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Overview
• Era of gravitational wave astronomy:


➡ New tests of the strong field regime of gravity 


➡ Understanding of fundamental nature of gravity

• Mathematical understanding of classical EFTs

• Relativistic viscous hydrodynamics (and pre-hydrodynamics)



• Some issues in carrying out this program in gravity:


- Predictions from (the strong field regime of) alternative theories of gravity are 
needed


- No preferred alternative theory 


- How can we extract the strong field predictions of these alternative 
theories?


➡ So what should we be looking for?


➡ Do they have a well-posed initial value problem? Predictive?

Overview



Classical EFTs
• EFT provides a framework to parametrise the effects of the (unknown) high 

energy physics at low energies in the strong field regime

• An EFT is defined by:


1. The low energy degrees of freedom 


2. The low energy symmetries


3. A power counting scheme (derivatives of the fields)

• Construct the most general effective action 1) and 2), and organise the terms 
in a series expansion based on 3)



Classical EFTs
• Redundancies in the expansion: one can make field redefinitions to simplify 

the action

• The coefficients in the expansion can be constrained by demanding that the 
UV theory satisfies certain properties (unitarity, locality,…) [Adams et al. ’06; de Rham,…; 
Cheung and Remmen ’17; Alexander et al. ’25]

• In situations with a large separation of scales, accurate predictions can be 
made by truncating the series to the first few terms



Classical EFTs

S = ∫ d4x −g[ m2
Pl

2 R− 1
2 (∇aϕ)(∇aϕ) − V(ϕ)

+ℓ2(mPl G(ϕ) ℒGB + mPl F(ϕ) R̃abcd Rabcd+ 1
4 m2

Pl
H(ϕ)((∇aϕ)(∇aϕ))2)]

• Scalar-tensor theories of gravity:

Examples

R̃abcd ≡ 1
2 ε ef

ab RefcdℒGB = R2 − 4 RabRab + RabcdRabcd



Classical EFTs
Examples

• Pure gravity in D=4 spacetime dimensions:

S = ∫ d4x −g[ R + ℓ4(c3 𝒬 + c̃3 𝒬̃) + ℓ6(d(4,1) 𝒞2 + d(4,2) 𝒞̃2 + d̃4 𝒞 𝒞̃)]

𝒬 ≡ R cd
ab R ef

cd R ab
ef , 𝒬̃ ≡ R cd

ab R ef
cd R̃ ab

ef ,

𝒞 ≡ Rabcd Rabcd , 𝒞̃ ≡ RabcdR̃abcd .



Classical EFTs
Examples

• Relativistic viscous (conformal) hydrodynamics in d dimensions [Baier et al. ‘08]:

Tμν =
ρ

d − 1
(d uμ uν + ημν) + Πμν

Πμν = −2 η σμν + 2 η τΠ (⟨uα∂ασμν⟩+ 1
d − 1 σμν ∂αuα) + ⟨λ1 σμασ α

ν + λ2 σμαω α
ν + λ3 ωμαω α

ν ⟩

σμν = ∂⟨μuν⟩ , ωμν = ∂[μuν]



Classical EFTs
General issues

• The equations of motion of these truncated EFTs typically have higher than 
2nd order equations of motion (Lovelock and Horndeski theories are the exception)

• Problematic:


- No general classification for higher than 2nd order PDEs 


- Well-posedness? Determined by the highest derivative terms but those 
should be the least important ones in EFT


- Need to specify more initial data corresponding to additional dofs not 
present in the EFT


- Ghosts [Ostrogradsky 1850]: how can prevent runaway solutions?



Higher order EOMs

• Various methods have been proposed over the years to deal with higher order 
evolution equations: 


- Perturbation theory


- Reduction of order 


- Fixing-of-the-equations


- Regularisation



Outline of the talk

• Perturbation theory and Reduction of order


• Special theories with 2nd order equations of motion


• Fixing-of-the-equations


• Regularisation


• Conclusions



Perturbation theory and Reduction of Order



Perturbative solutions
• Consider the general structure of the higher derivative equations: 

𝒪(2)(h) = ∑
n>2

ℓn−2𝒪(n)(h)

• Construct solutions as a series expansion in the small parameter:

h = h(0) + ∑
n=1

ℓn h(n)

⇒ 𝒪(2)(h(k)) =
k−1

∑
n=0

𝒮(n)(h(i)…)



• At every order in perturbation theory, one has to solve the zeroth order 
(two derivative) equation sourced by the lower order solutions 

Perturbative solutions

• Runaway solutions are explicitly left out

• But only solutions to the full theory that are expandable in perturbation 
theory can be constructed (i.e., analytic)

• Unphysical secular growth in time



[Corman, Lehner, East, Dideron ’24] 



• Motion of a non-relativistic, charged particle with charge  on a fixed 
external electric field:

q

··x =
q
m

E(x, t) + τ ···x

• Generic solutions exhibit runaway behaviour at late times, with ··x ∝ et/τ

• Solutions that remain bounded are non-generic: they require a fine-tune 
“pre-acceleration”

• They exit the regime of validity of the equation very quickly

Example: radiation reaction problem



Reduction of order

Example: radiation reaction problem

• Idea: self-consistently modify the equation to obtain “equally accurate” 
solutions

• Differentiate (in time) the original equation to compute the higher 
derivatives time and substitute them into the higher derivative terms and 
expand in the small parameter: 

···x =
q
m [ ∂E

∂t
(x, t) + ( ·x ⋅ ∇)E(x, t)] + τ ····x

⇒ ··x =
q
m [E(x, t) + τ

∂E
∂t

(x, t) + τ( ·x ⋅ ∇)E(x, t)] + O(τ2)



• Consider radial trajectories only (for simplicity) of a charged particle with 
charge  on an electric field created by a point particle of charge  at the 
origin:

q Q

··r =
q Q
m r2

+ τ ···r

Example: radiation reaction problem
Reduction of order

• Order reduction prescription:

···r = −
2 q Q
m r3

·r + O(τ)

⇒ ··r =
q Q
m r2 (1 − 2 τ

·r
r ) + O(τ2)



Reduction of order

• Not covariant! 

• One generates higher order diffusive-type equations with no control of the 
signs!



Special theories with 2nd order eoms



• Most general general scalar-tensor theory of gravity up to 4 derivatives [Weinberg ’10]:

4 derivative scalar-tensor theory

S =
1

16πG ∫ d4x −g [R + X − V(ϕ) + H(ϕ) X2 + λ(ϕ)ℒGB]

X = − 1
2 (∇aϕ)(∇aϕ) ℒGB = R2 − 4 RabRab + RabcdRabcd

• EFT of inflation

• 2nd order eoms!

• Horndeski class 



• Leading derivative correction to vacuum GR in D>4

Einstein-Gauss-Bonet gravity

S =
1

16π G ∫ dDx −g [R + λ ℒGB]

• 2nd order eoms!



• Horndeski and Lovelock theories are not well posed in harmonic gauge 
due to degeneracies [Papallo and Reall ’17]

mGHC/mCCZ4

• Solution: break the degeneracies by introducing auxiliary metrics that 
control the propagation of different modes [Kovacs and Reall ’20]



Evolving EGB with NR
• Solution: break the degeneracies → modify 

the harmonic gauge conditions so that the 
unphysical modes propagate on the light 
cone of some auxiliary metrics [Kovacs and Reall 
’20]

• Can be generalised to singularity avoiding 
coordinates (puncture gauge) [Aresté Saló, Clough 
and PF ’23]

• Well-posedness only holds in the weakly 
coupled regime

g̃ab = gab − a(x) na nb

̂gab = gab − b(x) na nb
0 < a(x) < b(x)



 theoryλ(ϕ) =
λGB

4
ϕ

• Black hole binaries in this theory 
merge more slowly than in GR

[Aresté-Saló, Clough and PF ’23]

[Aresté-Saló, Clough and Corman ’25]



GL instability of black strings in EGB

λ/r2
0 = 10−5



Fixing of the equations



I =
1

16πG ∫ d4x −g (R −
1

Λ6
𝒞2 −

1
Λ̃6

𝒞̃2 −
1

Λ6
−

𝒞𝒞̃)
• Most general higher derivative theory of gravity (in vacuum) up to 8 derivatives:

8 derivative theory of gravity

𝒞 = RμνρσRμνρσ , 𝒞̃ = RμνρσR̃μνρσ , R̃μνρσ = 1
2 ϵ αβ

μν Rαβρσ

➡ EOMs with 4th order derivatives ( ):ϵ ≡ Λ−6

Gμν = 8ϵ{𝒞[ □ Rμν−
1
2 ∇μ ∇νR− 1

16 𝒞 gμν − Rμλ Rλ
ν

+RαβRμανβ+ 1
2 RμσρλR

σρλ
ν ]

+2(∇α𝒞)[∇αRμν − ∇(μRν)α] + R α β
μ ν ∇α ∇β𝒞}

[Cayuso, PF, França and Lehner ’23]



‘Fixing’ higher derivative theories of gravity

• Order reduction: keep only the  terms in the EOMsRic ∼ O(ϵ) ⇒ O(ϵ)

Gμν = ϵ (4 𝒞 C αβγ
μ Cναβγ−

1
2 gμν 𝒞2 + 8 C α β

μ ν ∇α ∇β𝒞) , 𝒞 = CμνρσCμνρσ

• Want: 


- Well-posed, 2nd order (in time) equations


- Consistently incorporate the small corrections at long wavelengths 
whilst controlling to flow of energy to the UV


- Study strong fields whilst remaining in the regime of validity of EFT



‘Fixing’ higher derivative theories of gravity

• Our solution: Gμν = ϵ(4 𝒞̂ C αβγ
μ Cναβγ−

1
2 gμν 𝒞̂2 + 8 C α β

μ ν ∇α ∇β𝒞̂)
(∂2

t − 2βi∂ti + βiβ j∂ij)𝒞̂ = 1
σ (𝒞 − 𝒞̂ − τ∂0𝒞̂)

• Reduction of order to replace time derivatives on the RHS

•  on a time scale set by 𝒞̂ → 𝒞 σ/τ

• Other ‘fixes’ also work. Can we make a statement à la Geroch? 

• Consistency: the IR physics should NOT depend on the parameters σ, τ

• Stationary solutions should agree



ϵ = 10−5

σ = 0.0625
τ = 0.005

𝒞̂

[Cayuso, PF, França, Lehner ’23]
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‘Fixing’ higher derivative theories of gravity: 
results



Regularisation

[based on 2407.08775, 2505.17986, w/Held Kovacs and Yao]



Higher order EOMs

• Observations:


1. Perturbative field redefinitions can remove (or add) certain terms in the action without 
affecting the physics [Grosse-Knetter ’94; Burgess ’20]


2. The highest derivative terms in the EOMs are the ones that matter the most for well-
posedness, but such terms are the least important ones in EFT

Regularisation [PF, Held and Kovacs’ 24] 

• Basic idea:


1. Perform field redefinitions to modify the highest derivative structure of the PDEs with 
terms proportional to the 0th order EOMs and their derivatives 


2. The new terms vanish on shell and inherit the good high frequency behaviour of the 
lower order EOMs (assumed to be well-posed)



Higher order EOMs
Regularisation

• Remarks


1. The regularised higher derivative equations are only weakly hyperbolic: well-posedness 
is sensitive to some (but not all) of the lower derivative terms


2. The relevant lower derivative terms have the right structure (inherited from the 0th order 
EOMs via field redefinitions) and the regularised EOMs are well-posed


3. Initial data: it must be consistent with the EFT expansion, otherwise runaway solutions 
will occur 



Classical Abelian-Higgs Model
• UV model:

S = − ∫ d4x [(∂aϕ*)(∂aϕ) + V( |ϕ |2 )] , V( |ϕ |2 ) = λ
2 (ϕ*ϕ− v2

2 )
2

• Vacuum:  → spontaneous symmetry breaking leading to a 
spectrum containing a massive field with mass  and a massless 
Goldstone boson

ϕ*ϕ = v2

2
M2 = λv2

• Global U(1) symmetry: ϕ → eiαϕ



Classical Abelian-Higgs Model
• Introducing  the action becomesϕ(x) = v2

2
[1 + ρ(x)] eiθ(x)

S
v2

= −∫ d4x [ 1
2 (∂aρ)(∂aρ)+ 1

2 (1 + ρ)2(∂aθ)(∂aθ) + V(ρ)] ,

V(ρ) = M2

2 (ρ2 + ρ3 +
1
4

ρ4)
• Equations of motion: ( □ − M2)ρ = (1 + ρ)(∂aθ)(∂aθ)+ M2

2 (3ρ2 + ρ3)

□ θ = −
2

1 + ρ
(∂aρ)(∂aθ)

• Global existence [Dong, LeFloch and Wyatt ’19]



• For large enough M and assuming suitable boundedness of ,  and their 
derivatives,  can be “integrated out” [Reall and Warnick ’21]

θ ρ
ρ

• Low energy effective action for the light field :θ

S
v2

≈ − ∫ d4x [ 1
2

(∂aθ)(∂aθ) −
1

2M2 ((∂aθ)(∂aθ))2 +
2

M4
(∂a∂bθ)(∂a∂cθ)(∂bθ)(∂cθ) + O(M−6)]

Note: if we didn’t know the UV theory, the coefficients at each order in the  of the action would 
be unknown

1/M

• New (low energy) EOMs:

□ θ =
2

M2
∂a[(∂θ)2∂aθ]

+
4

M4 [(∂a∂b □ θ)(∂aθ)(∂bθ) + (□θ)(∂aθ)(∂a □ θ) + (∂aθ)(∂a∂bθ)(∂b □ θ)

+(□θ)(∂a∂bθ)(∂a∂bθ) + 2(∂aθ)(∂b∂cθ)(∂a∂b∂cθ)]



• 4th order EOMs: how do we construct solutions that are consistent with 
the EFT expansion?

□ θ =
2

M2
∂a[(∂θ)2∂aθ]

+
4

M4 [(∂a∂b □ θ)(∂aθ)(∂bθ) + (□θ)(∂aθ)(∂a □ θ) + (∂aθ)(∂a∂bθ)(∂b □ θ)

+(□θ)(∂a∂bθ)(∂a∂bθ) + 2(∂aθ)(∂b∂cθ)(∂a∂b∂cθ)]



• Regularised action:

Sreg

v2
≈ − ∫ d4x[ 1

2
(∂aθ)(∂aθ) −

1
2M2 ((∂aθ)(∂aθ))2 +

2
M4

(∂a∂bθ)(∂a∂cθ)(∂bθ)(∂cθ)

−
α1

M2
θ □2 θ −

α2

M4
θ □3 θ + O(M−6)]

θ → θ +
α1

M2 [ □ θ− 1
2 𝔼2(θ)] +

α2

M4
□2 θ + O(M−6)

• Make a perturbative field redefinition up to :O(1/M4)



□ θ =
2

M2
∂a[(∂θ)2∂aθ]

+
4

M4 [(∂a∂b □ θ)(∂aθ)(∂bθ) + (□θ)(∂aθ)(∂a □ θ) + (∂aθ)(∂a∂bθ)(∂b □ θ)

+(□θ)(∂a∂bθ)(∂a∂bθ) + 2(∂aθ)(∂b∂cθ)(∂a∂b∂cθ)]
−

2 α1

M2
□2 θ −

2 α2

M4
□3 θ

• New equations of motion for  up to :θ O(1/M4)



• Linear problem:

0 = □ θ +
2α1

M2
□2 θ +

2α2

M4
□3 θ

• Recast the linear system:

□ θ = M2 θ(0,1)

( □ − m2
−)θ(0,1) = M2 θ(0,2)

( □ − m2
+)θ(0,2) = 0

• Bounded solutions for m2
± > 0 ⇒ α1 < 0 , 0 < α2 < 1

2 α2
1

m2
± =

M2

2α2 (−α1 ± α2
1 − 2α2)

=
2α2

M4
( □ − m2

+)( □ − m2
−) □ θ

□ θ ≡ M2 θ(0,1) ⇒ 0 = ( □ − m2
+)( □ − m2

−)θ(0,1)

( □ − m2
−)θ(0,1) ≡ M2 θ(0,2) ⇒ 0 = ( □ − m2

+)θ(0,2)



Full non-linear (higher derivative) problem

• Introduce new variables: □ θ = M2 θ(0,1) , ( □ − m2
−)θ(0,1) = M2 θ0,2) ,

θ(1,0)
a ≡ ∂aθ , θ(2,0)

ab ≡ ∂a∂bθ , θ(1,1)
a ≡ ∂aθ(0,1) = 1

M2 ∂a □ θ

• The EOMs can be written as: □ θ = M2 θ(0,1) ,
□ θ(1,0)

a = M2 ∂aθ(0,1) ,
□ θ(2,0)

ab = M2 ∂(aθ(1,1)
b) ,

( □ − m2
−)θ(0,1) = M2 θ(0,2) ,

( □ − m2
−)θ(1,1)

a = M2 ∂aθ(0,2) ,

( □ − m2
+) θ(0,2) =

1
α2

[θ(0,1)ηab+ 2
M2 θ(2,0)ab]θ(1,0)

a θ(1,0)
b

+
2
α2

[ 1
M2 θ(1,0)aθ(1,0)b∂aθ(1,1)

b + θ(0,1) θ(1,0)a θ(1,1)
a

+ 1
M2 θ(1,0)a θ(1,1)b θ(2,0)

ab + 1
M2 θ(0,1) θ(2,0)ab θ(2,0)

ab

+ 2
M4 θ(1,0)a θ(2,0)bc ∂(aθ(2,0)

bc) ]



• Diagonal system of wave equations → symmetric hyperbolic 

• Degrees of freedom:


- Original massless field 


- Two massive modes,  and , with masses 


- For  and , we have 

θ

θ(0,1) θ(0,2) m± ∼ O(M)

α1 < 0 0 < α2 < 1
2 α2

1 m2
± > 0

• The new massive modes,  and , are ghosts! θ(0,1) θ(0,2)

• We will provide numerical evidence that global solutions, compatible with 
the EFT expansion, can be constructed



Numerical experiments



Initial data
• More degrees of freedom → more data → higher time derivatives of  at θ

t = 0

• Arbitrary initial data for the higher derivative fields is expected to lead to 
runaway solutions 

• Initial data for the massive dofs that is consistent with the EFT expansion 
should be constructed from the IR dofs, namely θ |t=0 , ∂tθ |t=0

θ(0,1) |t=0 = 1
M2 □ θ |t=0 = 1

M2 (−∂2
t θ + ∂2

xθ) |t=0 ⇒ need ∂2
t θ |t=0



Initial data
• Main idea: impose the EOMs in terms of  at , and use order 

reduction to compute, perturbatively in a  expansion, the required 
higher time derivatives

θ t = 0
1/M

⇒ ∂2
t θ |t=0 = ∂2

xθ |t=0

− 4
M2 [∂2

xθ |t=0 ((∂tθ |t=0 )2 + (∂xθ |t=0 )2) − 2 ∂x∂tθ |t=0 ∂tθ |t=0 ∂xθ |t=0 ]

□ θ =
4

M2
(∂aθ)(∂bθ)(∂a∂bθ) @ t = 0• At :O(1/M2)

• Covariance is preserved within the accuracy of the EFT [Gavassino, Kovacs and Reall 
wip]



Examples
θ |t=0 = sin(π x) , ∂tθ |t=0 = 1

2 cos2(π x) , M = 100 , L = 2



Examples
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Examples
θ |t=0 = sin(π x) , ∂tθ |t=0 = 1

2 cos2(π x) , M = 100 , L = 2



Examples
θ |t=0 = sin(π x) , ∂tθ |t=0 = 1

2 cos2(π x) , M = 100 , L = 2



Breakdown of the EFT
• For simplicity, consider the EFT truncated to :O(1/M2)

S
v2

≈ − ∫ d4x [ 1
2

(∂aθ)(∂aθ) −
1

2M2 ((∂aθ)(∂aθ))2 + O(M−4)]
• Two EFTs at this order:

□ θ =
2

M2 [(∂aθ)(∂aθ) □ θ + 2(∂aθ)(∂bθ)∂a∂bθ]

⇒ 0 = Gab∂a∂bθ = [(1− 2
M2 (∂θ)2) ηab− 4

M2 (∂aθ)(∂bθ)] ∂a∂bθEFT1:

→  is Lorentzian for Gab (∂θ)2 <
1
6

M2



□ θ = M2 θ(0,1)

□ θ(1,0)
a = M2 ∂aθ(0,1)

( □ + M2

2 α ) θ(0,1) = 1
α (θ(1,0)

a θ(1,0)a θ(0,1)+ 2
M2 θ(1,0)a θ(1,0)b ∂aθ(1,0)

b )

Breakdown of the EFT

EFT2:

→ the propagation of all modes is controlled by the spacetime metric



Breakdown of the EFT
θ |t=0 = sin(π x) , ∂tθ |t=0 = 1

2 cos2(π x) , M = 10 , L = 2 ⇒ ∂aθ ∼ O(M)



Ghosts
• The regularised EFTs admit a conserved energy:

ℰEFT2
[θ](t) = ∫ dx[ 1

2
(∂tθ)2 +

1
2

(∂xθ)2 −
1

2M2 (−(∂tθ)2 + (∂xθ)2) (3 (∂tθ)2 + (∂xθ)2)

+
2α
M2 ((∂tθ) ∂tθ(0,1) + (∂xθ) ∂xθ(0,1) +

1
2

(θ(0,1))2)]
Energy for a massless field

Higher derivative correction

Contribution from the regularisation



Ghosts



Why ghosts are not a problem?
• Model equation for the ghost fields (higher derivatives):

( □ − M2)Φ = − 4 λ Φ3

• Global existence in 3+1 
dimensions  for small data and 

 [Sogge’ 95]M = 0

• Better behaviour for  
[Klainerman ’85; Le Floch and Ma ’14]

M ≠ 0





Regularised higher derivative theories of gravity



General result
• Theorem: any higher derivative theory of pure gravity that derives from a 

Lagrangian of the form

ℒ = R +
N

∑
m≥2

ℓm ℒm

where  is any scalar built out of the metric (and its derivatives) and the 
volume form, admits a well-posed initial value problem after a field 
redefinition that adds a regularising Lagrangian of the form

ℒm

ℒreg =
n

∑
k=0

αk ℓ2k+2 Rab □k Gab

[PF, Held and Kovacs ’24]



Scalar-tensor theories of gravity
• Field redefinition by 0th order EOM → new action:

Sreg = ∫ d4x −g{ M2
Pl

2 R− 1
2 (∇aϕ)(∇aϕ)

+ℓ2(MPl G(ϕ) ℒGB + MPl F(ϕ) R̃abcd Rabcd+ 1
4 M2

Pl
H(ϕ)((∇aϕ)(∇aϕ))2)

+α ℓ2[(M2
Pl Rab − 2(∇aϕ)(∇bϕ))Gab+

1
2 M2

Pl
((∇aϕ)(∇aϕ))2]

+γ ℓ2 ϕ □2 ϕ} ,

[to appear PF, Kovacs and Yao]



➡ wave equations for  (massless) and  (massive)gab , ϕ □ ϕ , Rab

Rab[g] = Rab

□ ϕ = ϕ(0,1)

□ ϕ(1,0)
a = ∇aϕ(0,1) + Rab ϕ(1,0)b

( □ + 1
2γℓ2 ) ϕ(0,1) = ℱϕ(ϕ(0,1), ϕ(1,0), ∂ϕ(1,0), g, R, W)

( □ + 1
2 α ℓ2 )Rab = ℱR(ϕ(0,1), ϕ(1,0), ∂ϕ(1,0), g, R, W)

ℒnE = −εDB + ℱE(γ, K, E, B, R)
ℒnB = +εDE + ℱB(γ, K, E, B, R)

• Define . Then, the equations of motion can be written asϕ(1,0)
a ≡ ∇aϕ

➡ Auxiliary variables: ϕ(1,0)
a , Eab, Bab

➡ Need to impose α < 0, γ < 0



Cubic gravity

S = ∫ d4x −g [R + ℓ4 (c3 R cd
ab R ef

cd R ab
ef + c̃3 R cd

ab R ef
cd R̃ ab

ef )]

• Leading order higher derivative correction to Einstein’s gravity in 3+1 
dimensions:

→ 4th order EOMs

• Field redefinition by 0th order EOM → new action:

Sreg = ∫ d4x −g[R+ℓ4 (c3 R cd
ab R ef

cd R ab
ef + c̃3 R cd

ab R ef
cd R̃ ab

ef )
+α0 ℓ2 RabGab + α1 ℓ4 Rab □ Gab]

[to appear PF, Kovacs and Yao]



Cubic gravity

➡ EOMs: wave equations for  (massless) and  (2 massive 
scalars + 2 massive spin 2 tensors)

gab Rab , R(0,1)
ab

Rab[g] = Rab

( □ − m2
−) Rab = ℓ2R(0,1)

ab

( □ − m2
+) R(0,1)

ab = ℱ(0,1)(g, ∂g, R, R(1,0), ∂R(1,0), R(0,1), W, ∂W)

□ R(1,0)
abc = ℱ(1,0)(g, ∂g, R, R(1,0), ∂R(0,1))

□ Wabcd = ℱW(g, ∂g, R, R(1,0), ∂R(1,0), R(0,1), W)

➡ Auxiliary variables: R(1,0)
abc ≡ ∇aRbc, Wabcd

➡  and  depend on the ’s and can always be chosen s.t. m+ m− αk m2
+, m2

− > 0



Summary and Conclusions



Summary and Conclusions
• We have various methods to simulate black hole binary mergers in large 

classes of physically interesting higher derivative theories of gravity

• New proposal: Regularisation

• The higher derivatives are packed in new massive degrees of freedom that 
are ghosts

• For initial data consistent with the EFT expansion, runaway solutions don’t 
occur and the regularised EFT provides a consistent description of the 
long distance physics

• Regularisation can be generalised to non-relativistic theories and it does 
not require an action [wip w/ R. M. Wald] 



Thank you!



Sketch of proof
• For  sufficiently large (depending on ), the equations of motion for the 

regularised theory are
n N

□n+1 Rab = Fab

where  is a sum of monomials built out of the metric, 
 and  with 

,  and 

Fab
W(l)

abcde1…el
≡ ∇e1

…∇el
Wabcd R(p,q)

abc1…cp
≡ ∇c1

…∇cp
□q Rab

0 ≤ l ≤ n p + q ≤ n + 1 q ≤ n − 1

• This system can be written as , where  is a set 
of tensor-valued polynomials of its arguments and  stands for ,  
with ,  with  and 

gαβ∂α∂βνA = FA(ν, ∂ν) FA
ν gαβ W(k)

0 ≤ k ≤ n − 1 R(p,q) p + q ≤ n q ≤ n



• One uses the Bianchi identities to derive wave equations for  and 
 with  and :

W(k)

R(p,q) p ≥ 1 q < n
□ W(k) = F(k)

W

□ R(p,q) = R(p,q+1) + F(p,q)
R

• For the variables  with  and  we simply haveR(p,q) p = 0 q < n
□ R(0,q) = R(0,q+1)

•  is evolved with the original equation: R(0,n) □n+1 Rab = Fab

• Initial data consists of  where (Σ, γij, Kij, ρ(0)
ij , …, ρ(2n+1)

ij ) ρ(m)
ij ≡ (ℒn)mRij

• Constraints propagate


