” < 1 = No modes in the critical band for large L

Still, modes near the critical line get corrections of order | & |L* > | & | L?



Regime of validity

EFT regime 2: convergence of the higher-derivative expansion

The EFT is classically consistent if additional HD corrections can be neglected

Result: in the regime in which | & | < 1 and |a|L* ~ 1, the effect of any
additional HD correction on the QNM frequencies is negligible compared to the

aR* term

— Large changes in the QNM spectrum can take place consistently

Conclusion: as a classical theory, the EFT is consistent. Whether we can trust
these predictions depends entirely on the UV completion



Sensitivity of lower | modes

Exact condition for the phase boundary

[Detweller ’80] [Yang+’12]

EReT — T | A [2) > 0
Em = s+ D=4, (m2) > (No DMs)
Thisis V'(r,) expressed in a real form of the Teukolsky equation.
w=mfd,a=M

Remark: we only need to know the near-horizon extremal Teukolsky equation.

Modified near-horizon Teukolsky equation [PAC, David '24]

ASAT
A, = A+ a0A;



Sensitivity of lower | modes

Exact condition for the phase boundary

At
Modified phase boundary o
7m2 . N : i
SElm — T T S(S + 1) — SAlm — aéAl;/l > O 207 2—10.6 ‘A__
: :100000 A -
Relative correction: s - |
S A
= ' 10 000.
+ 5Alm 10y N A
Im — 7,2 | AA
2 s(s+ 1) — SAlm 5 AAA
A
32 + | ®ees
a)IN ‘SElm‘ $ 5a)]/a)]N 3/2Alm 0f 00000000V VVDOOOL L
0 5 10 15 20 25




Conclusions

Specific remarks
* First computation of gravitational QNMs with high rotation beyond GR

 Key development: effective scalar equation for eikonal perturbations in
“Isospectral” theories

 Master equation could have more applications: time domain simulations?

* Future work: extension for non-isospectral theories



Conclusions

General remarks
 Beyond-GR effects increase dramatically for high rotation
* Highly-rotating BHs have long-lived modes: high-precision spectroscopy

Highly rotating BHs === Golden events to test new physics



Conclusions

General remarks

 Beyond-GR effects increase dramatically for high rotation

* Highly-rotating BHs have long-lived modes: high-precision spectroscopy
Highly rotating BHs == Golden events to test new physics

Open questions

« QNM computation for lower [

* |mplications for the time domain signal



Thank you




Bonus slides




Why test EFT corrections

EFT is the main hypothesis for beyond-GR physics
Conditions for a theory to be viable:
1. It’s not ruled out by other experiments

2. It has full predictive power

3. It CAN be tested with GWs

Very few “alternatives” to GR remain. EFT is the best motivated one
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Observability of higher-derivative corrections

Relative corrections to GR = Const X A

£ (GM)?
A — (GM)

70

£ : £ ’ Z \°
A ~ ’ A ar ~ o A 10M =
Sun ( 5 x 103%km ) Farth ( 2 x 103km ) s(10Mo) <40km )

30 orders of magnitude increase

In addition, “Const” can become large in special cases (high rotation)
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