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Agnostic and universal approach to include new physics 

1. It’s not ruled out by other experiments


2. It has full predictive power 


3. It CAN be tested with GWs

S =
1

16πG ∫ d4x |g | [R + ℓ4ℛ3 + ℓ6ℛ4 + …]

Beyond EinsteinEinstein
: scale of new physicsℓ

GR as an Effective Field Theory
Introduction



Ringdown as a test of new physics

QNM frequencies              underlying gravitational theory


Challenge: QNMs of rotating black holes in theories beyond GR


   

• Modified Teukolsky equations [Li, Wagle, Chen, Yunes ’22][Hussain, Zimmerman ’22][PAC, Fransen, 
Hertog, Maenaut ’23],…


• Spectral methods [Chung, Yunes ’24] [Blázquez-Salcedo+ ’24],…


• No method yet can probe the near-extremal regime

ωlmn = ωKerr
lmn + δωlmn

Ψ = ∑
l,m,n

Almne−iωlmnt

Introduction
,      ω = ωR + iωI ωI = −

1
τ
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• Aretakis instability


• QNM spectrum: long-lived modes 
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• Quantum effects [Heydeman, Iliesiu, Turiaci, Zhao]
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Plan of the talk
Introduction

1. Spectrum of near-extremal Kerr


2. Isospectral EFTs


3. BH perturbations in isospectral EFTs


4. Results for QNMs



Part 1: QNM spectrum of near-
extremal Kerr



Spectrum of near-extremal Kerr
Kerr metric




 ,     


mass,      angular momentum per mass


Extremal limit: 


Near-extremal regime: 

ds2 = −
Δ
Σ (dt − a sin2 θdϕ)2 + Σ ( dr2

Δ
+ dθ2) +

sin2 θ
Σ ((r2 + a2)dϕ − adt)2 ,

Δ = r2 − 2Mr + a2 Σ = r2 + a2 cos2 θ

M → a →

a = M

ϵ = 1 −
a
M

≪ 1



Spectrum of near-extremal Kerr
Teukolsky equation
Decoupled, 2nd order equation for curvature perturbations on top of Kerr


 ,     component of the Weyl tensor


Separable: 


Spin-weighted spheroidal harmonics (s = spin = )


Satisfies master radial equation





  effective potential

𝒪(Ψ) = 0 Ψ =

Ψ = e−iωt+imϕ
sSlm(θ; aω)ψlm(r)

sSlm(θ; aω) → ±2

ψlm(r) →

Δs+2 d
dr [Δ2−s d

dr
ψlm] + V(r)ψlm

V(r)



Spectrum of near-extremal Kerr
Definition of QNMs
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Spectrum of near-extremal Kerr
Eikonal limit and WKB method
In the eikonal limit , QNMs are related to the maximum of the potential 





WKB formula: 

,              


Modes labeled by the ratio ,   where  

l → ∞

V = [ω(r2 + a2) − am]2 − Δ (Alm − 2maω + (aω)2)

V(r0) =
dV
dr r0,ωR

= 0 ωI = − (n +
1
2 ) Δ

2∂2
rV

∂ωV r0,ωR

μ =
m
L

L = l + 1/2

Real part of ω Imaginary part of ω

Angular separation constants



Maximum of the potential in the extremal limit? 

For ,  at extremality. Modes 
live near the horizon and are long lived 

 Zero-damping modes (ZDMs) 

For , the maximum is located outside the 
horizon 


 Damped modes (DMs) 

In addition, ZDMs also exist for , but 
they are unrelated to the maximum of the potential  
[Yang+ ’12, ‘13]

μ > μcr ≈ 0.74 r0 → M

→

μ < μcr

→

0 ≤ μ ≤ μcr

Spectrum of near-extremal Kerr
Eikonal limit and WKB method
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Spectrum of near-extremal Kerr
Branching of the spectrum
Conclusion: the QNM spectrum of near-extremal Kerr bifurcates in two families of 
modes  [Yang, Zhang, Zimmerman, Nichols, Berti, Chen ’12, ‘13]


Zero-damping modes (ZDMS) (exist for )


  ,          

Infinitely long-lived


Damped modes (DMs) (exist for )  finite damping times

μ ≥ 0

ω = mΩ −
i

M (n +
1
2 ) ϵ

2
ϵ = 1 −

a
M

μ ≤ 0.744 →
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Spectrum of near-extremal Kerr
Branching of the spectrum



= ZDMs and DMs exist (GR) 
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Spectrum of near-extremal Kerr
Branching of the spectrum



Part 2: Isospectral EFTs



EFT extension of GR




Two cubic invariants: ,      


Three quartic invariants:  formed from  ,    


Dual Riemann tensor  


( ) even parity        ( ) odd parity

SEFT =
1

16π ∫ d4x |g | [R + ℓ4 (λevR3 + λoddR̃3) + ℓ6 (ϵ1R2
2 + ϵ2R̃2

2 + ϵ3R2R̃2) + …]
R3 = R ρσ

μν R δγ
ρσ R μν

δγ R̃3 = R ρσ
μν R δγ

ρσ R̃ μν
δγ

R2 = RμνρσRμνρσ R̃2 = RμνρσR̃μνρσ

R̃μνρσ =
1
2

ϵμναβRαβ
ρσ

λev, ϵ1, ϵ2 λodd, ϵ3



Special property in GR: isospectrality

Axial Polar

Identical QNM spectrum

BH perturbations

Isospectrality in GR

EFT extension of GR
Breaking of isospectrality 



Isospectrality breaking

beyond GR

Not true in extensions of GR!

EFT extension of GR
Breaking of isospectrality 

Special property in GR: isospectrality

Axial Polar

Identical QNM spectrum

BH perturbations



Is there an isospectral theory?



Is there an isospectral theory?




Unique eikonal-isospectral extension of GR to eight derivatives 

Siso =
1

16πG ∫ d4x |g | [R + α (R2
2 + R̃2

2)]



Is there an isospectral theory?




Unique eikonal-isospectral extension of GR to eight derivatives 

Key feature: dispersion relation for large-momentum GWs is non-birefringent





Remark: GWs no longer follow null geodesics

Siso =
1

16πG ∫ d4x |g | [R + α (R2
2 + R̃2

2)]

k2 = 64αRλ η
α βRρασβkλkηkρkσ

k2 ≠ 0 →



Eikonal QNMs and photon sphere

In GR eikonal QNMs are related to unstable photon sphere geodesics

Real frequency Orbital frequency
Damping time Lyapunov exponent

[Cardoso+ ’08] [Yang+ ’12]



Eikonal QNMs and photon sphere

In GR eikonal QNMs are related to unstable photon sphere geodesics

Real frequency Orbital frequency
Damping time Lyapunov exponent

Beyond GR: Generalized correspondence


                  QNMs                     Unstable GW orbits

(not geodesic!)

[Cardoso+ ’08] [Yang+ ’12]

Isospectrality Non-birefringence 



Summary



1. Non-birefringent dispersion relation


2. Isospectral eikonal QNMs


Siso =
1

16πG ∫ d4x |g | [R + α (R2
2 + R̃2

2)]

} Isospectral EFTs Generalizable to 
higher orders



Summary



1. Non-birefringent dispersion relation


2. Isospectral eikonal QNMs


Isospectrality related to String Theory 

,      


Supersymmetry? Duality? Born-Infeld-like gravity?

Siso =
1

16πG ∫ d4x |g | [R + α (R2
2 + R̃2

2)]

Siso = Sstring theory
II α =

ζ(3)
256

α′￼

3

} Isospectral EFTs Generalizable to 
higher orders



Part 3: BH perturbations in the 
isospectral EFT



Master equation for perturbations
Dispersion relation for GWs





Intuitive idea: effective scalar equation that yields the same dispersion relation


k2 = 64αRλ η
α βRρασβkλkηkρkσ
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k2 = 64αRλ η
α βRρασβkλkηkρkσ

(∇2 + 64αRλ η
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Master equation for perturbations
Dispersion relation for GWs





Intuitive idea: effective scalar equation that yields the same dispersion relation





More rigorously:     (diagonal operator=isospectrality)


k2 = 64αRλ η
α βRρασβkλkηkρkσ

(∇2 + 64αRλ η
α βRρασβ ∇λ ∇η ∇ρ ∇σ) Φ = 0

𝒟2hTT
μν = 0

𝒟2



Master equation for perturbations
Dispersion relation for GWs





Intuitive idea: effective scalar equation that yields the same dispersion relation





More rigorously:     (diagonal operator=isospectrality)


Remark: it is enough to consider the Kerr background (w/o corrections) 

k2 = 64αRλ η
α βRρασβkλkηkρkσ

(∇2 + 64αRλ η
α βRρασβ ∇λ ∇η ∇ρ ∇σ) Φ = 0

𝒟2hTT
μν = 0

𝒟2



Solving the equation
Step 1: decompose the field in spheroidal harmonics



Φ = e−iωt+imφ Slm(x; aω)ψlm(r) + α∑
l′￼≠l

Sl′￼m(x; aω)ψl′￼m(r)



Solving the equation
Step 1: decompose the field in spheroidal harmonics





Step 2: project the equation on 





Φ = e−iωt+imφ Slm(x; aω)ψlm(r) + α∑
l′￼≠l

Sl′￼m(x; aω)ψl′￼m(r)

Slm

∫
1

−1
dxSlm(x; aω)(r2 + a2x2)D2Φ = 0



Solving the equation
Step 1: decompose the field in spheroidal harmonics





Step 2: project the equation on 





Φ = e−iωt+imφ Slm(x; aω)ψlm(r) + α∑
l′￼≠l

Sl′￼m(x; aω)ψl′￼m(r)

Slm

Δ
d
dr [Δ

dψlm

dr ] + (V − α̂ΔUlm) ψlm = 0

Ulm = − 1152M8 (Alm − 2maω + (aω)2)2 ∫
1

−1
dx

Slm(x; aω)2

2π(r2 + a2x2)4

λlm



Solving the equation
Step 3: simplify the potential



Ulm = − 1152M8λ2
lm ∫

1

−1
dx

Slm(x; aω)2

2π(r2 + a2x2)4



Solving the equation
Step 3: simplify the potential








 ,     ,    

Ulm = − 1152M8λ2
lm ∫

1

−1
dx

Slm(x; aω)2

2π(r2 + a2x2)4

Ulm = −
576M8λ2

lm

K(−k) ∫
π

0

dθ

(r2 + a2x2
0 sin2 θ)4 1 + k sin2 θ

k =
u2x2

0(1 − x2
0)

μ2 − u2(1 − x2
0)

μ2 − (1 − x2
0)( Alm

l2
+ u2x2

0) = 0 μ =
m
l

, u =
aω
l



Solving the equation
Step 3 extended. We modify the integrand exploiting a gauge freedom





 is certain 3rd order differential operator and  any smooth function such that 


Then,  is the only constant for which the differential equation 





admits a smooth solution that vanishes on .


In the eikonal regime,  becomes of first order and the equation can be solved analytically.

Ilm =
1

2π ∫
1

−1
dxSlm(x; aω)2 f(x) =

1
2π ∫

1

−1
dxSlm(x; aω)2[f(x) + ℱ[h(x)]]

ℱ[h] h(x) h(±1) = 0

Ilm

f(x) + ℱ[h(x)] = Ilm

x = ± 1

ℱ[h]



Solving the equation
QNMs through the WKB formula








Real part of the frequency:  


Imaginary part of the frequency: 

Δ
d
dr (Δ

dψ
dr ) + Vαψ = 0

Vα = [ω(r2 + a2) − am]2 − Δ (λlm + α̂Ulm)

Vα(r0) =
dVα

dr r0,ωR

= 0

ωI = − (n +
1
2 ) Δ

2∂2
rVα

∂ωVα r0,ωR



Part 4: Results for QNMs



Results for QNMs
Generalities


• We write ,         


• Result depends on  and on 


• For   we have “zero damping modes” in the extremal limit


• For  the modes are damped


• There are also ZDMs for  , but these are not captured by the WKB 
analysis

ω = ωKerr + α̂δω α̂ =
α

M6

μ = m/ℓ χ = J/Jmax

μ > μcr ≈ 0.74

μ < μcr

μ < μcr
[Yang+ ’12, ’13]



Eikonal formula

Imaginary part

Comparison with modified Teukolsky
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Results as a function of μ
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Results as a function of μ
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Results as a function of the temperature




Results as a function of the temperature
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We look first for perturbative corrections to the Kerr QNMs





We consider  and 


There are three different regimes depending on the relative size of  and 

Δ
d
dr (Δ

dψ
dr ) + Vαψ = 0

Vα = [ω(r2 + a2) − am]2 − Δ (λlm + α̂Ulm)

ω = ωKerr + α̂δω

ϵ ≪ 1 |μ − μcr | ≪ 1

ϵ |μ − μcr |
3

Reminder: effective potential
Expansion near the critical point









No qualitative change to the GR prediction

ωKerr = mΩ [1 − 2ϵ
7
4

−
Alm(m/2)

m2 ] −
i

M (n +
1
2 ) ϵ

2
+ 𝒪(ϵ)

δω = 𝒪(ϵ1/2) + i𝒪(ϵ)

Regime I: , ϵ ≪ |μ − μ̄cr |
3 μ > μ̄cr

Expansion near the critical point






,                     


ωKerr = mΩ [1 −
3ϵ2/3

2 ] −
i

M (n +
1
2 ) 3ϵ

4
+ 𝒪(ϵ)

δω =
L3μ̄3

cr

4M
ξϵ1/3−i (n +

1
2 ) L2μ̄2

cr

8 3M
ξϵ1/6+… ξ ≈ − 601

δωI

ωKerr
I

≈
L2μ̄2

crξ
12

ϵ−1/3

Regime II: |μ − μ̄cr |
3 ≪ ϵ ≪ 1

Expansion near the critical point









ωKerr = mΩ [1 +
η2(μ − μ̄cr)2

2 ] − i (n +
1
2 ) η3/2 |μ − μ̄cr |

3/2

2M
+ …

δω =
L3μ̄3

cr

4M
ξη |μ − μ̄cr |−i (n +

1
2 ) 3

8M
L2μ̄2

crξη1/2 |μ − μ̄cr |
1/2 +…

δωI

ωKerr
I

≈
3L2μ̄2

crξ
4η |μ − μ̄cr |

Regime III:  , ϵ ≪ |μ − μ̄cr |
3 ≪ 1 μ < μ̄cr

Expansion near the critical point



Summary: amplification of new physics
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10The corrections to  diverge for modes near 
the critical line





( )





( )

ωI

δωI

ωI
∝ α̂ϵ−1/3

|μ − μ̄cr |
3 ≪ ϵ ≪ 1

δωI

ωI
∝ α̂ |μ − μ̄cr |

−1

ϵ ≪ |μ − μ̄cr |
3 ≪ 1

Expansion near the critical point



Observation:  is always an extremum of  for .


Condition for the existence of DMs is


 < 0


The phase boundary is modified 


r = M Vα a = M, ω = mΩ

Elm ≡
1
2

d2Vα

dr2
r=M,a=M,ω=mΩ

=
7
4

m2 − Alm − α̂Ulm

μcr ≈ μ̄cr + α̂δμcr , δμcr =
L2μ̄2

cr

2η
ξ

Modification of the critical point
Non-perturbative analysis



When , the perturbative expansion in  for the QNM 
frequencies breaks down. 


We need to obtain the exact solution. For instance, in regime III:








 The divergence is a consequence of the change in the critical point

|μ − μ̄cr | ∼ α̂δμcr α̂

ωI ≈ − (n + 1/2)
η3/2 |μ − μcr |

3/2

2M (1 + 𝒪(α̂))
ωI

(n + 1/2)
≈ −

η3/2

2M
|μ − μ̄cr |

3/2 −
3η3/2

4M
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1/2 + … ,

→

Full QNMs
Non-perturbative analysis



= ZDMs and DMs exist (GR) 
= only ZDMs exist (GR) 
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Non-perturbative analysis
Qualitative change in the spectrum
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Phase boundary obtained from the eikonal limit
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New phase boundary in higher-derivative gravity


μcr = μ̄cr + α̂δμcr

Non-perturbative analysis
Qualitative change in the spectrum



= ZDMs and DMs exist (GR) 
= only ZDMs exist (GR) 

Qualitative change in the spectrum

Critical band |μ − μ̄cr | ≲ | α̂δμcr |
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Non-perturbative analysis

Phase boundary in GR

New phase boundary in 
higher-derivative gravity

The number of DMs is modified


Modes in the critical band receive order-one 
corrections

]



Regime of validity
Are there modes in the critical band within the regime of validity of the EFT? 

Remark:  is rational


Dirichlet theorem  many modes with 


On the other hand the critical band is 





Condition for modes in the band 

Observe: it can be satisfied even if 

μ = m/L

⇒ |μ − μ̄cr | ∼ 1/L2

|μ − μ̄cr | < | α̂δμcr | ∼ 71.4 | α̂ |L2

71.4 | α̂ |L4 ≳ 1

| α̂ | ≪ 1



Regime of validity

We assume , with  related to massive degrees of freedom 
The EFT is only reliable for resolving distances grater than 


 (BH radius larger than )


  (wavelength larger than )


  No modes in the critical band for large L


Still, modes near the critical line get corrections of order 

α ∼ ℓ6
UV ℓUV = E−1

UV
ℓUV

| α̂ | =
ℓ6

UV

M6
≪ 1 ℓUV

L ≪ | α̂ |−1/6 ℓUV

⇒ 71.4 | α̂ |L4 ≪ | α̂ |1/3 ≪ 1 ⇒

| α̂ |L4 ≫ | α̂ |L2

EFT regime 1: Wilsonian point of view



Regime of validity

The EFT is classically consistent if additional HD corrections can be neglected


Result: in the regime in which  and , the effect of any 
additional HD correction on the QNM frequencies is negligible compared to the 

 term


Large changes in the QNM spectrum can take place consistently


Conclusion: as a classical theory, the EFT is consistent. Whether we can trust 
these predictions depends entirely on the UV completion 

| α̂ | ≪ 1 | α̂ |L4 ∼ 1

αℛ4

→

EFT regime 2: convergence of the higher-derivative expansion



Sensitivity of lower l modes

[Detweiler ’80] [Yang+’12]


          (No DMs)


This is expressed in a real form of the Teukolsky equation. 


Remark: we only need to know the near-horizon extremal Teukolsky equation. 


Modified near-horizon Teukolsky equation [PAC, David ’24]


sEKerr
lm =

7m2

4
− s(s + 1) − sAlm(m/2) > 0

V′￼′￼(r+)
ω=mΩ,a=M

sAlm → sAlm + α̂δA±
lm

Exact condition for the phase boundary



Sensitivity of lower l modes

Modified phase boundary


         


Relative correction:





     

sElm =
7m2

4
− s(s + 1) − sAlm − α̂δA±

lm > 0

Δ±
lm =

δA±
lm

7m2

4 − s(s + 1) − sAlm

ωI ∼ |s Elm |3/2 ⇒ δωI /ωI ∼ 3/2Δ±
lm

Exact condition for the phase boundary
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Specific remarks 

• First computation of gravitational QNMs with high rotation beyond GR 


• Key development: effective scalar equation for eikonal perturbations in 
“isospectral” theories 


• Master equation could have more applications: time domain simulations? 

• Future work: extension for non-isospectral theories


Conclusions



General remarks 

• Beyond-GR effects increase dramatically for high rotation


• Highly-rotating BHs have long-lived modes: high-precision spectroscopy 


Highly rotating BHs            Golden events to test new physics 

Conclusions



General remarks 

• Beyond-GR effects increase dramatically for high rotation


• Highly-rotating BHs have long-lived modes: high-precision spectroscopy 


Highly rotating BHs            Golden events to test new physics 

Open questions 

• QNM computation for lower 


• Implications for the time domain signal

l

Conclusions



Thank you 



Bonus slides



Why test EFT corrections

15

EFT is the main hypothesis for beyond-GR physics 
Conditions for a theory to be viable: 

1. It’s not ruled out by other experiments


2. It has full predictive power 


3. It CAN be tested with GWs


Very few “alternatives" to GR remain. EFT is the best motivated one



Observability of higher-derivative corrections

15

Δ =
ℓ4(GM)2

r6

ΔSun ∼ ( ℓ
5 × 108km )

4

, ΔEarth ∼ ( ℓ
2 × 108km )

4

, ΔBH(10M⊙) ∼ ( ℓ
40km )

4

Relative corrections to GR = Const × Δ

In addition, “ ” can become large in special cases (high rotation)Const

30 orders of magnitude increase


