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Introduction

Event Horizons

e Black hole surfaces traditionally defined via event

horizons
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Introduction

Event horizons

Event horizons have been used in key “classic”
investigations in black hole physics

e The area increase theorem

Black hole thermodynamics

The black hole uniqueness theorems
Black hole perturbation theory

e Topological censorship

¢ Astrophysics — all we need is Kerr + perturbations?
Is there any need to go beyond event horizons?



‘Dack hole Event horizons are global and teleological

horizons

Badri . .
o e Need to know the entire spacetime to locate event

horizons (which is why numerical simulations do not
rely on them)

Introduction
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Introduction

Usual first law is not local

Consider the “usual” first law

KOA
OMapym = % + Q8Japm

A, Q, k are defined at the horizon (though the Killing
vector is normalized at co)
Mapm and Japy are defined at spatial infinity

We would like a quasi-local version applicable to BHs in
our universe
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Introduction

» Simple generalization of Schwarzschild for a varying
mass function M(v) with M(v) > 0 and lim,_,.c M(v)
finite

¢ Vaidya spacetime represents collapse of spherically
symmetric null-dust

ds? = — (1 — 2Mr(v)> av? + 2dv dr + r2dQ? .
M(v)
Té - :1;;;5"73\/‘7t)v.
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Event horizons can grow in flat space

1

* No general second law can be formulated for event
horizons i.e. we cannot write AA as a sum of local
fluxes

e This can only be done in perturbative settings + end
state boundary condition (Hartle & Hawking (1972))
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e Semiclassical calculations (Hajicek (1987)) show that
quantum fluctuations near the singularity can
completely remove the event horizon

e This is a semiclassical study of the Vaidya collapse
model

e Shows that the Hawking radiation is associated with the
apparent horizon, and not the event horizon
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Trapped
SUEEES ® There is one classic result which does not use event

horizons directly
¢ The singularity theorem: the presence of a closed
trapped surface (+energy condition) implies geodesic
incompleteness in the future (Penrose (1965), Penrose)
¢ This paper also introduced closed trapped surfaces
which are key to understanding black holes
quasi-locally
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Take a spacelike 2-surface S with intrinsic metric g, and
null normals ¢2, n?

¢ The expansions are

Trapped
surfaces

e Shear is the symmetric tracefree part:

1
U‘(azb) = q(caqg)vcfd - Ee(z)Qab

e (...and twist is the anti-symmetric part)
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S: closed spacelike spherical surface
e Qutgoing and in going null normals: ¢ and n

mege ¢ For a trapped surface, both sets of null rays are
converging: ©() < 0and ©(, <0

* Outer trapped surface: ©, < 0, and no condition on
O

e Signature of black holes but not necessarily of strong
gravitational field

* Marginally trapped surface: ©() = 0, ©(; <0

* Marginally outer trapped (MOTS): Only ©(,) =0

e Qutermost MTS on a Cauchy surface is called the
apparent horizon

e Boundary of trapped region on spatial slice is MTS —
Hayward & Kriele (1997), Andersson & Metzger (2007)
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The Trapping
Boundary

The boundary of the trapped region

e Alternative definition of a black hole surface: boundary
of spacetime region containing trapped surfaces

¢ |In Schwarzschild trapped surfaces extend all the way
up to the event horizon
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The Trapping
Boundary

Trapped surfaces in Vaidya

7~ Spherically ~ symmetric
"~ trapped surfaces do
not extend up to event
horizon
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The Trapping
Boundary

Eardley’s conjecture

e Event horizons generally have positive expansion —

cross sections of the event horizon cannot be a MOTSs

As we try to push a MOTS towards the event horizon,
we cannot do it “uniformly” — and the limit will be
singular

The basic problem already exists in spherical symmetry
(but with dynamics), and including angular momentum
and other complications etc. are (probably) not
qualitatively different

Eardley was the first to recognize this in 1998 (“Black
hole boundary conditions and coordinate conditions”,
Phys.Rev.D 57 (1998) 2299-2304)

Eardley’s conjecture: the event horizon is the boundary
of the trapped spacetime region

A MOTS needs to be deformed in long “needle” like
shapes extending far to the future (or past) to approach
the event horizon
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The Trapping * In 1991, Shapiro & Teukolsky claimed the existence of
Sy naked singularities in a numerical simulation of the
Einstein-Vlasov system — they did not find any apparent
horizons though they had indications of singularities
e Wald & lyer pointed out that there exist Cauchy slices
close to the singularity, even just in Schwarzschild,
which do not contain any trapped surfaces
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Shapiro & Teukolsky and Wald & lyer
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e Actually, numerical horizon finders would happily find
_ an “apparent horizon” on these kinds of Cauchy
Boundany surfaces (i.e. ©(, = 0).

* The “apparent horizon” would not satisfy ©, < 0

¢ As far as we know, standard gauge choices in NR do
not lead to such Cauchy surfaces

¢ Finally, as we shall see later, for BBH mergers we
generally have MOTSs which do not satisfy ©(,) < 0

everywhere (which are though entirely in the black hole
region)
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flat region,
MS s -
The Trapping N
Boundary
-2

2 15 105 0 05 1 15 2

¢ In Vaidya we can push outer marginally trapped
surfaces arbitrarily close to the EH (only ©(,) = 0)

e Marginal surfaces can also extend into flat region
(Schnetter & Krishnan, 2006)

¢ Analytic proof by Ben-Dov for Vaidya (2006)
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The trapping boundary

Define “Kodama time” as

Ea=Var— (1 - 2Mr(v)) VaVv.

Boundary of trapped surfaces is 5 and not the event
horizon (Senovilla & Bengtsson (2010))

The boundary may not always extend to the flat portion
This is the case when lim,_,o+ M(v)/v < 1/8
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The trapping boundary
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Marginally trapped tubes (MTTs)

e Marginally trapped tubes obtained by stacking up
Marginally outer trapped surfaces (MOTS)

Time

¢ Think of marginally trapped tube as the smooth time
evolution of a MOTS

e Marginally trapped tube is defined as a 3-surface
foliated by MOTSs

¢ This is a covariant spacetime definition even if we might
use a 3+1 split to locate MOTSs in practice
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Isolated, dynamical and trapping horizons

All these are different kinds of MTTs (©,) = 0)
Dynamical horizon: spacelike MTT with ©,) < 0
Isolated horizon: null MTT, no restriction on @(n)

Trapping horizon: Null or spacelike, ©, < 0,
Ene([;) <0

¢ Timelike membrane: timelike MTT
Some Review Articles:
e Ashtekar & Krishnan, Living Reviews (2004)
e Booth, Can. J. Phys. (2005)
e Gourgoulhon & Jaramillo, Physics Reports (2006)
e Ashtekar & Krishnan, Living Reviews (2025)
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* The goal is to model a black hole in equilibrium in a
universe that is otherwise dynamical

¢ Infinite dimensional set of solutions provided by
characteristic initial value formulation (see later)

¢ This is an approximation in several cases of interest
(inspiral, ringdown....)

Marginally
trapped tubes
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Non-expanding horizons

A smooth 3-dimensional null surface A is said to be a
non-expanding horizon if:

e A has topology S? x R, and if M : S? x R — S? is the
natural projection, then M~"(x) for any x € S? are null
curves on A.

* The expansion O := q3V 40}, of any null normal ¢2 of
A vanishes.

¢ The Einstein field equations hold at A, and the matter
stress-energy tensor T, is such that for any future
directed null-normal ¢3, — T2¢P is future causal.
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Weakly exanding horizon

A weakly isolated horizon is a NEH A with a choice of null
normal /2 (defined up to constant positive rescalings) such
that

Lowg =0

where w, is defined as
XaVaeb = Xa(/.)agb

for any X4 tangentto A

e Surface gravity is ky = /3w, which is constant on A
(zeroth law)

e Shear of ¢2 vanishes — no fluxes across the horizon
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The zeroth and first laws

(Ashtekar, Beetle & Lewandowski (2001, 2002), Ashtekar,
Fairhurst & BK (2000), Booth (2001))

e The Weyl tensor is algebraically special on a NEH
Vg=Vy =0
WV, — time independent

W3, W, determined by Vs

® U, is thus gauge invariant

e The angular modes of W, are then the BH multipole
moments
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The zeroth and first laws

Turn now to angular momentum and the first law

Let ©@ be an axial symmetry of the intrinsic horizon
geometry

Let ¢@ be an axial vector in spacetime (not necessarily
a symmetry) such that

@ —o? on A
¢? — 2 at S

The Hamiltonian which generates motions along ¢ on
phase space consists of boundary terms

H¢:7{S...+}[®...
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The zeroth and first laws

The term at infinity is the ADM angular momentum

Identify the horizon term with the BH angular
momentum

1
Yo a 2V
JA SWGy‘{Swagod

(Used routinely in NR simulations)
For the energy consider a time evolution vector field

2 —clt?—Qp? on A
¢? — 72 at infinity

Turns out that the corresponding Hamiltonian does not
always exist
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e The first law is the necessary and sufficient condition,
i.e. if

dEn K(cr)dA + QaJY)

1
~ 87G
trpgod ipes is an exact variation in phase space
e Thus we want ¢, Q2 and the energy to be functions only
of (A, J¥)
e We can then consistently choose Ea, ¢, Q2 to be the
corresponding Kerr values as functions of (A, J(A“"))

¢ This gives then the mass according to the usual Kerr
formula
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Evolution of MTSs in Time

e MTT shown to exist if MTS is strictly-stably-outermost
® Andersson, Mars & Simon (2005,2007)

e Sis strictly-
stably-outermost
if it satisfies a
stability condition

e Some outward
deformation
along fr makes S
untrapped to
linear order:
6fre([) > 0 for
f>0



Quasi-local
black hole
horizons

Badri
Krishnan

Marginally
trapped tubes

Properties of MTTs (lllustrative results)
Key tool used in existence results is the elliptic stability
operator: 0Oy = Lif
The MTT in the neighborhood of a stable MTS is
achronal

It is spacelike if TP is non-vanishing somewhere on
S — DHs are the most relevant for physics

The foliation of a DH is unique (Ashtekar & Galloway)
DHs have generically S? x R topology

Strictly Stable MTSs are barriers for trapped and
untrapped surfaces, i.e. this cannot happen:
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Uniqueness results (Ashtekar & Galloway)

e How many DHs are there in a typical BH spacetime?

No closed MTS in D~ (H) — H: Ashtekar & Galloway 2005)
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Uniqueness results

* Uniqueness result rules this out:

e But we can still have H' “threading” through H
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Introduction

— Usual assumption: MOTS must be star shaped
e e MOTS is defined by r = h(8, ¢)

The Trapping
Boundary

— AH
—— common MOTS

Marginally
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Binary Black
Holes

More general idea

Use a parameterized reference surface
e MOTS is then defined by d = h(9, ¢)
¢ Reference surface does not need to be star shaped
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e First consider results with sequence of Brill-Lindquist
initial data

Time symmetric data: non-spinning BHs with zero

, momentum and separation d
Binary Black
Holes

Qab = ¢45ab
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Results with Brill-Lindquist

my = 02, mo = 08, d = 0.6985

0.4 1

0.0 1

_0‘4 -

—0.8

apparent horizon
smaller horizon
larger horizon

inner common MOTS »

—0.4 0.0
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Results with Brill-Lindquist

my = 02, Mo = 08, d = 0.65

Introduction

41
Trapped 0

surfaces

The Trapping
Boundary

Marginally
trapped tubes 0.0 1

Binary Black
Holes

The near
horizon
geometry —0.4 1

Conclusion

apparent horizon
smaller horizon
larger horizon
inner common MOTS

-0.8

—0.4 0.0 0.4
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Results with Brill-Lindquist

myp = 02, mo = 08, d=04

0.4 1

0.0 1

—0.4 1

apparent horizon
smaller horizon
larger horizon

—— inner common MOTS

—0.4 0.0

T
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Results with Brill-Lindquist

my = 02, Mo = 08, d=0.25

0.4 1

0.0 1

—0.4 1

apparent horizon
smaller horizon
larger horizon
—— inner common MOTS

—-0.4 0.0 0.4
T
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Introduction
Trapped 0.4 4
surfaces
The Trapping
Boundary 0.2 1
Marginally
trapped tubes
Binary Black N 0.0
Holes
The near
horizon —0.2 1
geometry
Conclusion
(0.4 - —AH -
=== top horizon,
= bottom horizon
== inner common MOTS
—0.6 T T T

-04  -0.2 0.0 0.2 0.4
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Results with Brill-Lindquist

MOTSs for my = 0.2, my = 0.8, d = 0.1660523515

0.08 4

0.04 1

AH

top horizon

bottom horizon

inner common MOTS

|

S 4
b=
=

0.00
X

0.04
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Properties of the 1:4 configuration

Large d Only Sjage, Ssman €Xist.
d =~ 0.6987 Common horizon appears and bifurcates into
SaH and Sin.
d < 0.6987 Sj, becomes increasingly distorted.
d < 0.1660 Sj, no longer found.
d £ 0.1646 Sjage NO longer found.
Small d Only Say and Sgman exist.
How can we explain this behavior?
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Stability of the outer horizons

stability parameter

0.65 0.70 0.75
distance parameter d
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Stability of the outer horizons

stability parameter (larger horizon)

0.0 0.2 0.4 0.6 0.8 1.0
distance parameter d
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2nd stability eigenvalue (inner common MOTS)
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0.0 0.2 0.4 0.6 0.8
distance parameter d



Quasi-loca

black holo Time evolution of Brill-Lindquist

horizons

Badri
Krishnan

e After the study with initial data, we can apply the new
horizon finder to time evolution
Binary Black

Holes e Brill-Lindquist a good starting point — aim is to find
sequence of MOTS connecting initial and final BHs
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Binary Black
Holes Lo

T = 5534895833333

-1 0 1 -1 0 1

e Dramatic difference in behavior — the individual MOTSs
now penetrate each other and merge with
inner-common MOTS

e Self-intersections develop in inner-common MOTS
immediately after merger
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The self-intersecting MOTS

—0.05 1

—0.10 1

-0.10 -0.05 0.00 0.05  0.10
x/M



S ris Analog of the “pair of pants picture”

Badri
Krishnan

Introduction

Trapped
surfaces

The Trapping
Boundary

Marginally
trapped tubes

Binary Black
Holes

The near
horizon
geometry

Conclusion

u]

o)
I
ul

it




The area increase law

Quasi-local
black hole
horizons
Badri
Krishnan
85 1
80 1 [
s
~
s 75 2
Binary Black o g
Holes & 5
=
70 =
65 1
T T T
0 2 4 6



Quasi-loca
black hole
horizons

Badri
Krishnan

Binary Black
Holes

The stability spectrum and the merger

Our numerical method allows us to calculate the
spectrum highly accurately — operator is self-adjoint in
the head-on collision of non-spinning black holes

We need to watch out for vanishing eigenvalues —
indicates a possible qualitative change in the geometry
Start with the principal eigenvalue — the common
horizon is born with Ag = 0

The outer horizon has always Ag > 0, but the inner
horizon is more interesting

Sinner Nas Ag < 0 but Ay >0
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O T,
Binary Black 3 0.0 1
Holes -
= Souter
—0.5 1 — Sinner
..... S
-5
—-1.0 T
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Krishnan t=14M
3
----- gl
? — Stuer
R STTTTTRRR RN
© | N\ mm=——e
0
14
-2 T
0.0 0.2 0.4 0.6 0.8 1.0
Binary Black ’
Holes t ~ 5.53542 M

T u T T 2 T u T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
5 5

e Allows us to track individual BH dynamics all the way
through the merger
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Binary black hole mergers

In a BBH merger, we start from two BHs and end up
with a single BH

What happens to all of these inner horizons?

Inricate sequence of bifurcations and “mergers” with
more eigenvalues becoming successively unstable

See talk by Ivan
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The characteristic initial value formulation

Our approach is based instead on a characteristic initial
value formulation for hyperbolic equations

N

ZA X, 1)dathy + Fi(x,4) = 0

Aléa >0 for some &,

then equations are hyperbolic

Standard initial value problem specifies ), at t = 0 and
solution is unique & guaranteed to exist locally
Alterative: specify data on pair of intersecting null
surfaces (Friedrich (1981), Friedrich & Rendall (2000))

For us, the null surfaces are a weakly isolated horizon
A and a transverse light cone N/
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The Newman-Penrose formalism

e Tetrad formalism (¢, n,m, m) such that ¢- n = —1,
m-m=1:

Gab = —LaNp — Nalp + MaMp 4+ MaMmy, .

e Spacetime connection encoded in 12 complex scalars
(spin coefficients)

e Weyl tensor is broken up as 5 complex scalars Wy
(k=0,1,...,4)
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Near horizon coordinates

So

Start with coordinates x’ on Sy and m?
Propagate on A as (3V x' =0, L;m =0

Propagate away from A using past null geodesics:
NV P = 0, n?V,,mP = 0, 13V x' = 0
Affine parameter along —n?is r
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The structure of the field equations

e Choose n; = —Vav and n®V,= -0,
* This implies
0 0 0
a _ i

V4= D= v +Uar+X8 i
9 | i
or o 8x’ )

U, X' Q ~ O(r)
e The variables are: U, X', Q, 12 spin coefficients, 5
complex Weyl tensor components W

miVa:=6=Q—
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The structure of the field equations

The field equations are of 3 types
e Evolution equations along v
e Purely angular equations
¢ Radial equations along r
Strategy for solving them:

* Propagate data on S to all points of A consistent with
angular equations.

* Proagate transverse to A using radial eauations

e Ensure consistency with non-radial equations away
from A
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The structure of the field equations

In general, solution guaranteed only near A and global
solution will exist only in certain cases

Free data:

On horizon, we need a choice of /2, w,, geometry of Sy,
shear and expansion of n?

On N we need ¥, — The Bianchi identities do not
specify radial derivative of W4

We can follow the procedure iteratively in powers of r

This results in solutions to the frame fields, Weyl tensor
and spin coefficients as a power series in r

]
Ve =W el SrPvE

0 1 1 @
Gab = ng) + g;b)r + Eggb)rz T+



‘Dack hole Expansion of the Weyl tensor
horizons

o Expressions for the Weyl tensor at first order:

Krishnan
Vo = O(r?),
vy = —rowl® + 0(r?),
v = — @+ 70w 4 3,0u)
v = — (042200 1 4,0¢)

The ner Expansion of the metric up to O(r?)
geometry
g;b) = 203l Op)V + 2mga) ((;)
gé})) = — (2&8(av8b) v+ 47r(°)mgo)8b) v+ 47_r( ) ga)ab)

+ 4Om@m) + 22OmOm) + 2XOmDm) |



Black nole. Expansion of the metric

horizons

Badri
Krishnan

WV, appears only at the second order
2 0
g = 4(1nOP — Re[W]) O(avinv
14 (M(O)W(O) 120700 _ w(0)> m
+ 4( (0)7(0) 4 3(0)(0) _ \u( ))
The near
horizon
geometry + 4 (( ‘)\(0)‘ > m[(;;)

+ (4u(°)>\( ) 2w§°)) mm) + (4M(O)X(°> - 2@50)) m

0)
(a 69 b) 4
20

(@ %)V
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Perturbative approach

Stationary BHs can be reconstructed from horizon data
alone

Perturb horizon data + V4 — perturbed near horizon
spacetime

First order calculations are “straightforward”, but at
second order we would need dynamical horizons (or
“slowly evolving” horizons (Booth & Fairhurst (2004,
2007))

Applications to tidal Love number calculations,
ringdown,...

(Talk by Beatrice)
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Conclusion

Conclusion

Trapped surfaces are not as ill-behaved as one might
think

Can prove useful mathematical results for them and
can use them to study black holes

The trapping boundary is understood in some simple
cases, but the general case is still open.

Applications in diverse areas from quantum gravity, GW
Astronomy to numerical relativity

Still left with the question: what is a dynamical black
hole?

Surface not unique but restrictions knowm
Suggestion by Senovilla: core(s) of the trapped region?
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