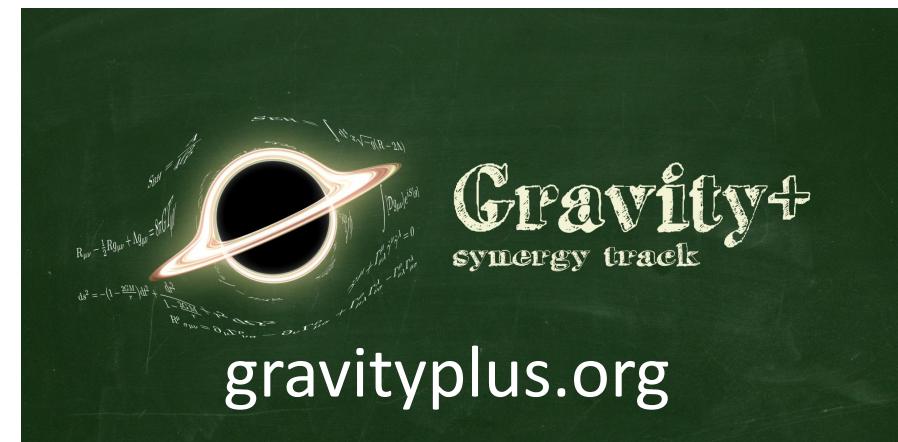


Black hole tomography

Based on work with Badri Krishnan,
Ariadna Ribes Metidieri, John Ostor,
Patrick Bourg,

Béatrice Bonga

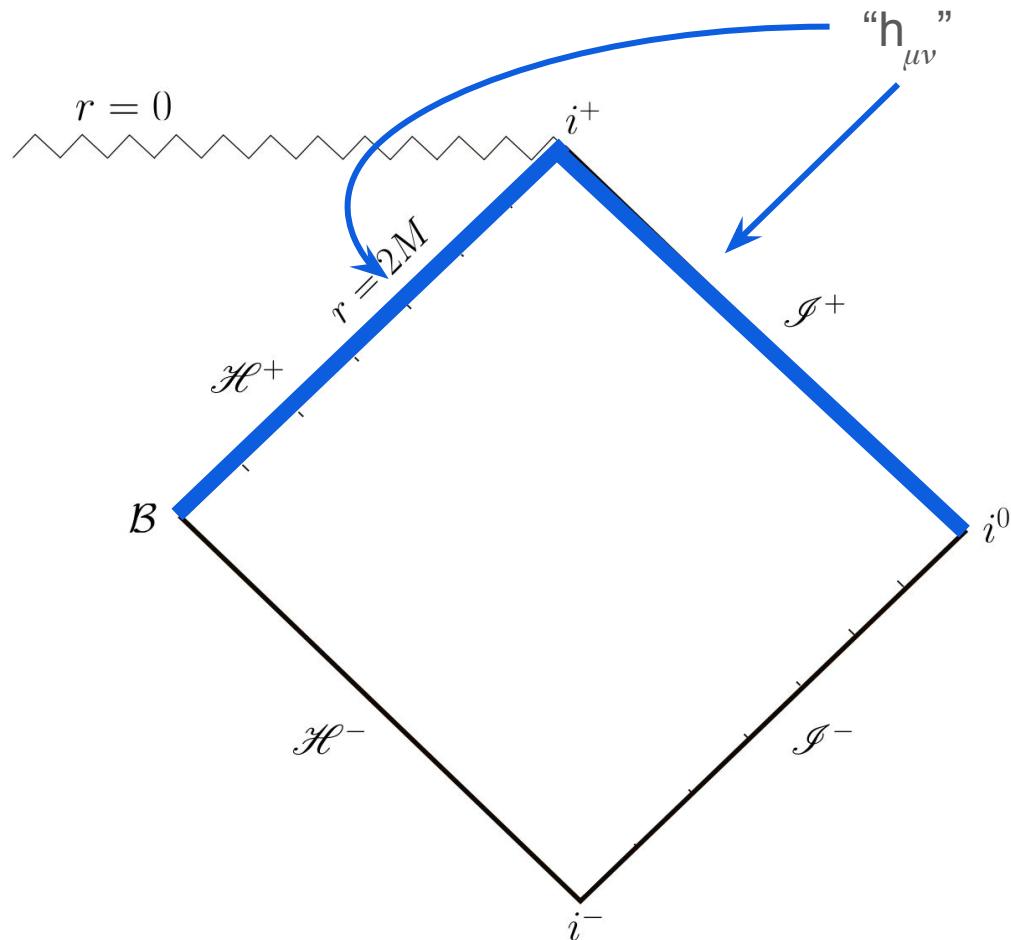
15 Jan 2026



gravityplus.org

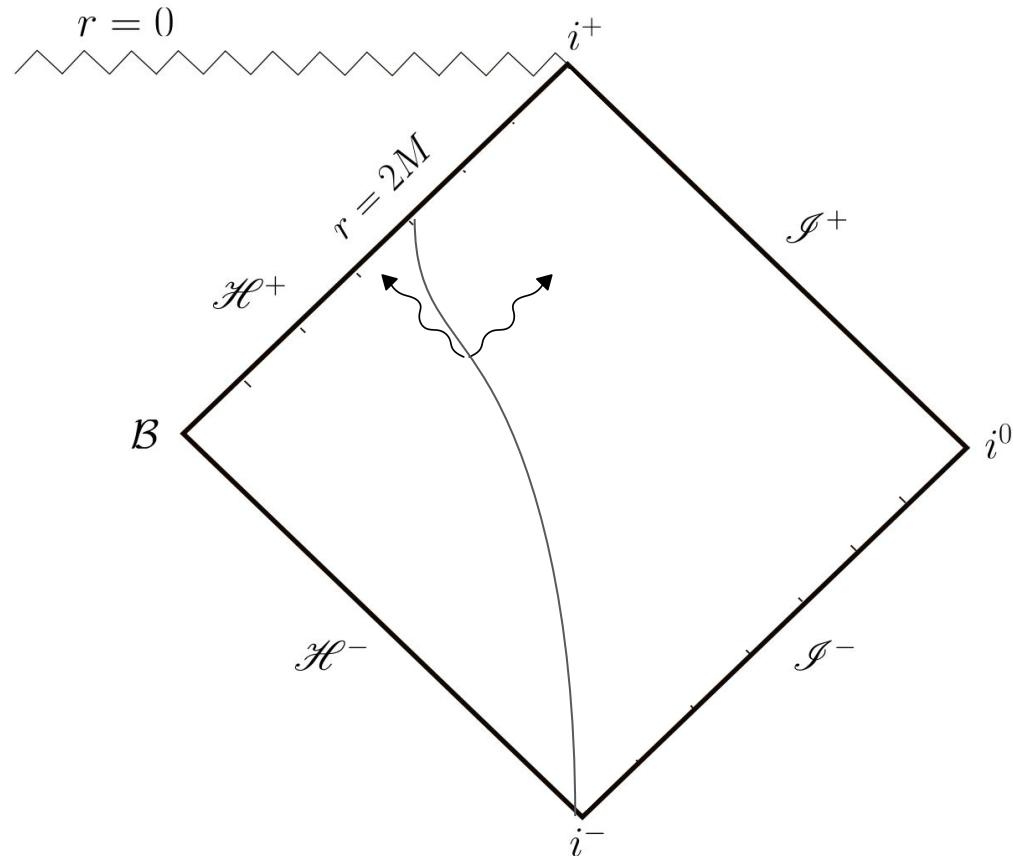
Black hole tomography

Reconstruct horizon dynamics from gravitational wave observations at null infinity

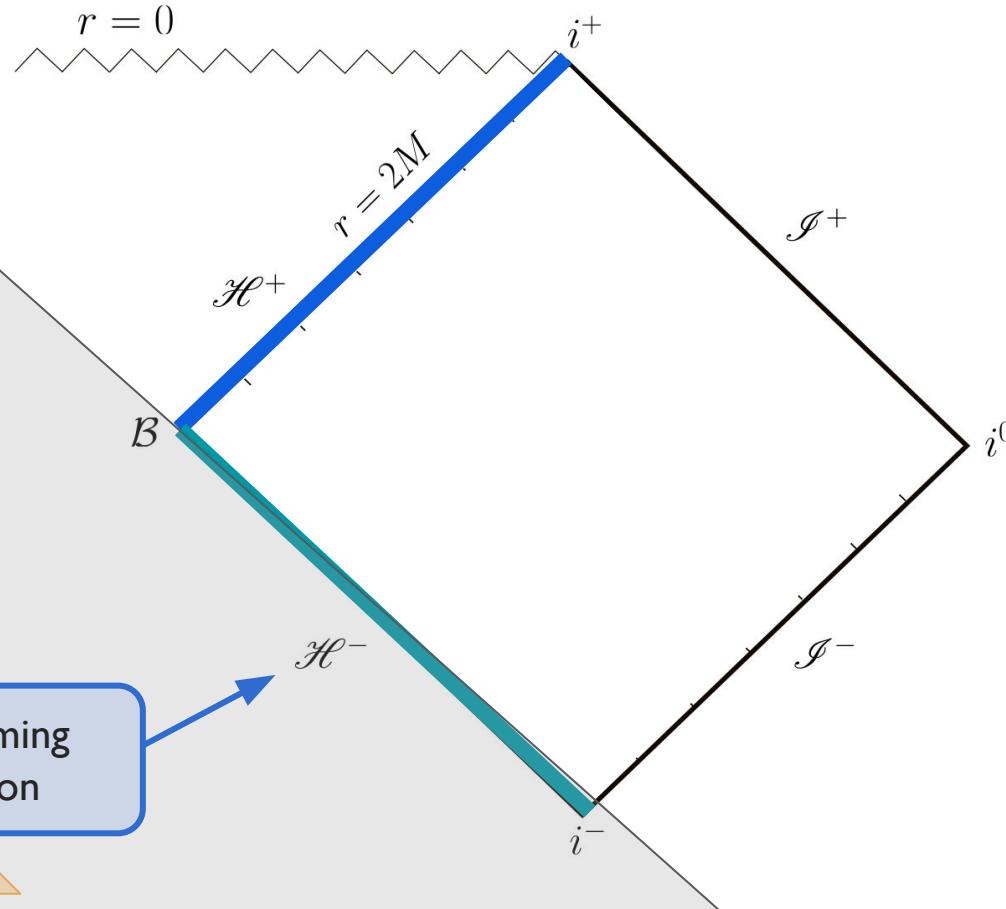


Black hole tomography

Reconstruct horizon dynamics from gravitational wave observations at null infinity

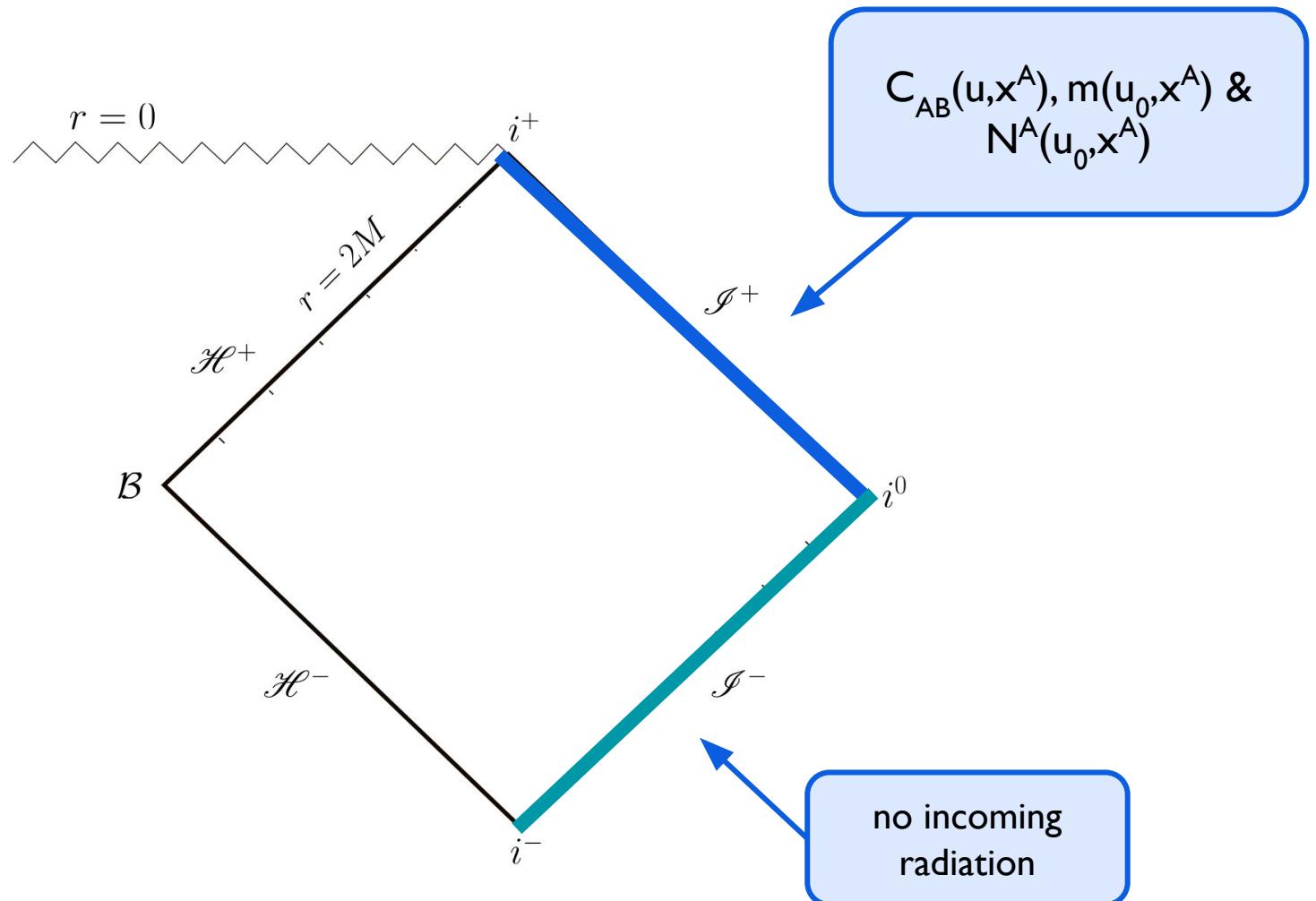


Our goal: BH tomography for QNMs

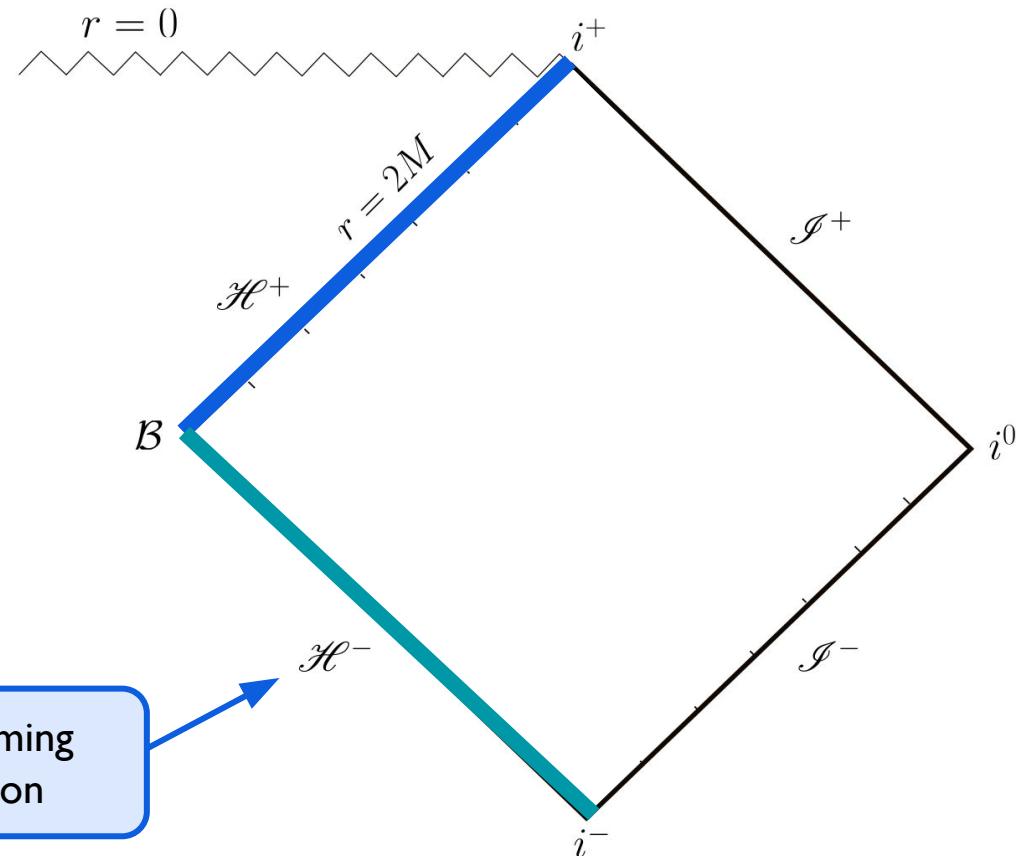


Excludes Robinson-Trautman like
solutions!

Similar to Bondi-Sachs framework



Our goal: BH tomography for QNMs



Perturbed isolated horizon

Tidal deformations	Dynamic perturbations
Time-independent perturbations $\Psi_2 \rightarrow$ horizon geometry Note: θ_1 and σ_1 remain zero	Tidal heating, QNMs, etc. $\Psi_0 \rightarrow$ radiation Note: θ_1 and σ_1 no longer zero (but at linear order θ_1 is)

Overview scheme

1. Specify all data on (non-rotating) horizon:

Ψ_0 = freely specifiable

Assume Ψ_0 separable & Fourier mode decomposition

2. Using the “radial” equations obtain the solution everywhere
3. Impose “boundary” conditions:
 - ❖ require analyticity \rightarrow QNMs
 - ❖ stability towards the future \rightarrow no growing modes

Result

QNM solutions everywhere satisfying the standard boundary conditions

Relation Ψ_0 at horizon and Ψ_4 at null infinity

Horizon data

1. Gauge choices adapted to horizon
2. Bianchi identities + Einstein's equations

$$D\tilde{\sigma} - \kappa_{(l)}\tilde{\sigma} \triangleq \tilde{\Psi}_0 ,$$

$$D\tilde{\Psi}_1 - \kappa_{(l)}\tilde{\Psi}_1 \triangleq \bar{\partial}\tilde{\Psi}_0 ,$$

$$D\tilde{\Psi}_2 \triangleq \bar{\partial}\tilde{\Psi}_1 ,$$

$$D\tilde{\pi} \triangleq \tilde{\bar{\Psi}}_1 ,$$

$$D\tilde{\mu} + \kappa_{(l)}\tilde{\mu} \triangleq \tilde{\Psi}_2 + \tilde{\bar{\Psi}}_2 ,$$

$$D\tilde{\lambda} + \kappa_{(l)}\tilde{\lambda} \triangleq \bar{\partial}\tilde{\pi} + \mu\tilde{\sigma} ,$$

$$D\tilde{\Psi}_3 + \kappa_{(l)}\tilde{\Psi}_3 \triangleq \bar{\partial}\tilde{\Psi}_2 + 3\tilde{\pi}\tilde{\Psi}_2 ,$$

$$D\tilde{\Psi}_4 + 2\kappa_{(l)}\tilde{\Psi}_4 \triangleq \bar{\partial}\tilde{\Psi}_3 - 3\tilde{\lambda}\tilde{\Psi}_2 ,$$

$$D\tilde{a} \triangleq -\bar{a}\tilde{\sigma} - \tilde{\bar{\Psi}}_1 ,$$

$$D\tilde{\xi}^{\bar{z}} \triangleq \tilde{\sigma}\bar{\xi}^{\bar{z}} .$$

Ψ_1 is nonzero!

Ψ_3 is nonzero!

Horizon solution

$$\tilde{\Psi}_0 \triangleq \frac{1}{2\pi} \sum_{l,m} \left(\int d\omega a_{lm}^- e^{-i\omega v} + \int d\bar{\omega} a_{lm}^+ e^{i\bar{\omega} v} \right) {}_2 Y_{lm},$$

$$\tilde{\sigma} \triangleq -\frac{1}{2\pi} \sum_{l,m} \left(\int_{-\infty}^{\infty} d\omega \frac{a_{lm}^-}{\kappa_{(l)} + i\omega} e^{-i\omega v} + \int_{-\infty}^{\infty} d\bar{\omega} \frac{a_{lm}^+}{\kappa_{(l)} - i\bar{\omega}} e^{i\bar{\omega} v} \right) {}_2 Y_{lm},$$

$$\tilde{\Psi}_1 \triangleq \frac{1}{2\pi} \sum_{l,m} \left(\int_{-\infty}^{\infty} d\omega \frac{a_{lm}^- \sqrt{(l+2)(l-1)}}{\sqrt{2c}(\kappa_{(l)} + i\omega)} e^{-i\omega v} + \int_{-\infty}^{\infty} d\bar{\omega} \frac{a_{lm}^+ \sqrt{(l+2)(l-1)}}{\sqrt{2c}(\kappa_{(l)} - i\bar{\omega})} e^{i\bar{\omega} v} \right) {}_1 Y_{lm},$$

$$\tilde{a} \triangleq \frac{1}{2\pi} \left(- \int d\omega \sum_{l,m} \frac{(-1)^m a_{lm}^+ e^{-i\omega v}}{i\omega(\kappa_{(l)} + i\omega)} (\bar{a}_{-2} Y_{l-m} + \frac{\sqrt{(l+2)(l-1)}}{\sqrt{2c}} {}_{-1} Y_{l-m}) + \int d\bar{\omega} \sum_{l,m} \frac{(-1)^m \bar{a}_{lm}^- e^{i\bar{\omega} v}}{i\bar{\omega}(\kappa_{(l)} - i\bar{\omega})} (\bar{a}_{-2} Y_{l-m} + \frac{\sqrt{(l+2)(l-1)}}{\sqrt{2c}} {}_{-1} Y_{l-m}) \right),$$

$$\tilde{\xi}^z \triangleq \frac{\tilde{\xi}_0^z}{2\pi} \sum_{l,m} {}_2 Y_{lm} \left(\int d\omega \frac{a_{lm}^- e^{-i\omega v}}{i\omega(\kappa_{(l)} + i\omega)} - \int d\bar{\omega} \frac{a_{lm}^+ e^{i\bar{\omega} v}}{i\bar{\omega}(\kappa_{(l)} - i\bar{\omega})} \right),$$

$$\tilde{\Psi}_2 \triangleq \frac{1}{2\pi} \sum_{l,m} \frac{\sqrt{(l+2)(l+1)l(l-1)}}{2c^2} \left(\int_{-\infty}^{\infty} d\omega \frac{a_{lm}^-}{i\omega(\kappa_{(l)} + i\omega)} e^{-i\omega v} - \int_{-\infty}^{\infty} d\bar{\omega} \frac{a_{lm}^+}{i\bar{\omega}(\kappa_{(l)} - i\bar{\omega})} e^{i\bar{\omega} v} \right) {}_1 Y_{lm},$$

$$\tilde{\pi} \triangleq \frac{1}{2\pi} \sum_{l,m} (-1)^m \frac{\sqrt{(l+2)(l-1)}}{\sqrt{2c}} \left(\int_{-\infty}^{\infty} d\omega \frac{\bar{a}_{lm}^+}{i\omega(\kappa_{(l)} + i\omega)} e^{-i\omega v} - \int_{-\infty}^{\infty} d\bar{\omega} \frac{\bar{a}_{lm}^-}{i\bar{\omega}(\kappa_{(l)} - i\bar{\omega})} e^{i\bar{\omega} v} \right) {}_{-1} Y_{l,-m},$$

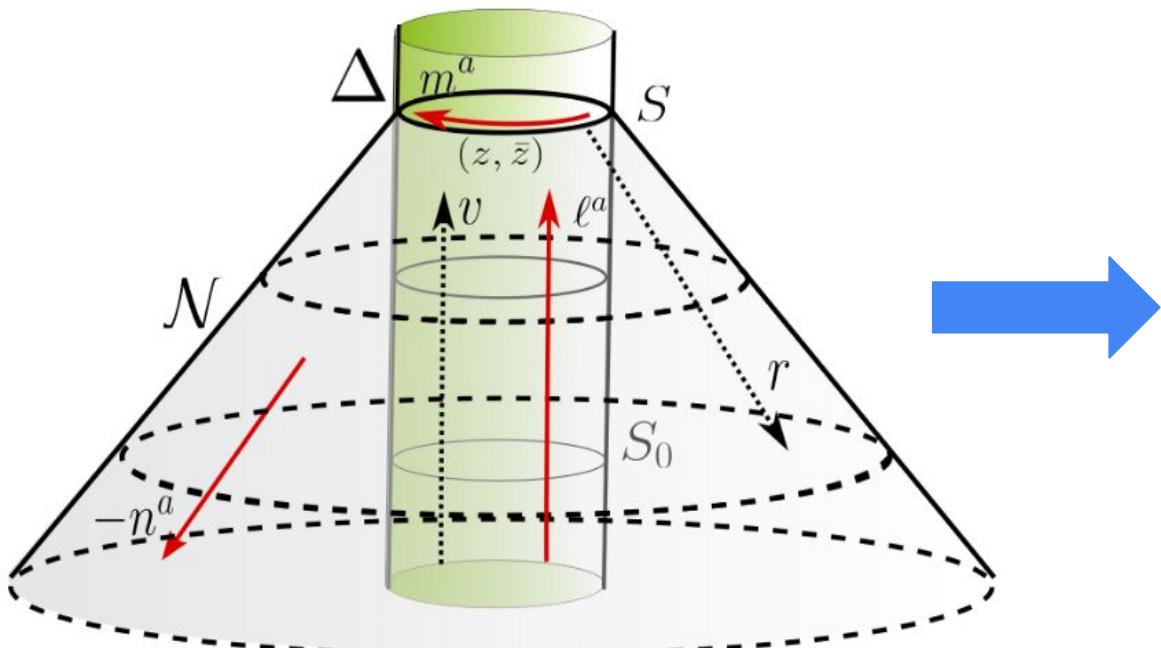
$$\tilde{\mu} \triangleq \frac{1}{2\pi} \sum_{l,m} \frac{\sqrt{(l+2)(l+1)l(l-1)}}{2c^2} \left(\int_{-\infty}^{\infty} d\omega \frac{[a_{lm}^- Y_{lm} + (-1)^m \bar{a}_{lm}^+ Y_{l,-m}] e^{-i\omega v}}{i\omega(\kappa_{(l)}^2 + \omega^2)} - \int_{-\infty}^{\infty} d\bar{\omega} \frac{[a_{lm}^+ Y_{lm} + (-1)^m \bar{a}_{lm}^- Y_{l,-m}] e^{i\bar{\omega} v}}{i\bar{\omega}(\kappa_{(l)}^2 + \bar{\omega}^2)} \right),$$

$$\tilde{\lambda} \triangleq \frac{1}{2\pi} \sum_{l,m} (-1)^m \left(\int_{-\infty}^{\infty} d\omega \frac{\bar{a}_{lm}^+ e^{-i\omega v}}{2ic^2\omega(\kappa_{(l)}^2 + \omega^2)} (2ic\omega - (l+2)(l-1)) + \int_{-\infty}^{\infty} d\bar{\omega} \frac{\bar{a}_{lm}^- e^{i\bar{\omega} v}}{2i\bar{c}^2\bar{\omega}(\kappa_{(l)}^2 + \bar{\omega}^2)} (2ic\bar{\omega} + (l+2)(l-1)) \right) {}_{-2} Y_{l,-m},$$

$$\tilde{\Psi}_3 \triangleq -\frac{1}{2\pi} \sum_{l,m} \frac{\sqrt{(l+2)(l-1)}}{2\sqrt{2}c^3} \left(\int_{-\infty}^{\infty} d\omega \frac{[a_{lm-1}^- Y_{lm}(l+1)l + 3(-1)^m \bar{a}_{lm-1}^+ Y_{l,-m}] e^{-i\omega v}}{i\omega(\kappa_{(l)}^2 + \omega^2)} - \int_{-\infty}^{\infty} d\bar{\omega} \frac{[a_{lm}^+(l+1)l Y_{lm} + 3(-1)^m \bar{a}_{lm-1}^- Y_{l,-m}] e^{i\bar{\omega} v}}{i\bar{\omega}(\kappa_{(l)}^2 + \bar{\omega}^2)} \right),$$

$$\tilde{\Psi}_4 \triangleq \frac{1}{8\pi c^4} \sum_{l,m} \left(\int_{-\infty}^{\infty} d\omega \frac{[a_{lm}^- (l+2)(l+1)l(l-1) {}_{-2} Y_{lm} + 6c(-1)^m i\omega \bar{a}_{lm-2}^+ Y_{l,-m}] e^{-i\omega v}}{i\omega(\kappa_{(l)}^2 + \omega^2)(2\kappa_{(l)} - i\omega)} - \int_{-\infty}^{\infty} d\bar{\omega} \frac{[a_{lm}^+ (l+2)(l+1)l(l-1) {}_{-2} Y_{lm} - 6c(-1)^m i\bar{\omega} \bar{a}_{lm-2}^- Y_{l,-m}] e^{i\bar{\omega} v}}{i\bar{\omega}(\kappa_{(l)}^2 + \bar{\omega}^2)(2\kappa_{(l)} + i\bar{\omega})} \right).$$

Spacetime solution



Ψ_4 and Ψ_0 satisfy
Teukolsky equation
(+Teukolsky-Starobinsky
identities)

Analytic solutions

$$X_{lm}^{(4)}(r) = k_1 H_c[(l-2)(l+3) + 5\iota, 5\iota, 3-\iota, 3, \iota, -\frac{r}{c}]$$

$$+ k_2 \left(-\frac{r}{c}\right)^{\iota-2} H_c[l(l+1) + \iota^2, \iota(3+\iota), \iota-1, 3, \iota, -\frac{r}{c}]$$

Compare with Leaver:

$$X_{lm}^{(4,1)} = e^{2i\omega r} \left(\frac{r+c}{c}\right)^{-1+2i\omega} \sum_{k=0}^{\infty} a_k \left(\frac{r}{r+c}\right)^k$$
$$0 = \beta_0 - \frac{\alpha_0 \gamma_1}{\beta_1 - \frac{\alpha_1 \gamma_2}{\beta_2 - \dots}}$$

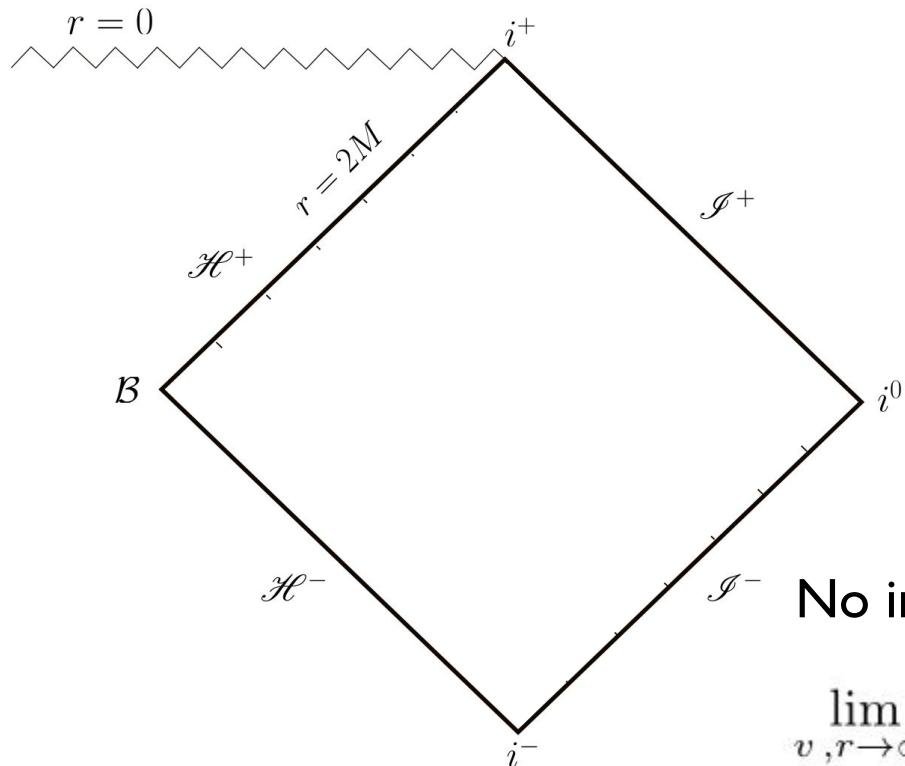
$$\alpha_k = (k+1)(3+k-2i\omega)$$

$$\beta_k = 3 - l(l+1) - 2k^2 + 4i\omega + 8c^2\omega^2 + k(-2 +$$

$$\gamma_k = (k-2i\omega)(k-2-2i\omega).$$

QNM solutions

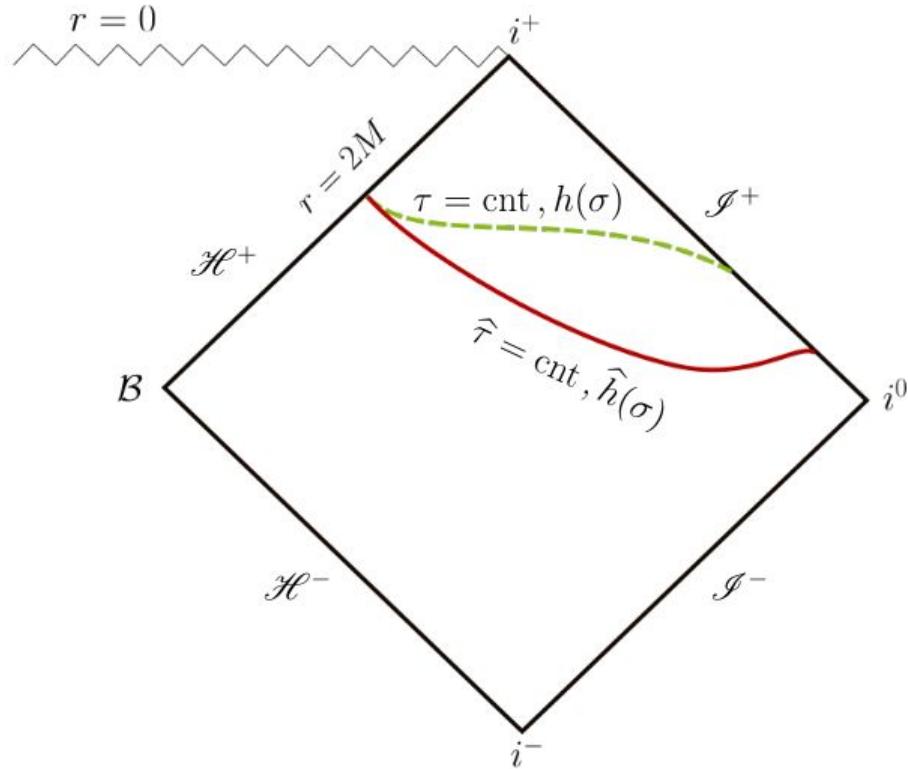
Separability, Fourier mode decomposition, analyticity, stability
towards future \rightarrow QNMs



No incoming radiation: $\Psi_0 \sim r^{-3}$ and $\Psi_1 \sim r^{-2}$

$$\lim_{v, r \rightarrow \infty} \tilde{\Psi}_0 \propto \frac{1}{r^5} a_{lmn}^{-(1)} e^{i\omega_{lmn}^{\text{QNM}}(-v+2r+2c \ln r/c)}$$
$$+ \frac{1}{r^5} a_{lmn}^{+(1)} e^{-i\bar{\omega}_{lmn}^{\text{QNM}}(-v+2r+2c \ln r/c)}$$

Connecting horizon to scri



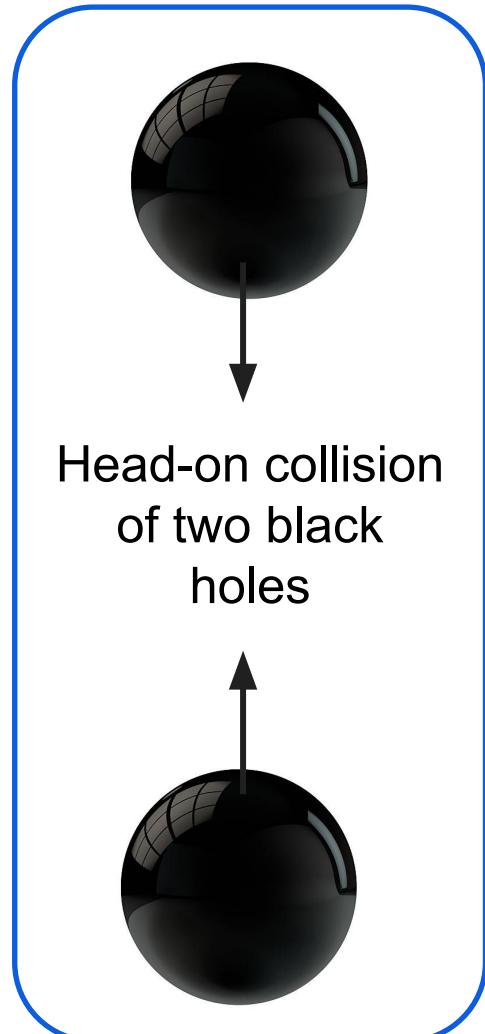
$$\Psi_{4,l0n}^{\mathcal{I}^+, -} = \frac{K_l^2 \Psi_{0,l0n}^{H,-} + 6ic\omega_{l0n} \bar{\Psi}_{0,l0n}^{H,+}}{4c^4 i\omega_{l0n} (\kappa_{(\ell)}^2 + \omega_{l0n}^2)(2\kappa_{(\ell)} - i\omega_{l0n})} \mathcal{F}_{l0n}$$

Natural extensions

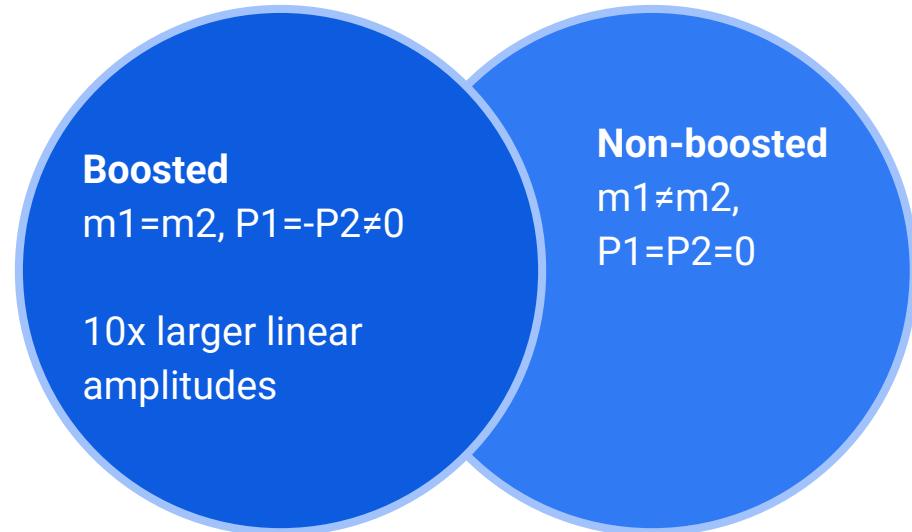
1. Kerr
2. Go to second order probing the dynamic horizon regime
3. Study horizon multipole moments

... go fully non-linear!

Two sets of simulations using the Einstein Toolkit



- (1) Resulting BH is non-rotating
- (2) Axisymmetric simulations \rightarrow only $m=0$ modes
- (3) High resolution near horizon (but poor near infinity)



Choice of time

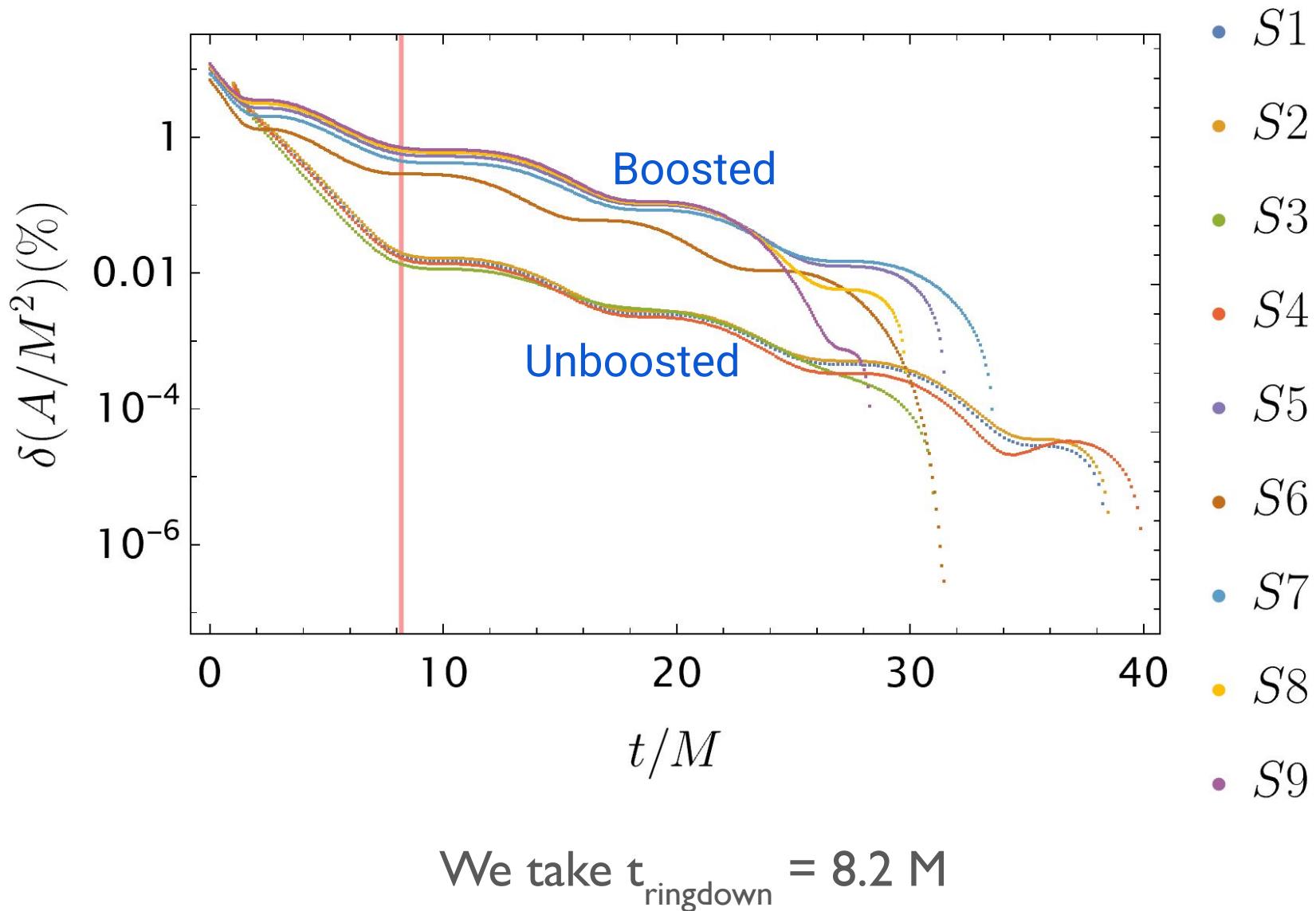
Time

Definition of frequency

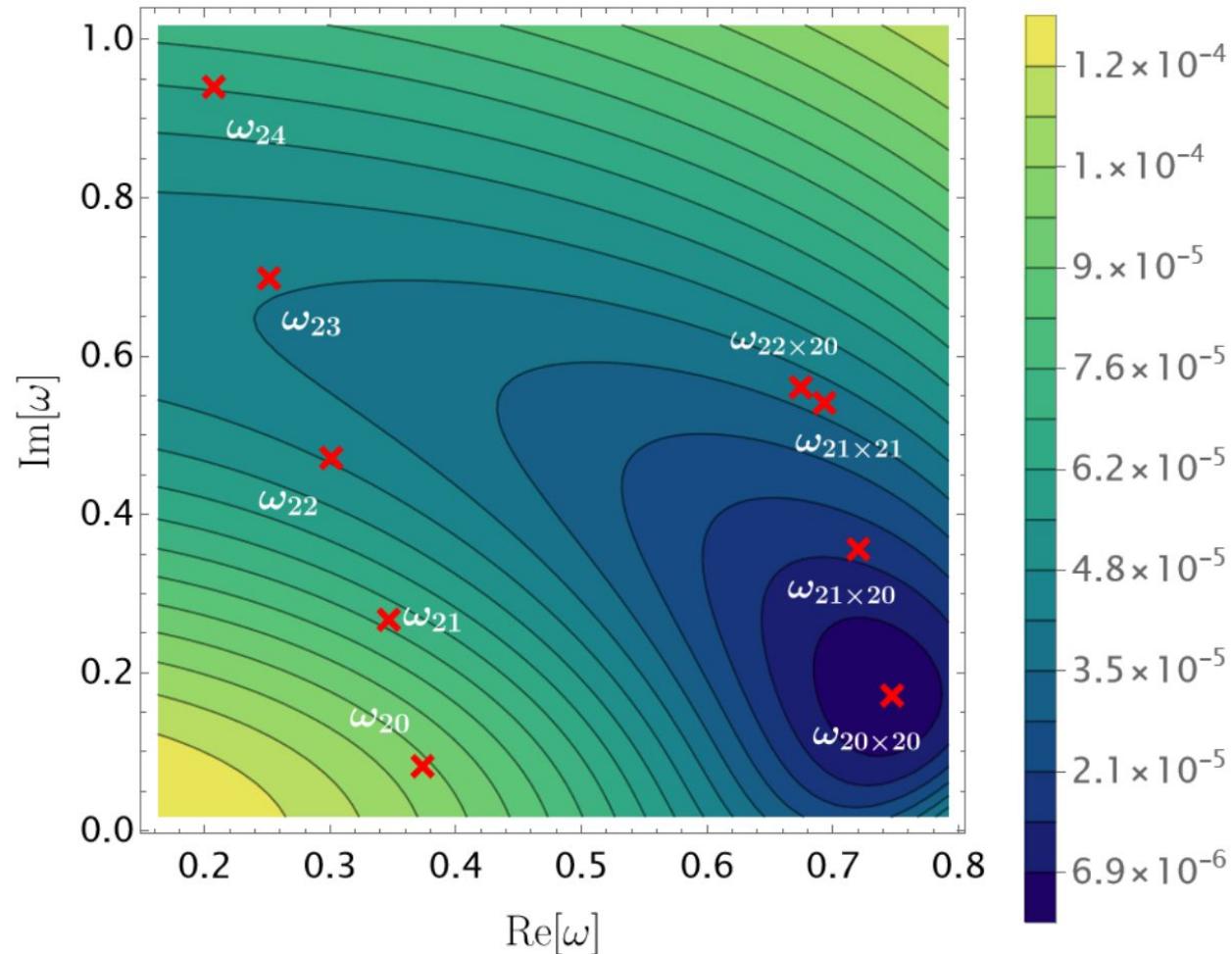
Disclaimer: We simply use the simulation time.

Same issue at infinity!

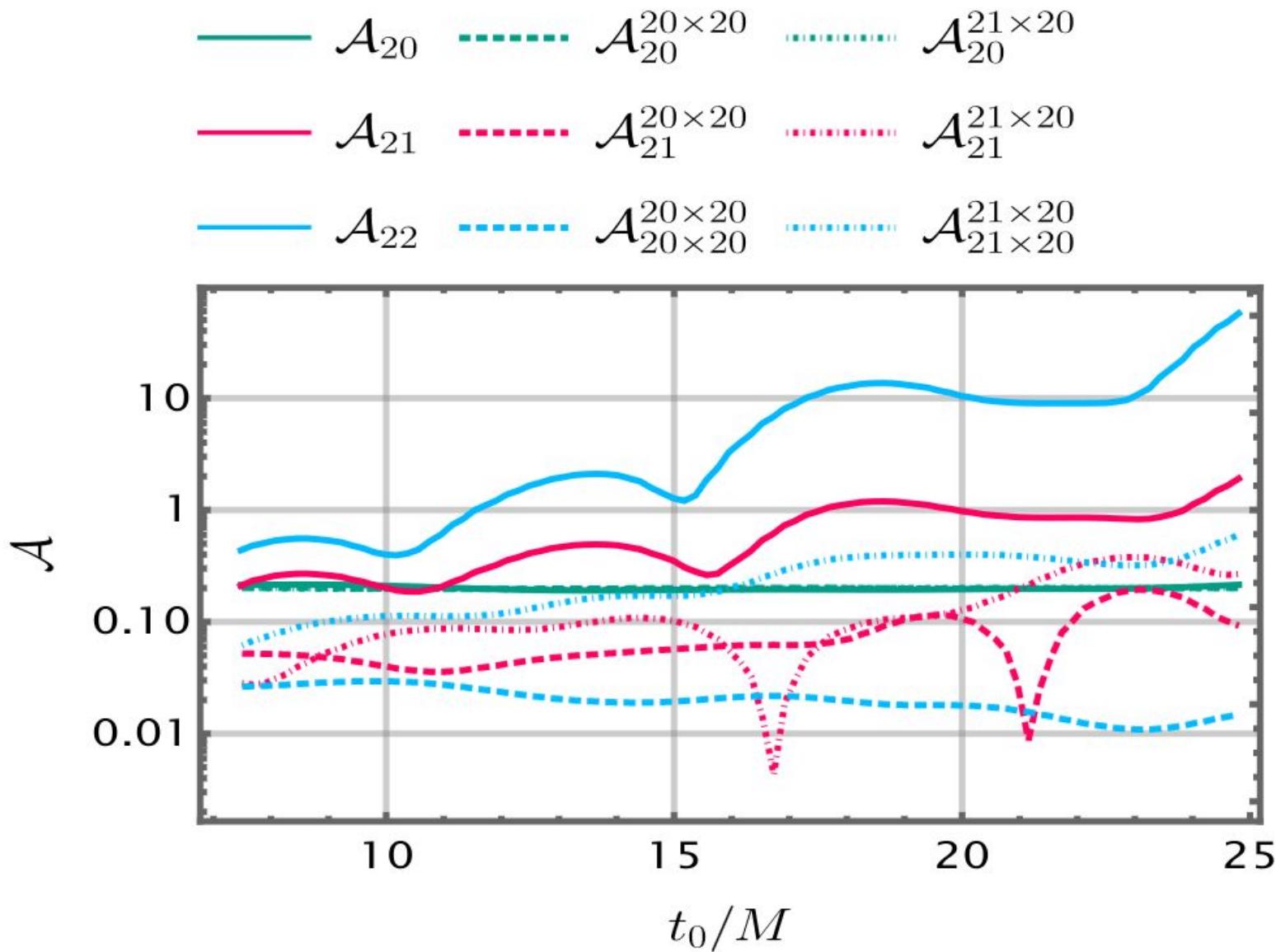
Ringdown: Mass changes $\leq 1\%$



Mismatch after fixing ω_{200} and ω_{201}

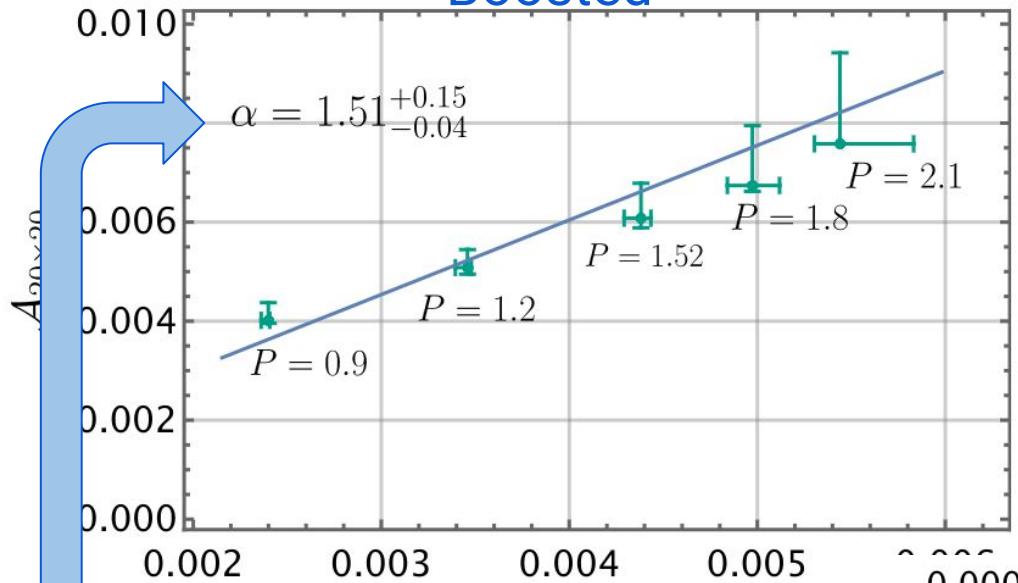


Stability amplitude



Amplitude relation

Boosted



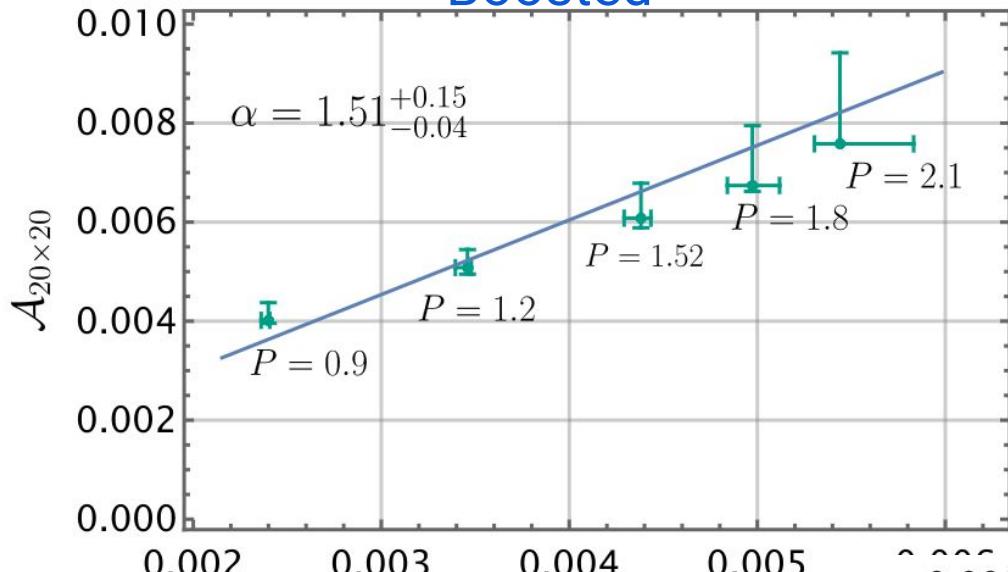
Unboosted



Puzzle: Why are these slopes different?

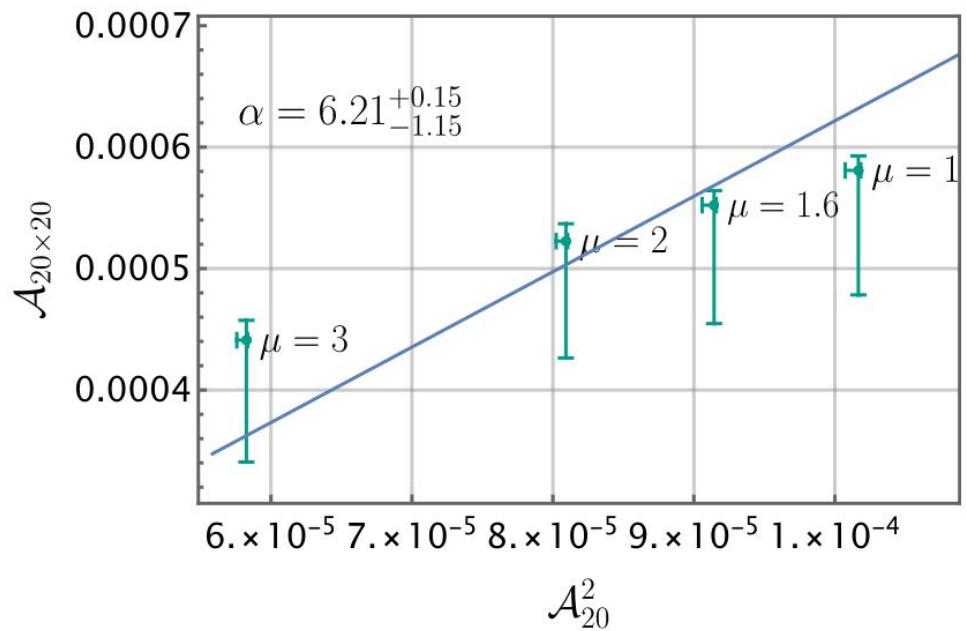
Amplitude relation explained?

Boosted



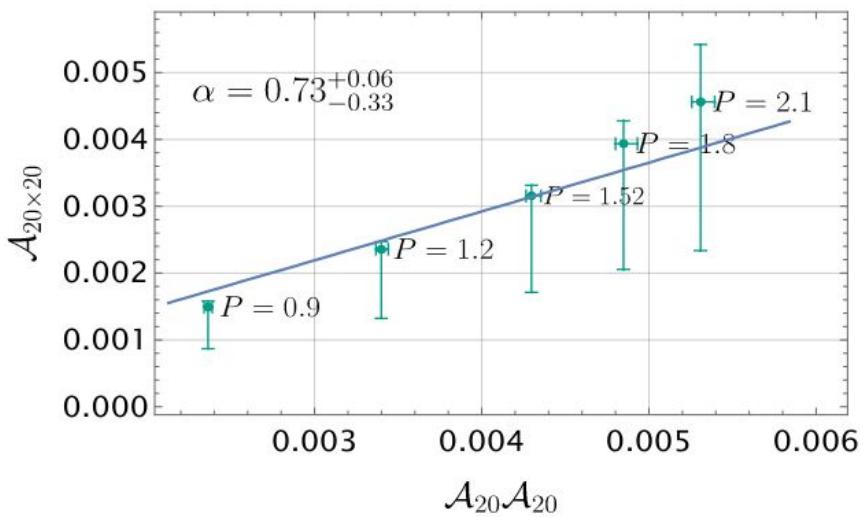
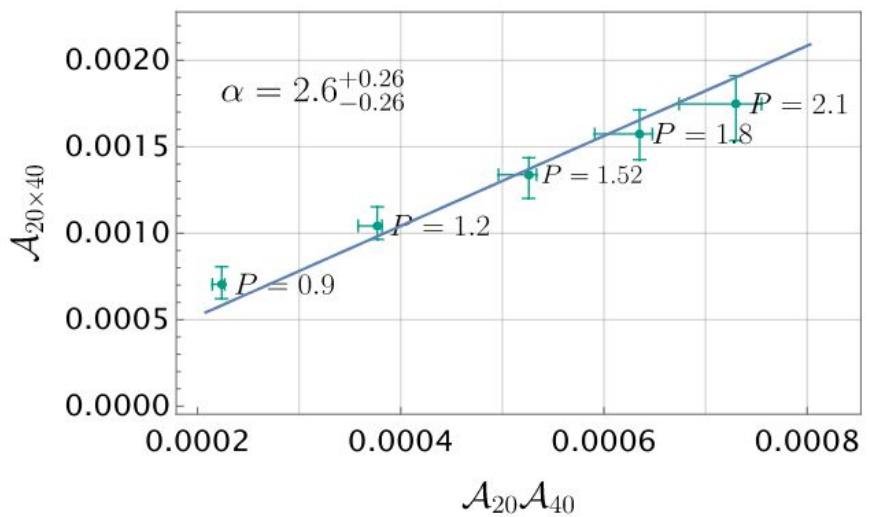
Up-down symmetry
no odd modes!

Unboosted



No up-down symmetry
odd and even modes excited

Amplitude relation $|=4$



Data prefers model with fundamental tone + 2 quadratic modes!

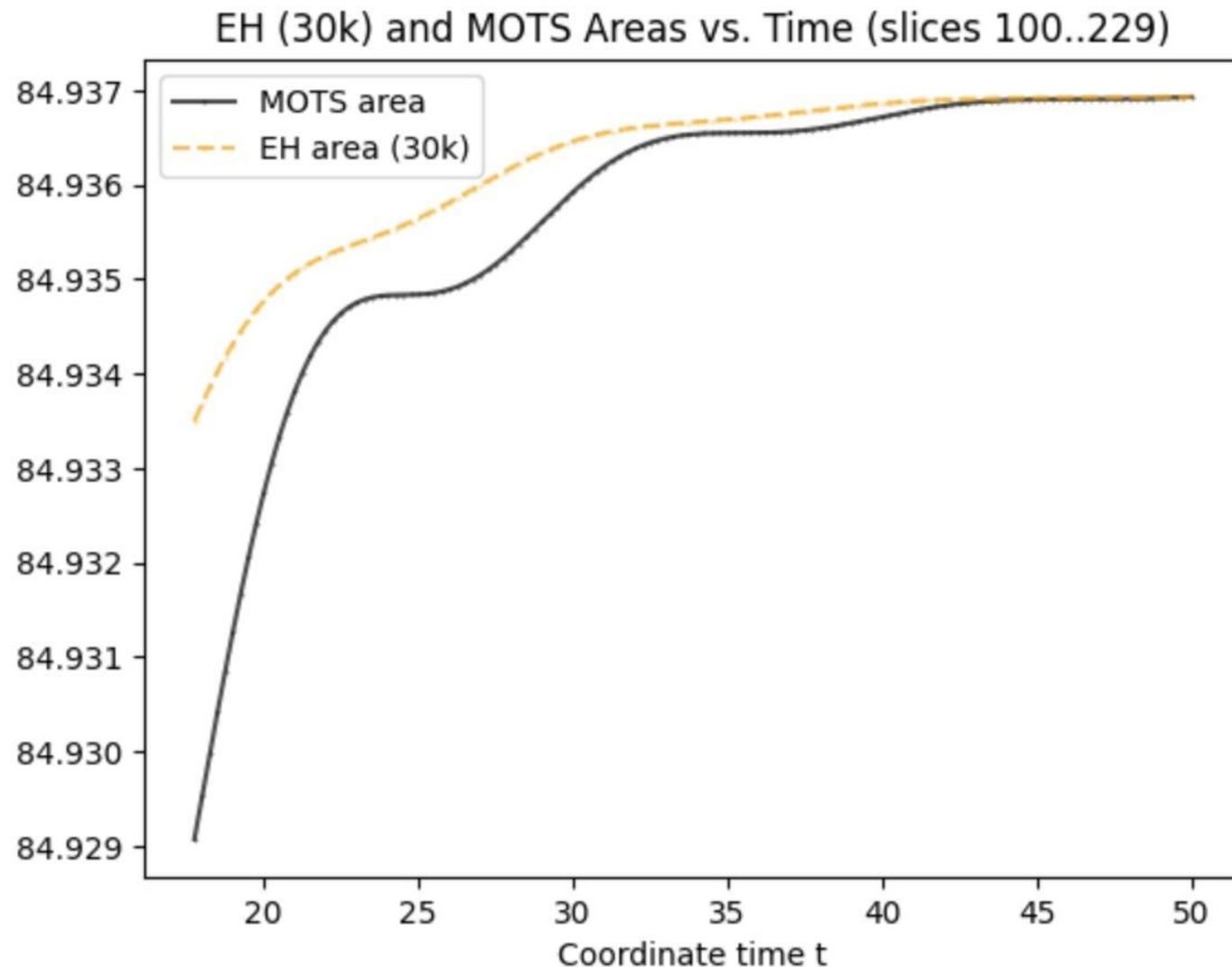
Non-linear black hole tomography?

- ❖ Same modes found at infinity in similar simulations (with poor resolution near horizon)
- ❖ Comparing amplitudes at horizon and infinity not (yet) feasible

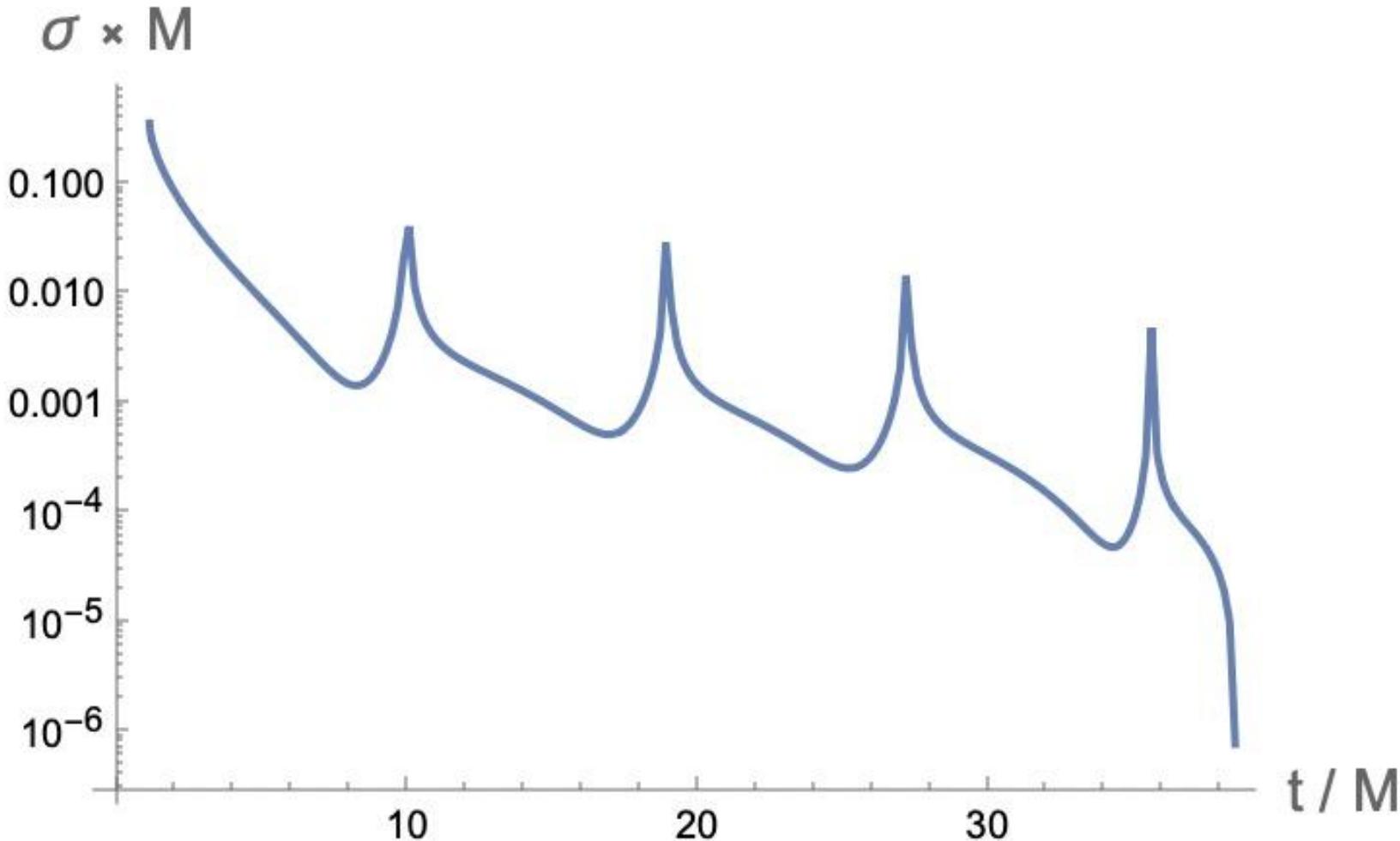
Challenges in comparing NR to BHPT

	NR	Black hole perturbation theory
location	apparent horizon	event horizon
quantity	shear modes	Ψ_0
gauge	1+log & Γ -driver shift	IRG

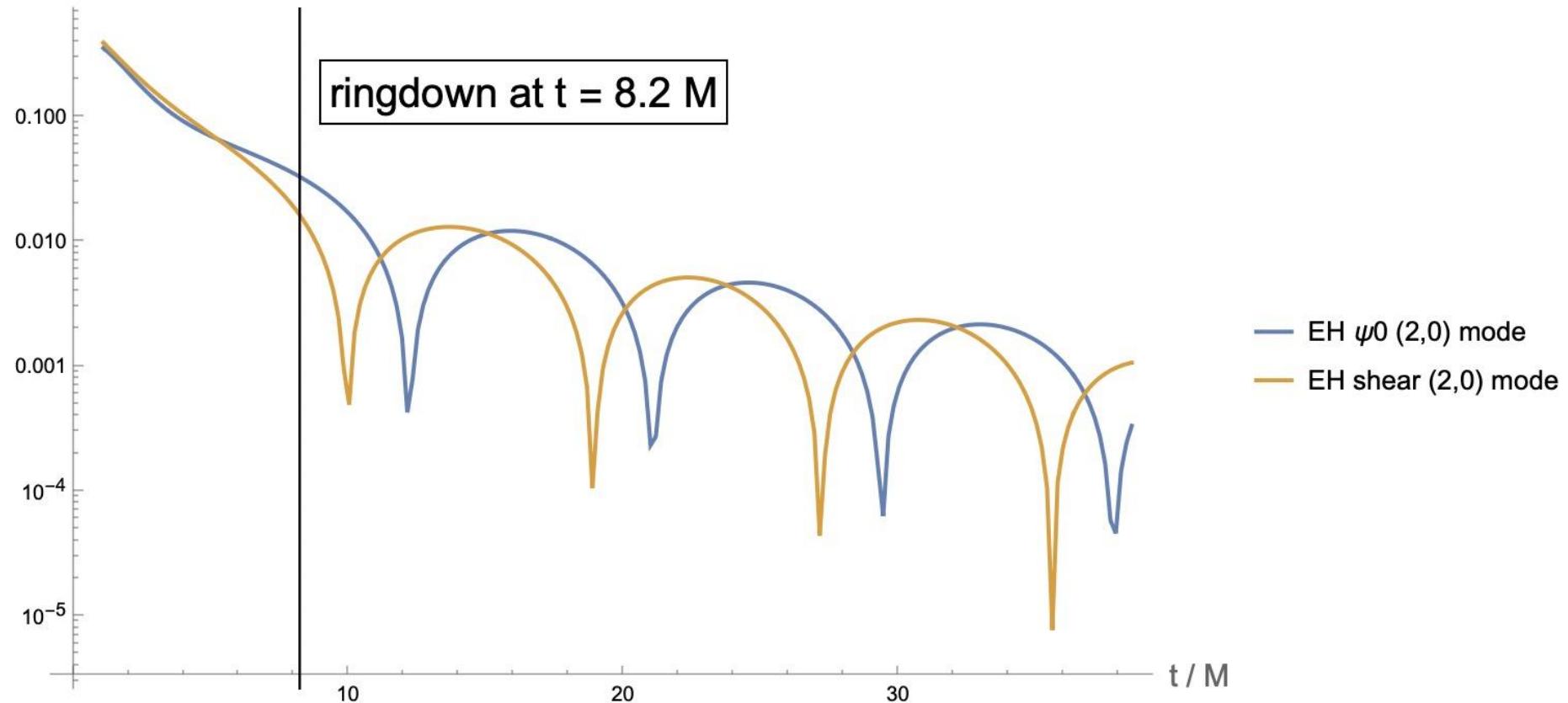
Preliminary: area EH vs MOTS



Preliminary: relative difference $\sigma_{l=2}$ EH vs MOTS



Preliminary: event horizon geometry



For QNM comparison...

Conclusion

- ★ First explicit analytic construction of black hole tomography
- ★ QNMs describe horizon geometry nicely
- ★ Comparison with black hole perturbation theory ongoing
- ★ Observations of quadratic modes very likely with ET & LISA, so the future is bright!