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Motivations

GR breaks down in the UV (high curvature regime)

!

. . [Stelle (1977)...]
Consider higher-curvature terms?

Constructing healthy theories implies

having second-order differential
equations

[Ostrogradsky (1850)]

[ Horndeski Theories ]

[Horndeski (1974)]
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[ Einstein-dilaton-Gauss-Bonnet ]
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= — ] d*x V=3 f(R)

It shares the same Ricci-constant solutions of GR

For reasonable f(R), vacuum BH solutions are the

same as in GR
[Sotiriou & Faraoni (2010)]

Trivial for the UV structure of BHs

Einstein-dilaton-
Gauss-Bonnet

= — [ a'x =g (R - (W) +21(9)6]

Quadratic-curvature terms, but second-order equations

Admits black-hole solutions different from GR

But problems lie ahead....



EdGB: nuts and bolts

G= R? — AR R™Y + R, pe REVPO

A

1 E
S = T d*x =g [R — (V§)* + 2n(¢) G]

|
___________________________________________________________________ -

Dilatonic coupling n(p) = Ae —ve
Low-energy truncation of string theory ! s & sloan (1957)] [A] = ¢
Symmetry under transformations p->p+C A - Ae¥c

Solutions

1. Perturbative expansion in small A [Mignemi & Stewart (1993)]

2. Nonperturbative methods: numerical solutions [Kanti+ (1996)] «



EdGB: static asymptotically-flat black holes (exterior)

ds? = —a(r)?dt? + [dr + a(r) {(r)dt]? + r?dQ5 b = (1)
TH
a(ry) a(r) ~A
) b ~
¢'(ru)
() ~ /ZMB“
) =1 p->Pp+C Ao e '

Regularity at the horizon



EdGB: mass-radius diagram
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EdGB: mass-radius diagram  ——
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EdGB: static asymptotically-flat black holes (exterior)
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EdGB: static asymptotically-flat black holes (interior)
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EdGB: static asymptotically-flat black holes (interior)

ds? = —a(r)?dt? + [dr + a(r) {(r)dt]? + r?dQ5 b = (1)

! o

a(r) ~ A
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[Corelli+(2022, 2023)]



EdGB: loss of hyperbolicity

Starting from initial regular data, does the evolution depend continously on the initial data?

The system of equations must be strongly hyperbolic

[Sarbach & Tiglio (2012), Hilditch (2013)]

Time-dependent case la(),{(),¢()] - [al,),{( ), ¢ t)]

Q = 0d,.¢ Evolution equations
Auxiliary field variable + conjugate momentum 1 — +
~a 0r¢p — <0 2 constraints for a & ¢
o OF i ;
Principal symbol SD,](U”) =57 7 v =(¢,Q,P Q)
U

[ Strong hyperbolicity Complete set of n,,’s satisfying  det P(n,) = O]




EdGB: loss of hyperbolicity

[ Strong hyperbolicity = Complete set of n,,s satisfying  det P(n ”) = OJ

det P n le [ a (E)Z + b (&) 4 C] -0 ne=0 Redundancy of the equation for d;¢
t lr =

Nr Nr Ny =20 2 constraints for a and {

Real distinct solutions if A=b%2—4qac>0

Where A < 0, the system is elliptic —> Breakdown of predictability



EdGB: black-hole interior structure

Excised region
B Singularity region

Elliptic region [Ripley & Pretorius (2019, 2020), East & Ripley (2021), Corelli+ (2022, 2023), Doneva+ (2023)...]

- Horizon
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Loss of hyperbolicity is
gauge-invariant
[Reall (2021)]
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EdGB: black-hole thermodynamics
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EdGB: Hawking evaporation
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Hawking evaporation should go on

...But ending where?
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EdGB: loss of hyperbolicity & Hawking evaporation

Hawking radiation emulated with the
coupling with a phantom scalar

[Corelli+(2022, 2023)]

1

S =——
161

d*x =g [R — (V§)* + (V§)* + 2n(¢) G]

Emulate the mass loss during
evaporation at the classical level

- Black-hole region Elliptic region B Singularity region




Some approaches try to address the problem...

Linear coupling between the scalar field and the Ricci scalar  [Thaalba+(2023, 2024)]

1 p
S = Tem d4x\/_[R——(V(/))Z——(Eﬂ—ag)qbzl

For some specific values of the constants/couplings, the naked elliptic region can be avoided in simulations...

...but the elliptic region is not eliminated entirely

Add regularising higher-order differential operators  [Figueras+(2024, 2025)] EFT approach
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f(R) —DILATON-GAUSS-BONNET THEORY
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f(R) —dGB: combining the best of both worlds?

S =
167‘[

EdGB alters GR vacuum
solutions

d*x\—g|[ R

M

A DANGER

f(R)
— (V¢)? + 2n(¢) 61

f(R) allows to introduce higher-curvature
corrections
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A DANGER

f (:R) —dGB: the theory Highly toxic
N | With care
§=— [ d*x V=g [f(R) - (V$)? + 2n(¢) §]
Reframe it as a scalar-tensor theory >»  Identitfy the Ricci scalar as a new self-interacting scalar field x

[Sotiriou & Faraoni (2010), Jaime+(2011)] Two scalar fields involved

[ Bi-scalar extension of Horndeski J
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A DANGER

f(R) —dGB: the theory

4 2
§ = d*x =g [f(R) — (V§)* + 2n(¢) G]
161
Reframe it as a scalar-tensor theory >»  Identitfy the Ricci scalar as a new self-interacting scalar field x
[Sotiriou & Faraoni (2010), Jaime+(2011)] Two scalar fields involved

1
§=10—| d*xy=g[f'COR - V(X)—(V¢)2+277(¢)Q]

e Q) = O~ £
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A DANGER

f(R) —dGB: the theory

1
§ = [ A% V=G I/ DR = V() = (T9)” + 20(9) §]

/

lf (R) = R + k R" In(¢p) = 1e"?|
k = £2(m-1) d->p+C Ao AeC
n = 2 «Quadratic Theory» y =4

n =4 «Quartic Theory»
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f(R) —dGB: static asymptotically-flat black holes (exterior)

ds? = —a(r)?dt? + [dr + a(r) {(r)dt]? + r?dQ5 b = p(r) x = x(@®
Ty
alry) i a(r) ~ A
) X0~ 35
X (ry)
¢(ry) - d(r) ~ —
(:b,(rH) .\ ~ .\
..\"\-. /ZMBH
— . IR J(r) ~
) =14 p-o>p+C A1- e’ '

Regularity at the horizon
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f(R) —dGB: static asymptotically-flat black holes (exterior)

Quadratic case Accuracy: 35 significant figures
I
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f(R) —dGB: static asymptotically-flat black holes (exterior)

Quadratic case
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f(R) —dGB: mass-radius diagrams
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f(R) —dGB: mass-radius diagrams
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f(R) —dGB: mass-radius diagrams
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f(R) —dGB: mass-radius diagrams
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f(R) —dGB: mass-radius diagrams

17.0

?‘H/\/;

16.8

16.6 -

16.2

16.0

----- - EdGB

Quadratic x = 1000 g

———— Quadratic x = 100 r

Quadratic k = 10 i

Quadratic x = i

- --- Quartic x = 10'5 #1°

835

8.40

Mgg/ A

845

850

855

19



f(R) —dGB: mass-radius diagrams
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f(R) —dGB: static asymptotically-flat black holes (exterior)

ds? = —a(r)?dt? + [dr + a(r) {(r)dt]? + r?dQ5 b = p(r) x = x(@®
ry i
a(ry) a(r) ~ A
x(ry) x(r) ~ l:_j
X' (ru) ;
¢(ry) d(r) ~ b
¢'(ru) "

’ZMBH
((ry) =1 ¢(r) ~ r

Regularity at the horizon



f(R) —dGB: static asymptotically-flat black holes (interior)

ds? = —a(r)?dt? + [dr + a(r) {(r)dt]? + r?dQ5 b = p(r) x = x(@®
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Curvature Invariants

f(R) —dGB: black-hole interior

EdGB f(R)-dGB Quadratic f(R)-dGB Quartic
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Dynamical mechanism suppressing the Ricci scalar
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Curvature Invariants

f(R) —dGB: black-hole interior
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The larger the «, the more suppressed the contribution
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Contributions to £

f(R) —dGB: why so similar to EAGB?
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f(R) —dGB: why so similar to EAGB?

EdGB f(R)-dGB Quadratic f(R)-dGB Quartic
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The larger the n, the more suppressed the contribution
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f(R) —dGB: loss of hyperbolicity

Time-dependent case la(r),{(r), p(r)] » [a(r,t),{(r,t), p(r,t)]

Q= 5 r
=7 at¢ Q Evolution equations
Auxiliary field variable + conjugate momentum _ —> +
0= ar)( .
1 2 constraints for a & {

OF i

661]]77# v1=(¢’Q'X’®'P'H’a’C)

Principal symbol Pry (77 ,,L)

det P o 2 12 [a (%)4+b(zr) +c(;7;) +b(nr)+e] 0
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f(R) —dGB: loss of hyperbolicity

det P «x nz n2 [a (

Nt

Ny

) 5 () + e

ne =0 Redundancy of the equation for d,¢ and d,

n, =0 2 constraints for @ and ¢

Real distinct solutions if

A>0

8ac—3b%2 <0

Nt

Nr

) +2(;

64a3e — 16a%c? + 16ab%c — 16a%bd — 3% < 0

t

Nr

)+4=0
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f(R) —dGB: loss of hyperbolicity
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Concluding remarks

[The inclusion of individual higher-curvature corrections in EAGB reveals qualitatively similar features ]
...and issues

An infinite tower of higher-curvature terms might be needed  [Bueno+ (2025)]

What could be done next? If you are brave enough...
 Description of the formation of these black holes

* Description of Hawking evaporation
* Other numerical simulations (maybe?...)

* Analyze the loss of hyperbolicity in a gauge-invariant way [Reall (2021)]



[Credits: ESA]
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