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Overview

* Era of gravitational wave astronomy:
= New tests of the strong field regime of gravity
= Understanding of fundamental nature of gravity

* Relativistic viscous hydrodynamics (and pre-hydrodynamics)

 Mathematical understanding of classical EFTs



Overview

e Some issues in carrying out this program in gravity:

- Predictions from (the strong field regime of) alternative theories of gravity are
needed

- No preferred alternative theory

- How can we extract the strong field predictions of these alternative
theories?

= So what should we be looking for?

= Do they have a well-posed initial value problem? Predictive?



Classical EFTs

 EFT provides a framework to parametrise the effects of the (unknown) high
energy physics at low energies in the strong field regime

 An EFT is defined by:
1. The low energy degrees of freedom
2. The low energy symmetries

3. A power counting scheme (derivatives of the fields)

* Construct the most general effective action 1) and 2), and organise the terms
IN a series expansion based on 3)



Classical EFTs

 Redundancies in the expansion: one can make field redefinitions to simplify
the action

* The coefficients in the expansion can be constrained by demanding that the
UV theory satisfies certain properties (unitarity, locality,...) [Adams et al. *06; de Rham

Cheung and Remmen ’17; Alexander et al. ’29]

* |n situations with a large separation of scales, accurate predictions can be
made by truncating the series to the first few terms



Classical EFTs

Examples

o Scalar-tensor theories of gravity:
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Classical EFTs

Examples

* Pure gravity in D=4 spacetime dimensions:
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Classical EFTs

Examples

» Relativistic viscous (conformal) hydrodynamics in d dimensions [Baier et al. ‘08]:
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Classical EFTs

(General issues

 The equations of motion of these truncated EFTs typically have higher than
2nd order equations of motion (Lovelock and Horndeski theories are the exception)

* Problematic:

- No general classification for higher than 2nd order PDEs

- Well-posedness? Determined by the highest derivative terms but those
should be the least important ones in EFT

- Need to specify more initial data corresponding to additional dofs not
present in the EFT

- Ghosts [ostrogradsky 18501: hOw can prevent runaway solutions?



Higher order EOMs

Various methods have been proposed over the years to deal with higher order
evolution equations:

- Perturbation theory
- Reduction of order
- Fixing-of-the-equations

- Regularisation



Outline of the talk

Perturbation theory and Reduction of order

Special theories with 2nd order equations of motion
Fixing-of-the-equations

Regularisation

Conclusions



Perturbation theory and Reduction of Order



Perturbative solutions

* Consider the general structure of the higher derivative equations:

0D (h) = Z £n=200(h)
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 Construct solutions as a series expansion in the small parameter:
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Perturbative solutions

At every order In perturbation theory, one has to solve the zeroth order
(two derivative) equation sourced by the lower order solutions

Runaway solutions are explicitly left out

But only solutions to the full theory that are expandable in perturbation
theory can be constructed (i.e., analytic)

Unphysical secular growth in time



[Corman, Lehner, East, Dideron ’24]



Example: radiation reaction problem

* Motion of a non-relativistic, charged particle with charge g on a fixed
external electric field:

X =L E(X,0)+ 17X

m

« Generic solutions exhibit runaway behaviour at late times, with X 'l

* They exit the regime of validity of the equation very quickly

e Solutions that remain bounded are non-generic: they require a fine-tune
“pre-acceleration”



Example: radiation reaction problem

Reduction of order

» |dea: self-consistently modify the equation to obtain “equally accurate”
solutions

» Differentiate (in time) the original equation to compute the higher
derivatives time and substitute them into the higher derivative terms and
expand Iin the small parameter:
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Example: radiation reaction problem

Reduction of order

* Consider radial trajectories only (for simplicity) of a charged particle with
charge g on an electric field created by a point particle of charge (Q at the

origin;
. 9¢

2 +7T7T

m r?
e Order reduction prescription:
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Reduction of order

e Not covariant!

* One generates higher order diffusive-type equations with no control of the
signs!



Special theories with 2nd order eoms



4 derivative scalar-tensor theory

 Most general general scalar-tensor theory of gravity up to 4 derivatives (weinberg *10]:
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e EFT of inflation
e Horndeski class

e 2Nnd order eoms!



Einstein-Gauss-Bonet gravity

* | eading derivative correction to vacuum GR in D>4

1
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e 2Nnd order eoms!



MGHC/mCCZ4

 Horndeski and Lovelock theories are not well posed in harmonic gauge
due to degeneracies [papalio and Reall *17]

» Solution: break the degeneracies by introducing auxiliary metrics that
control the propagation of different modes [kovacs and Reall *20]



Evolving EGB with NR

* Solution: break the degeneracies =& modify
the harmonic gauge conditions so that the
unphysical modes propagate on the light

cone of some auxiliary metrics [Kovacs and Reall
'20]

g7 = g" —an

gab — gab _ b(X) nd nb

a nb
0 < alx) < b(x)

* Can be generalised to singularity avoiding

coordinates (puncture gauge) [Aresté sals, Clough
and PF 23]

* Well-posedness only holds in the weakly
coupled regime




[Aresté-Salo, Clough and PF '23]

* Black hole binaries in this theory
—— X\/m}=0(GR) merge more slowly than in GR
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[Aresté-Salo, Clough and Corman ’25]



GL instability of black strings in EGB

Mg =107

t/rg=0.25




Fixing of the equations



8 derivative theory of gravity

[Cayuso, PF, Franca and Lehner '23]

 Most general higher derivative theory of gravity (in vacuum) up to 8 derivatives:

> = ~ 1
pvpo — pUpo pvpe — L . ap
G = RﬂvpaR ., 6 = R/wpaR ., R = —€,, Raﬁpa

= EOMs with 4th order derivatives (€ = A_6)
GIMU=8€{%[D —_V \Y R__%g,m/_ R/II/

+R¥R vt LR opiRe o4
+2(V*B)| VR, — VR, + Rﬂaf V,V,;€}



‘FiIXing’ higher derivative theories of gravity

» Order reduction: Ric ~ O(e) = keep only the O(¢) terms in the EOMs

G, =¢ (46,7 C

H vaﬁy_% g, 6 +8 Cﬂ“f \ Vﬁ%) & =C, (CHwo
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e \Want;:

- Well-posed, 2nd order (in time) equations

- Consistently incorporate the small corrections at long wavelengths
whilst controlling to flow of energy to the UV

- Study strong fields whilst remaining in the regime of validity of EFT



‘FiIXing’ higher derivative theories of gravity

 Oursolution: G, =e(4€C, 7" C

) b8, G +8CIV,V ﬁ%)

(02 = 210, + PBI0)E = L (s‘g _ @ Tao%%)

O

 Reduction of order to replace time derivatives on the RHS

.+ € — € on a time scale set by o/7

o Consistency: the IR physics should NOT depend on the parameters o, 7

e Stationary solutions should agree

 Other ‘fixes’ also work. Can we make a statement a la Geroch?
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[Cayuso, PF, Franca, Lehner '23]



‘Fixing’ higher derivative theories of gravity:
results
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Regularisation

[lbased on 2407.08775, 2505.17986, w/Held Kovacs and Yao]



Higher order EOMs

Regularisation [PF, Held and Kovacs’ 24]

e Observations:

1. Perturbative field redefinitions can remove (or add) certain terms in the action without
affecting the physics [Grosse-Knetter '94; Burgess "20]

2. The highest derivative terms in the EOMs are the ones that matter the most for well-
posedness, but such terms are the least important ones in EFT

e Basic idea:

1. Perform field redefinitions to modify the highest derivative structure of the PDEs with
terms proportional to the Oth order EOMs and their derivatives

2. The new terms vanish on shell and inherit the good high frequency behaviour of the
lower order EOMs (assumed to be well-posed)



Higher order EOMs

Regularisation

e Remarks

1. The regularised higher derivative equations are only weakly hyperbolic: well-posedness
IS sensitive to some (but not all) of the lower derivative terms

2. The relevant lower derivative terms have the right structure (inherited from the Oth order
EOMs via field redefinitions) and the regularised EOMs are well-posed

3. Initial data: it must be consistent with the EFT expansion, otherwise runaway solutions
will occur



Classical Abelian-Higgs Model

e UV model:

2

§=- [d4x (@6)0D+ V(g . V(b1 =5 (¢79-2)

» Global U(1) symmetry: ¢ — 6ia¢

2

. Vacuum: @*¢ = % — spontaneous symmetry breaking leading to a

spectrum containing a massive field with mass M > = Jv” and a massless
Goldstone boson



Classical Abelian-Higgs Model

. Introducing ¢(x) = "722 1+ p(x)] 9 the action becomes
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e (Global existence [Dong, LeFloch and Wyatt ’19]



 For large enough M and assuming suitable boundedness of &, p and their
derivatives, p can be “integrated out” [Reall and Warnick *21]

» Low energy effective action for the light field &:

((0,0)(0°0))* + % (0,0,0)(0°0°0)(0°0)(0,0) + O(M )

> Jd“ : (0.6)(0°0)
V2 2 IM?2

Note: if we didn’t know the UV theory, the coefficients at each order in the 1/M of the action would
be unknown

 New (low energy) EOMs:
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2 2 ha
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o 4th order EOMs: how do we construct solutions that are consistent with
the EFT expansion?



. Make a perturbative field redefinition up to O(1/M%):
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. New equations of motion for & up to O(1/M*);
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e Linear problem:
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Full non-linear (higher derivative) problem

e Introduce new variables: 0=M00D ([1-m>e0D = pm29%

010 =99, 9%’0) =0,0,0, oLD = 5 g0 — L 5 Mg
a a a a a a M2 a

e The EOMs can be written as: 6= M?>00D
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* Diagonal system of wave equations — symmetric hyperbolic

* Degrees of freedom:
- Original massless field ¢

- Two massive modes, 01 and 8% with masses m, ~ O(M)

- Fora; <0and 0 < a, < %alz,wehavemi>0

« The new massive modes, %1 and 9%, are ghosts!

 We will provide numerical evidence that global solutions, compatible with
the EFT expansion, can be constructed



Numerical experiments



Initial data

» More degrees of freedom — more data — higher time derivatives of 0 at

=0

|
@(0,1) ‘t=0 p— ﬁ [I 9‘t=0

—(=0}0+%0)|,_, = need 00]|_

* Arbitrary initial data for the higher derivative fields is expected to lead to
runaway solutions

e |nitial data for the massive dofs that is consistent with the EFT expansion

should be constructed from the IR dofs, namely 0| _,,0,0] _,



Initial data

» Main idea: impose the EOMs in terms of 8 at t = (0, and use order

reduction to compute, perturbatively in a 1/M expansion, the required
higher time derivatives

. At O(1/M>) De:%(aae)(abe)(aaabe) @ (=0

= 070|_,= 00|,

-4 [aﬁe o (001 _ )%+ 0,01 _)%) —20,00|_,00] 0.0 _,

e Covariance is preserved within the dCCuracy of the EFT [Gavassino, Kovacs and Reall
wWip]



Examples
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Examples
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Examples

=si(zx), 00]|_,= % cos’(zx), M =100, L=2




Breakdown of the EFT

. For simplicity, consider the EFT truncated to O(1/M?):
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 Two EFTs at this order:
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Breakdown of the EFT

6= M20OD
(1,0) _ 2 (0,1)
EFT.: 16,77 = M70,0

2
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04

— the propagation of all modes is controlled by the spacetime metric



EFT
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Ghosts

 The regularised EFTs admit a conserved energy:

1(09)2+1(a %
2! o

2 1
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e |

M2

Energy for a massless field
Higher derivative correction



Emassless
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Why ghosts are not a problem?

 Model equation for the ghost fields (higher derivatives):

([]=MHDP = — 40>

e (Global existence in 3+1
dimensions for small data and

M — O [Sogge’ 99]

» Better behaviour for M #£ ()

[Klainerman ’'85; Le Floch and Ma ’14]






Regularised higher derivative theories of gravity



(General result

[PF, Held and Kovacs ’'24]

 Theorem: any higher derivative theory of pure gravity that derives from a
Lagrangian of the form

3=R+2N1fm§fm

m>?2

where &£, is any scalar built out of the metric (and its derivatives) and the

volume form, admits a well-posed initial value problem after a field
redefinition that adds a regularising Lagrangian of the form

greg — 2 a, f2k+2 Rab Dk Gab
k=0



Scalar-tensor theories of gravity

[to appear PF, Kovacs and Yao]

* Field redefinition by Oth order EOM — new action:

2
MPl
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» Detfine ¢6(11’O) = V _¢. Then, the equations of motion can be written as

0) 1 1,
¢y = V@@V + Ry 0

(O+57) 600 = Fy@©0, 40,0609, g, R W)

(O+525 )R = Fa@®V.0!10,0019, . R W)

¥ E= —eDB+ % ,(r,K,E,B,R)
& B= +eDE+ F4y,K,E,B,R)

= wave equations for g, , ¢ (massless) and [ ]¢, R, (massive)
= Auxiliary variables: ¢p''"V E . B .

= Need to impose a < 0,y < 0



Cubic gravity

[to appear PF, Kovacs and Yao]

* Leading order higher derivative correction to Einstein’s gravity in 3+1
dimensions:

= Jd“x\/—_g

— 4th order EOMSs

% a f

R + f4 (C3 RadeRcdefR ab + 53R deRcdefRe ab)]

* Field redefinition by Oth order EOM — new action:

Smg = [d4x, [—g

4 d b ~ d D ab
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Cubic gravity
Riplgl = Ry
(O-m2)R,, = RV
(O-m7) RDV = F 18,98, R,RMD, 0RMD, ROV, W, oW)
ORVY = F 1 /(8. 9g, R, R", 0ROV
1 Wapea = F (8,08, R,RUY, 0RMD, ROV, W)

Ol)(

= EOMSs: wave equations for g , (massless) and R , , R"") (2 massive

scalars + 2 massive spin 2 tensors)

m» Auxiliary variables: R(}?CO) =V Ry, W,.q

= n_ and m_ depend on the q;’'s and can always be chosen s.t. szr, m* > 0



Summary and Conclusions



Summary and Conclusions

We have various methods to simulate black hole binary mergers in large
classes of physically interesting higher derivative theories of gravity

New proposal: Regularisation

The higher derivatives are packed in new massive degrees of freedom that
are ghosts

For initial data consistent with the EFT expansion, runaway solutions don't
occur and the regularised EFT provides a consistent description of the
long distance physics

Regularisation can be generalised to non-relativistic theories and it does
not require an action [wip w/ R. M. Wald]



Thank you!



Sketch of proof

» For n sufficiently large (depending on /NV), the equations of motion for the
regularised theory are

I:In+1 Rab =F,
where I, is a sum of monomials built out of the metric,
() — P.q) = ’ i
Wabcdel Vel .o VelWabcd and Ieabc1 Vcl .o ch D Rab with

Oﬁlgn,p+q§n+1andq§n—1

. This system can be written as g% 8adﬂ1/A = F,(v,0v), where F, is a set
of tensor-valued polynomials of its arguments and v stands for g, W
withO <k <n—1,RP?Pwithp+qg <nandg <n



One uses the Bianchi identities to derive wave equations for W® and

RPD withp > 1 and g < n:

p.q) — pRpP.gtl) (».q)
[ 1R = R + F P>

For the variables R'”*% with p = 0 and g < n we simply have
] RO.9) — pRO.g+1)

RO is evolved with the original equation: ["1'R , = F ,

Initial data consists of (X, ;;, K;;, p(o)

Constraints propagate

pf"H)) where p(m) = (Z)"R;;



