

Quasi-local
black hole
horizons

Badri
Krishnan

Introduction

Trapped
surfaces

The Trapping
Boundary

Marginally
trapped tubes

Binary Black
Holes

The near
horizon
geometry

Conclusion

Quasi-local black hole horizons

Badri Krishnan

*IMAPP, Radboud University
Nijmegen, The Netherlands*

*Max Planck Institut für Gravitationsphysik
(Albert Einstein Institut)
Hannover, Germany*

Trieste
January 15, 2026

Quasi-local
black hole
horizons

Badri
Krishnan

Introduction

Trapped
surfaces

The Trapping
Boundary

Marginally
trapped tubes

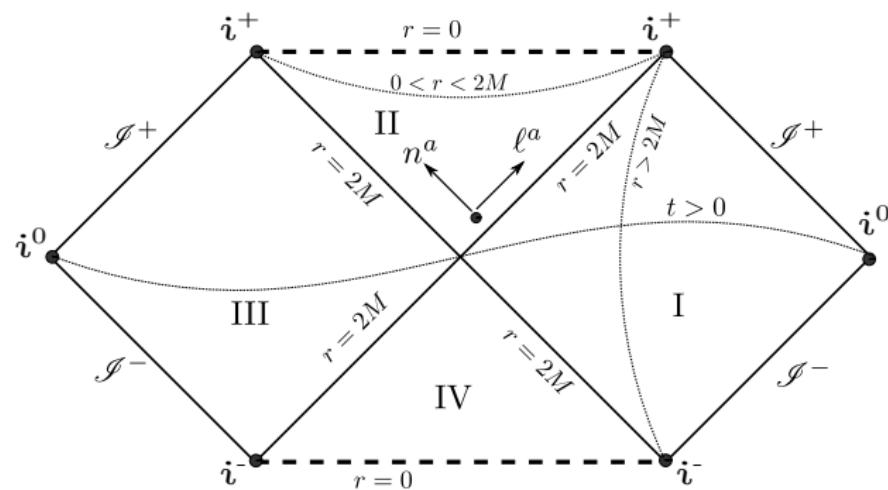
Binary Black
Holes

The near
horizon
geometry

Conclusion

- 1 Introduction
- 2 Trapped surfaces
- 3 The Trapping Boundary
- 4 Marginally trapped tubes
- 5 Binary Black Holes
- 6 The near horizon geometry
- 7 Conclusion

- Black hole surfaces traditionally defined via event horizons



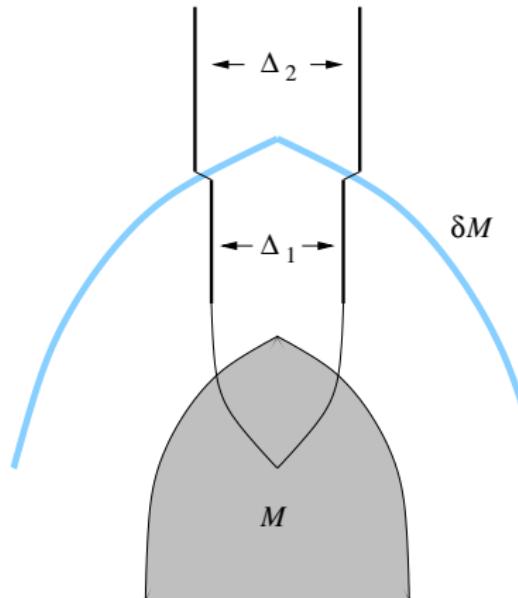
Event horizons have been used in key “classic” investigations in black hole physics

- The area increase theorem
- Black hole thermodynamics
- The black hole uniqueness theorems
- Black hole perturbation theory
- Topological censorship
- Astrophysics – all we need is Kerr + perturbations?

Is there any need to go beyond event horizons?

Event horizons are global and teleological

- Need to know the entire spacetime to locate event horizons (which is why numerical simulations do not rely on them)



Usual first law is not local

- Consider the “usual” first law

$$\delta M_{ADM} = \frac{\kappa \delta A}{8\pi G} + \Omega \delta J_{ADM}$$

- A, Ω, κ are defined at the horizon (though the Killing vector is normalized at ∞)
- M_{ADM} and J_{ADM} are defined at spatial infinity
- We would like a quasi-local version applicable to BHs in our universe

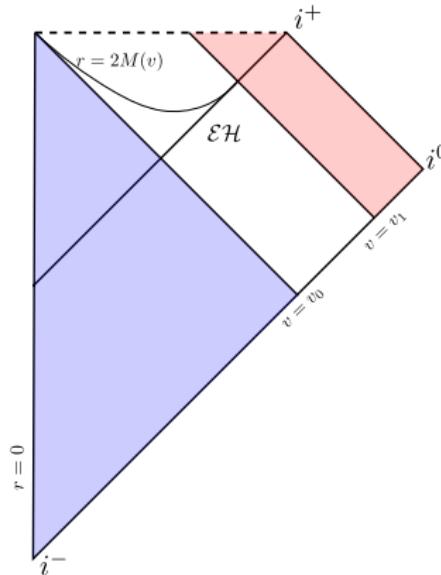
The Physical Process version of the second law

- Simple generalization of Schwarzschild for a varying mass function $M(v)$ with $\dot{M}(v) \geq 0$ and $\lim_{v \rightarrow \infty} M(v)$ finite
- Vaidya spacetime represents collapse of spherically symmetric null-dust

$$ds^2 = - \left(1 - \frac{2M(v)}{r} \right) dv^2 + 2dv\,dr + r^2 d\Omega^2.$$

$$T_{ab} = \frac{\dot{M}(v)}{4\pi r^2} \nabla_a v \nabla_b v.$$

Event horizons can grow in flat space



- No general second law can be formulated for event horizons i.e. we cannot write ΔA as a sum of local fluxes
- This can only be done in perturbative settings + end state boundary condition (Hartle & Hawking (1972))

Quantum fluctuations can remove EHs

- Semiclassical calculations (Hajicek (1987)) show that quantum fluctuations near the singularity can completely remove the event horizon
- This is a semiclassical study of the Vaidya collapse model
- Shows that the Hawking radiation is associated with the apparent horizon, and not the event horizon

The singularity theorems

- There is one classic result which does not use event horizons directly
- The singularity theorem: the presence of a *closed trapped surface* (+energy condition) implies geodesic incompleteness in the future (Penrose (1965), Penrose)
- This paper also introduced closed trapped surfaces which are key to understanding black holes quasi-locally

Expansion, shear and twist

Take a spacelike 2-surface S with intrinsic metric q_{ab} and null normals ℓ^a, n^a

- The expansions are

$$\Theta_{(\ell)} = q^{ab} \nabla_a \ell_b, \quad \Theta_{(n)} = q^{ab} \nabla_a n_b.$$

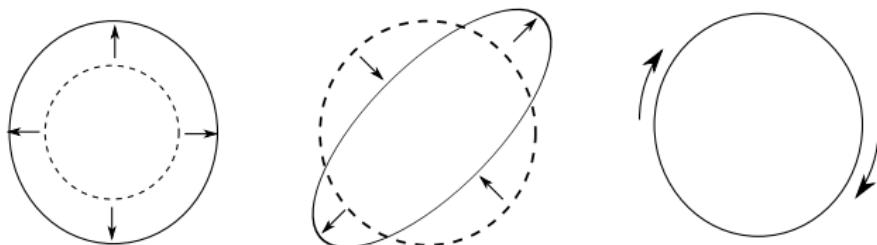
$$\rightarrow \Theta = \frac{1}{A} \frac{dA}{dt}$$

- Shear is the symmetric tracefree part:

$$\sigma_{ab}^{(\ell)} := q_{(a}^c q_{b)}^d \nabla_c \ell_d - \frac{1}{2} \Theta_{(\ell)} q_{ab}$$

- (...and twist is the anti-symmetric part)

Expansion, shear and twist

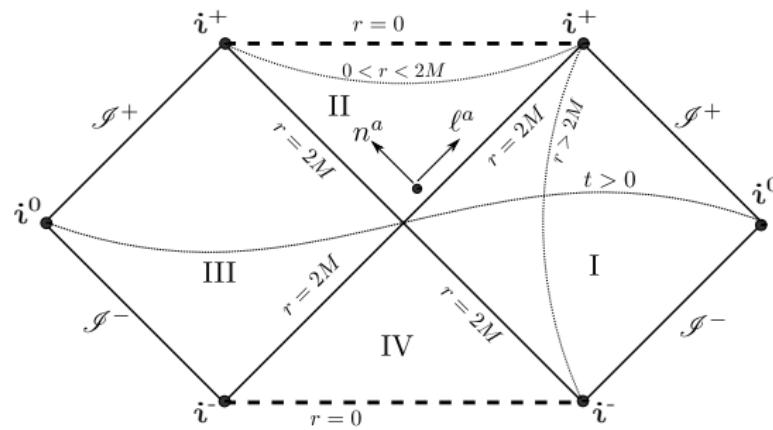


Definition of a trapped surface

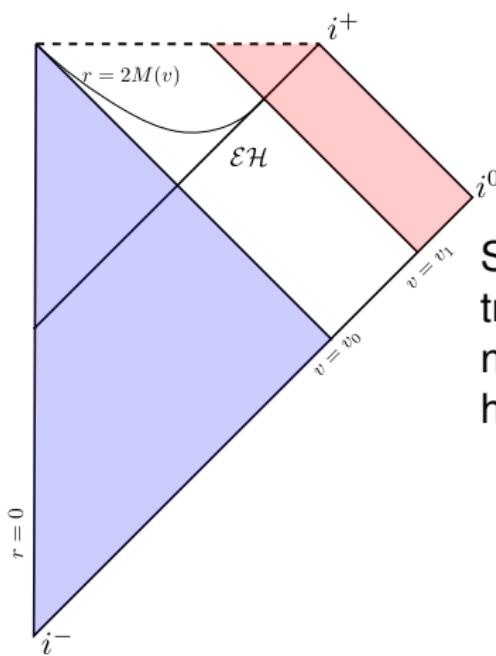
- S : closed spacelike spherical surface
- Outgoing and in going null normals: ℓ and n
- For a trapped surface, both sets of null rays are converging: $\Theta_{(\ell)} < 0$ and $\Theta_{(n)} < 0$
- Outer trapped surface: $\Theta_{(\ell)} < 0$, and no condition on $\Theta_{(n)}$
- Signature of black holes but *not* necessarily of strong gravitational field
- Marginally trapped surface: $\Theta_{(\ell)} = 0$, $\Theta_{(n)} < 0$
- Marginally outer trapped (MOTS): Only $\Theta_{(\ell)} = 0$
- Outermost MTS on a Cauchy surface is called the apparent horizon
- Boundary of trapped region on spatial slice is MTS – Hayward & Kriele (1997), Andersson & Metzger (2007)

The boundary of the trapped region

- Alternative definition of a black hole surface: boundary of spacetime region containing trapped surfaces
- In Schwarzschild trapped surfaces extend all the way up to the event horizon



Trapped surfaces in Vaidya



Spherically symmetric
trapped surfaces do
not extend up to event
horizon

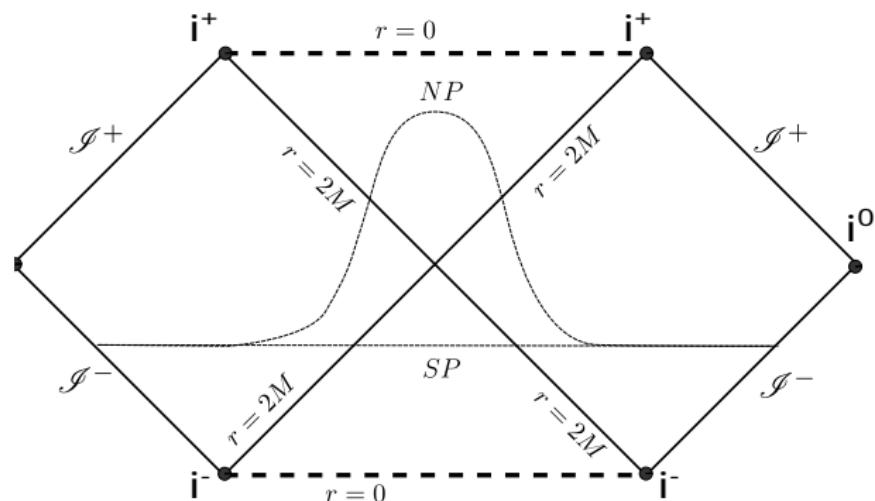
Eardley's conjecture

- Event horizons generally have positive expansion \rightarrow cross sections of the event horizon cannot be a MOTSs
- As we try to push a MOTS towards the event horizon, we cannot do it “uniformly” – and the limit will be singular
- The basic problem already exists in spherical symmetry (but with dynamics), and including angular momentum and other complications etc. are (probably) not qualitatively different
- Eardley was the first to recognize this in 1998 (“Black hole boundary conditions and coordinate conditions”, Phys. Rev. D **57** (1998) 2299-2304)
- Eardley's conjecture: the event horizon is the boundary of the trapped spacetime region
- A MOTS needs to be deformed in long “needle” like shapes extending far to the future (or past) to approach the event horizon

Shapiro & Teukolsky and Wald & Iyer

- In 1991, Shapiro & Teukolsky claimed the existence of naked singularities in a numerical simulation of the Einstein-Vlasov system – they did not find any apparent horizons though they had indications of singularities
- Wald & Iyer pointed out that there exist Cauchy slices close to the singularity, even just in Schwarzschild, which do not contain any trapped surfaces

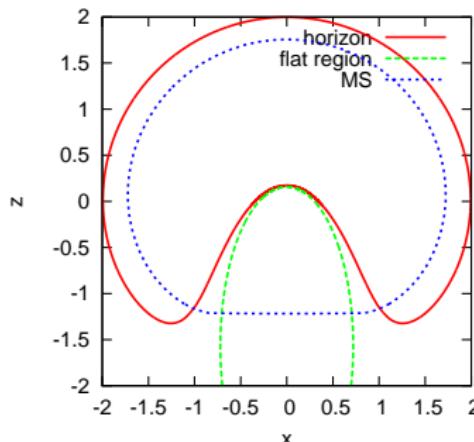
Shapiro & Teukolsky and Wald & Iyer



Shapiro & Teukolsky and Wald & Iyer

- Actually, numerical horizon finders would happily find an “apparent horizon” on these kinds of Cauchy surfaces (i.e. $\Theta_{(\ell)} = 0$).
- The “apparent horizon” would not satisfy $\Theta_{(n)} < 0$
- As far as we know, standard gauge choices in NR do not lead to such Cauchy surfaces
- Finally, as we shall see later, for BBH mergers we generally have MOTSs which do not satisfy $\Theta_{(n)} < 0$ everywhere (which are though entirely in the black hole region)

The trapping boundary



- In Vaidya we can push outer marginally trapped surfaces arbitrarily close to the EH (only $\Theta_{(\ell)} = 0$)
- Marginal surfaces can also extend into flat region (Schnetter & Krishnan, 2006)
- Analytic proof by Ben-Dov for Vaidya (2006)

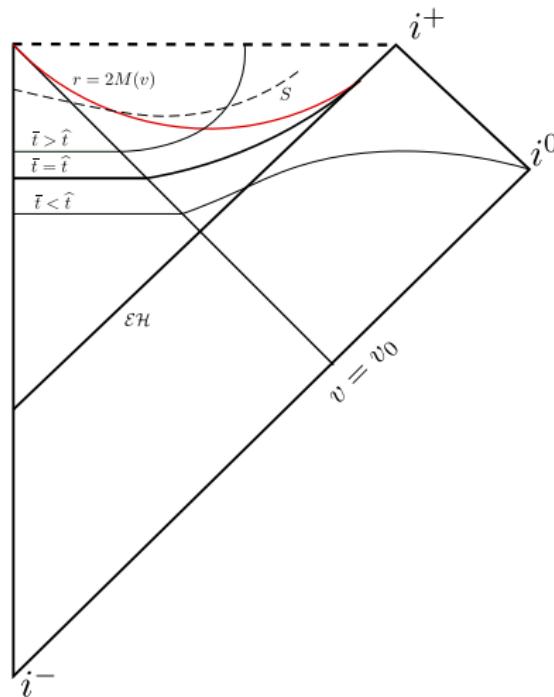
The trapping boundary

- Define “Kodama time” as

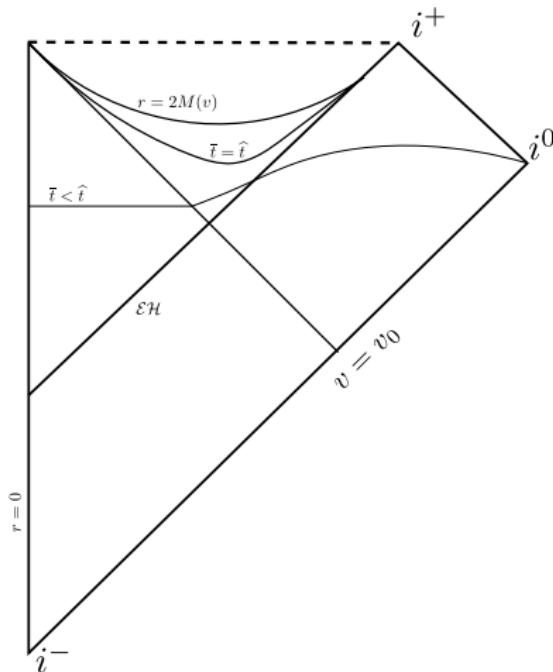
$$\xi_a = \nabla_a r - \left(1 - \frac{2M(v)}{r}\right) \nabla_a v.$$

- Boundary of trapped surfaces is $\widehat{\Sigma}$ and not the event horizon (Senovilla & Bengtsson (2010))
- The boundary may not always extend to the flat portion
- This is the case when $\lim_{v \rightarrow 0^+} M(v)/v < 1/8$

The trapping boundary



The trapping boundary



Marginally trapped tubes (MTTs)

- Marginally trapped tubes obtained by stacking up Marginally outer trapped surfaces (MOTS)



- Think of marginally trapped tube as the smooth time evolution of a MOTS
- Marginally trapped tube is defined as a 3-surface foliated by MOTSs
- This is a covariant spacetime definition even if we might use a 3+1 split to locate MOTSs in practice

Isolated, dynamical and trapping horizons

- All these are different kinds of MTTs ($\Theta_{(\ell)} = 0$)
- **Dynamical horizon:** spacelike MTT with $\Theta_{(n)} < 0$
- **Isolated horizon:** null MTT, no restriction on $\Theta_{(n)}$
- **Trapping horizon:** Null or spacelike, $\Theta_{(n)} < 0$,
 $\mathcal{L}_n \Theta_{(\ell)} < 0$
- **Timelike membrane:** timelike MTT

Some Review Articles:

- Ashtekar & Krishnan, Living Reviews (2004)
- Booth, Can. J. Phys. (2005)
- Gourgoulhon & Jaramillo, Physics Reports (2006)
- Ashtekar & Krishnan, Living Reviews (2025)

The equilibrium case

- The goal is to model a black hole in equilibrium in a universe that is otherwise dynamical
- Infinite dimensional set of solutions provided by characteristic initial value formulation (see later)
- This is an approximation in several cases of interest (inspiral, ringdown....)

Non-expanding horizons

A smooth 3-dimensional null surface Δ is said to be a *non-expanding horizon* if:

- Δ has topology $S^2 \times \mathbb{R}$, and if $\Pi : S^2 \times \mathbb{R} \rightarrow S^2$ is the natural projection, then $\Pi^{-1}(x)$ for any $x \in S^2$ are null curves on Δ .
- The expansion $\Theta_{(\ell)} := q^{ab} \nabla_a \ell_b$ of any null normal ℓ^a of Δ vanishes.
- The Einstein field equations hold at Δ , and the matter stress-energy tensor T_{ab} is such that for any future directed null-normal ℓ^a , $-T_b^a \ell^b$ is future causal.

Weakly expanding horizon

A weakly isolated horizon is a NEH Δ with a choice of null normal ℓ^a (defined up to constant positive rescalings) such that

$$\mathcal{L}_\ell \omega_a = 0$$

where ω_a is defined as

$$X^a \nabla_a \ell^b = X^a \omega_a \ell^b$$

for any X^a tangent to Δ

- Surface gravity is $\kappa_\ell = \ell^a \omega_a$ which is constant on Δ (zeroth law)
- Shear of ℓ^a vanishes \rightarrow no fluxes across the horizon

The zeroth and first laws

(Ashtekar, Beetle & Lewandowski (2001, 2002), Ashtekar, Fairhurst & BK (2000), Booth (2001))

- The Weyl tensor is algebraically special on a NEH

$$\Psi_0 = \Psi_1 = 0$$

$\Psi_2 \rightarrow$ time independent

Ψ_3, Ψ_4 determined by Ψ_2

- Ψ_2 is thus gauge invariant
- The angular modes of Ψ_2 are then the BH multipole moments

The zeroth and first laws

- Turn now to angular momentum and the first law
- Let φ^a be an axial symmetry of the intrinsic horizon geometry
- Let ϕ^a be an axial vector in spacetime (not necessarily a symmetry) such that

$$\phi^a \rightarrow \varphi^a \quad \text{on} \quad \Delta$$

$$\phi^a \rightarrow \varphi_\infty^a \quad \text{at} \quad S^\infty$$

- The Hamiltonian which generates motions along ϕ^a on phase space consists of boundary terms

$$H^\phi = \oint_S \dots + \oint_{S^\infty} \dots$$

The zeroth and first laws

- The term at infinity is the ADM angular momentum
- Identify the horizon term with the BH angular momentum

$$J_{\Delta}^{\varphi} = -\frac{1}{8\pi G} \oint_S \omega_a \varphi^a d^2 V$$

- (Used routinely in NR simulations)
- For the energy consider a time evolution vector field

$$t^a \rightarrow c \ell^a - \Omega \varphi^a \quad \text{on } \Delta$$

$$\phi^a \rightarrow \tau^a \quad \text{at infinity}$$

- Turns out that the corresponding Hamiltonian does not always exist

The zeroth and first laws

- The first law is the necessary and sufficient condition, i.e. if

$$dE_\Delta = \frac{1}{8\pi G} \kappa_{(cl)} dA + \Omega dJ_\Delta^{(\varphi)}$$

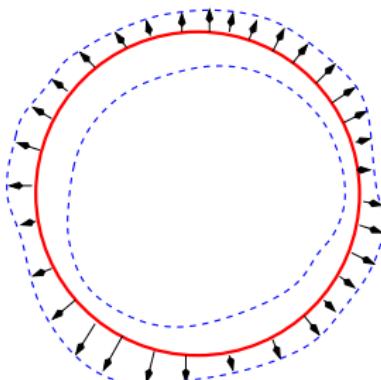
is an exact variation in phase space

- Thus we want c, Ω and the energy to be functions only of $(A, J_\Delta^{(\varphi)})$
- We can then consistently choose E_Δ, c, Ω to be the corresponding Kerr values as functions of $(A, J_\Delta^{(\varphi)})$
- This gives then the mass according to the usual Kerr formula

Evolution of MTSs in Time

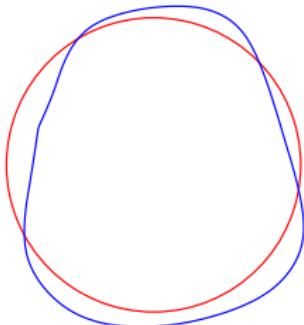
- MTT shown to exist if MTS is *strictly-stably-outermost*
 - Andersson, Mars & Simon (2005,2007)

- S is *strictly-stably-outermost* if it satisfies a stability condition
- Some outward deformation along $f\mathbf{r}$ makes S untrapped to linear order:
$$\delta_{f\mathbf{r}}\Theta_{(\ell)} > 0 \text{ for } f \geq 0$$



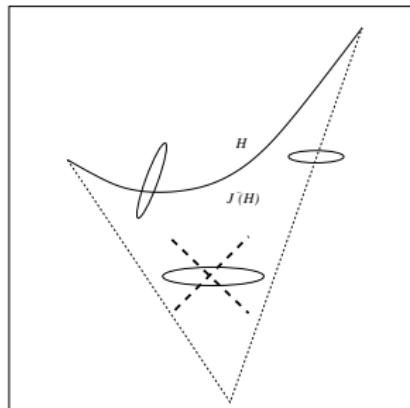
Properties of MTTs (Illustrative results)

- Key tool used in existence results is the elliptic stability operator: $\delta_{fr}\Theta_{(\ell)} = L_{rf}$
- The MTT in the neighborhood of a stable MTS is achronal
- It is spacelike if $T_{ab}\ell^a\ell^b$ is non-vanishing somewhere on S – DHs are the most relevant for physics
- The foliation of a DH is unique (Ashtekar & Galloway)
- DHs have generically $S^2 \times \mathbb{R}$ topology
- Strictly Stable MTSs are barriers for trapped and untrapped surfaces, i.e. this cannot happen:



Uniqueness results (Ashtekar & Galloway)

- How many DHs are there in a typical BH spacetime?



No closed MTS in $D^-(H) - H$: Ashtekar & Galloway 2005)

Uniqueness results

- Uniqueness result rules this out:



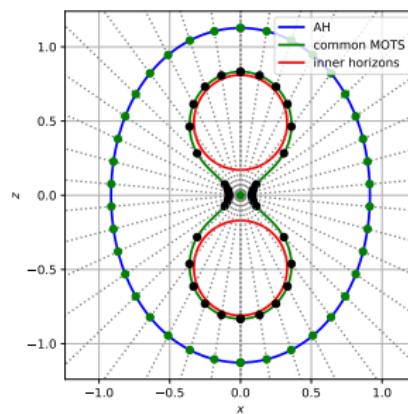
- But we can still have H' “threading” through H

References – Mostly with Brill-Lindquist

- A. Gupta, BK, A. Nielsen, E. Schnetter, Phys. Rev. **D97** (2018) 084028.
- D. Pook-Kolb, O. Birnholtz, BK, E. Schnetter, Phys. Rev. **D99** (2019) 064005.
- D. Pook-Kolb, O. Birnholtz, BK, E. Schnetter, Phys. Rev. Lett., **123** (2019) 17, 171102
- D. Pook-Kolb, O. Birnholtz, BK, E. Schnetter, Phys. Rev. D, **100** (2019) 8, 084044
- V. Prasad, A. Gupta, S. Bose, BK, E. Schnetter, Phys. Rev. Lett. **125** (2020) 12, 121101
- D. Pook-Kolb, O. Birnholtz, BK, E. Schnetter, arxiv:2006.03939
- D. Pook-Kolb, O. Birnholtz, BK, E. Schnetter, arxiv:2006.03940
- D. Pook-Kolb, R. Hennigar, I. Booth, Phys. Rev. Lett. **127** (2021), 181101
- D. Pook-Kolb, R. Hennigar, I. Booth, Phys. Rev. D **104** (2021), 084083
- P. Mourier et al, Phys. Rev. D **103** (2021) 044054
- X.J. Forteza, P. Mourier, Phys. Rev. D **104** (2021) 124072
- N. Khera et al, Phys. Rev. Lett. **131** (2023) 23, 231401

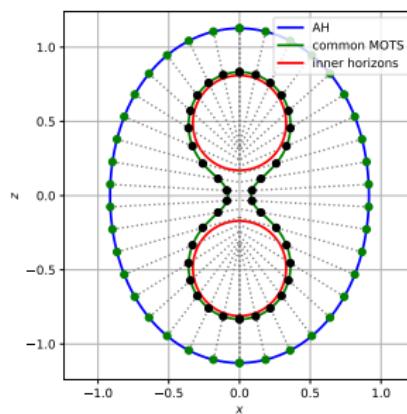
Usual assumption: MOTS must be star shaped

- MOTS is defined by $r = h(\theta, \phi)$



Use a parameterized reference surface

- MOTS is then defined by $d = h(\theta, \phi)$
- Reference surface does not need to be star shaped



Results with Brill-Lindquist

- First consider results with sequence of Brill-Lindquist initial data

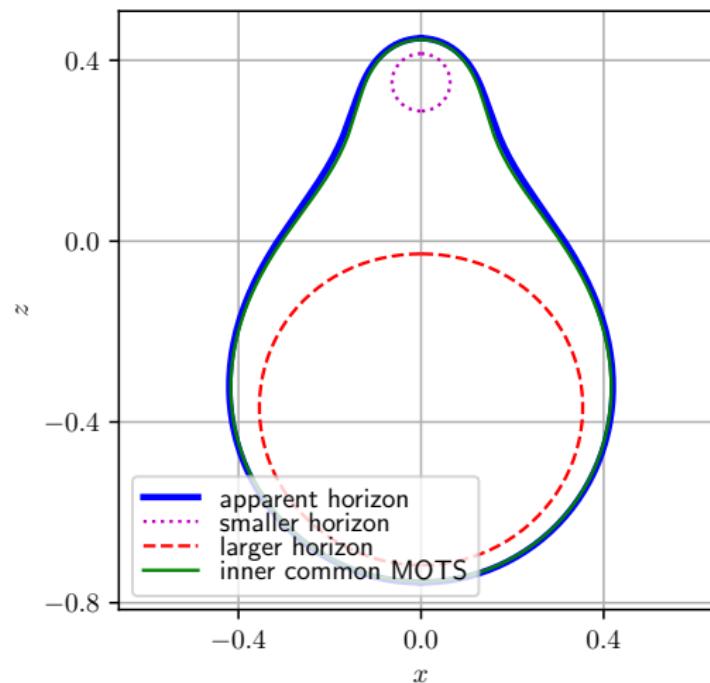
Time symmetric data: non-spinning BHs with zero momentum and separation d

$$q_{ab} = \phi^4 \delta_{ab}$$

$$\phi = 1 + \frac{m_1}{2r_1} + \frac{m_2}{2r_2}$$

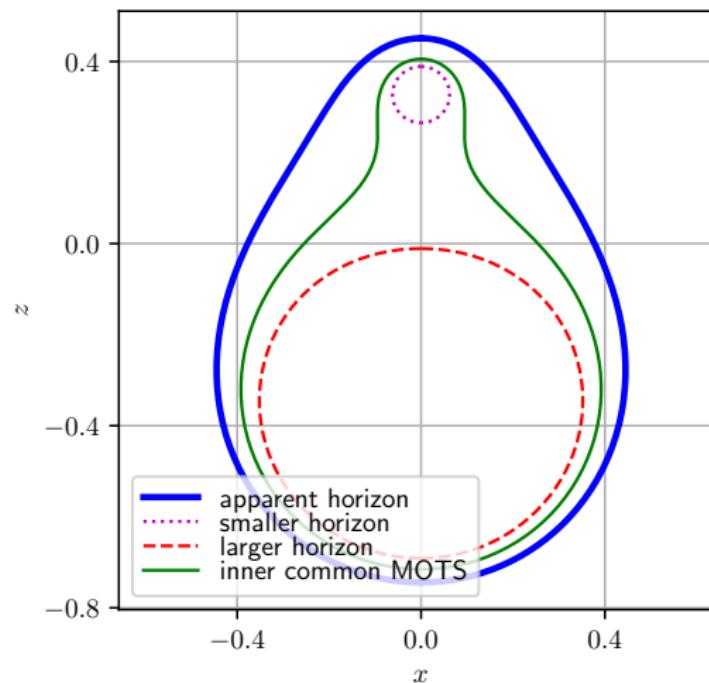
Results with Brill-Lindquist

$$m_1 = 0.2, m_2 = 0.8, d = 0.6985$$



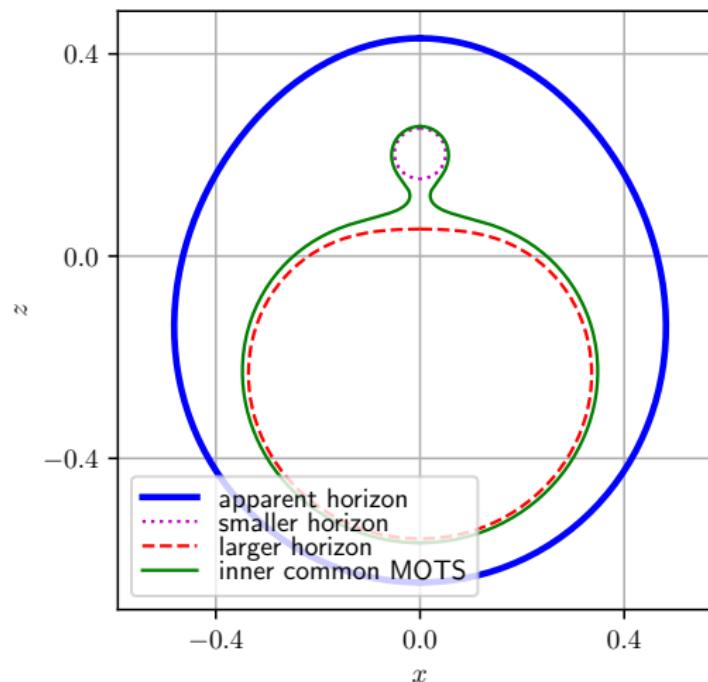
Results with Brill-Lindquist

$$m_1 = 0.2, m_2 = 0.8, d = 0.65$$



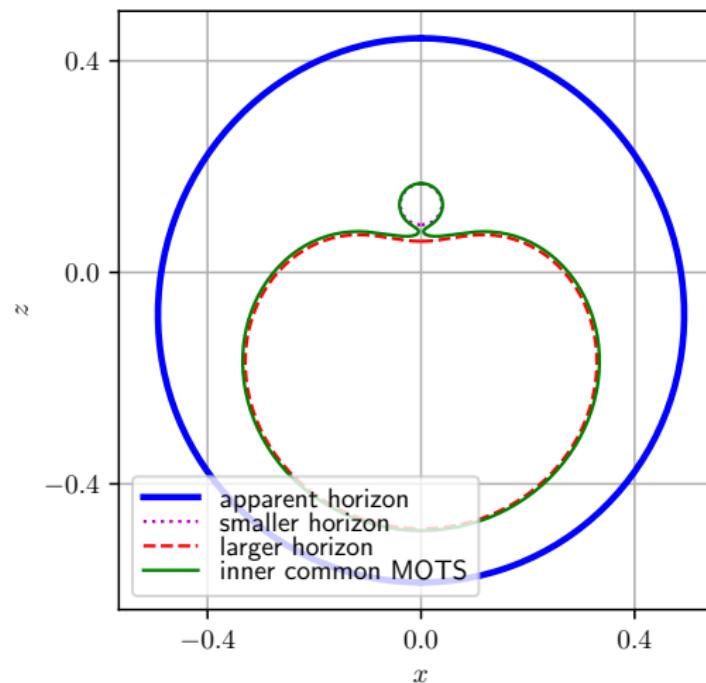
Results with Brill-Lindquist

$$m_1 = 0.2, m_2 = 0.8, d = 0.4$$



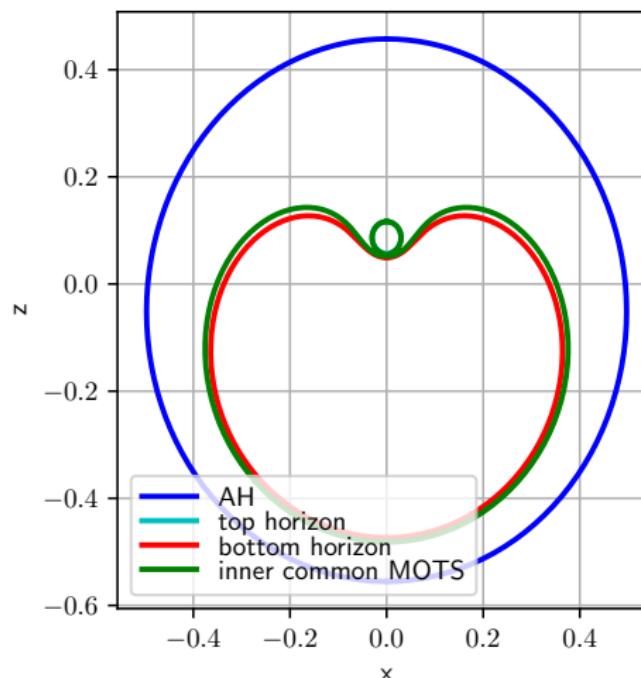
Results with Brill-Lindquist

$$m_1 = 0.2, m_2 = 0.8, d = 0.25$$



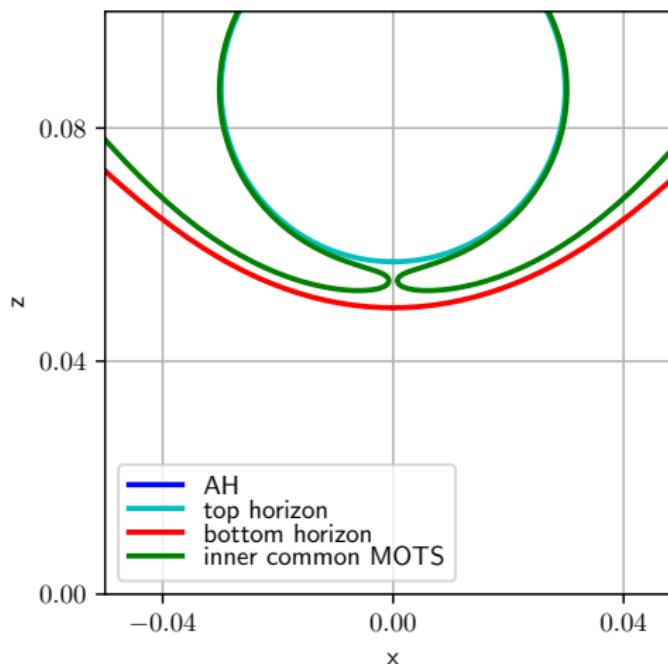
Results with Brill-Lindquist

MOTSs for $m_1 = 0.2$, $m_2 = 0.8$, $d = 0.1660523515$



Results with Brill-Lindquist

MOTSs for $m_1 = 0.2$, $m_2 = 0.8$, $d = 0.1660523515$



Properties of the 1:4 configuration

Large d Only \mathcal{S}_{large} , \mathcal{S}_{small} exist.

$d \approx 0.6987$ Common horizon appears and bifurcates into \mathcal{S}_{AH} and \mathcal{S}_{in} .

$d \lesssim 0.6987$ \mathcal{S}_{in} becomes increasingly distorted.

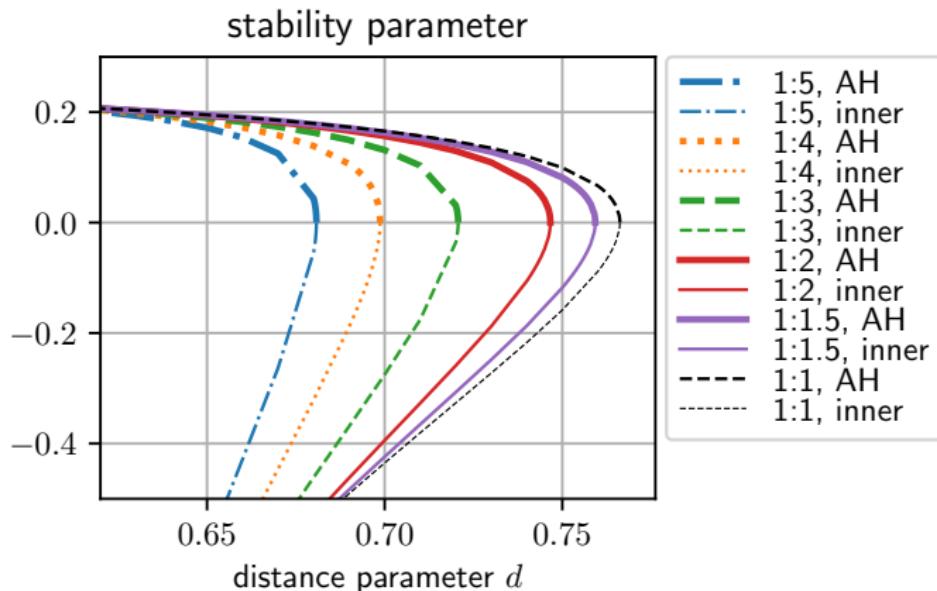
$d \lesssim 0.1660$ \mathcal{S}_{in} no longer found.

$d \lesssim 0.1646$ \mathcal{S}_{large} no longer found.

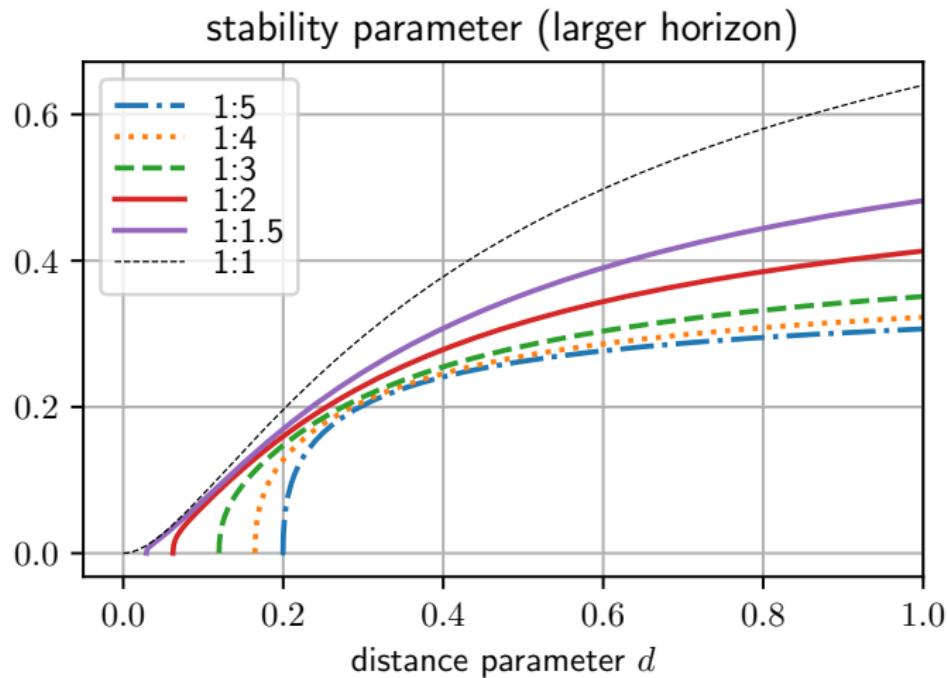
Small d Only \mathcal{S}_{AH} and \mathcal{S}_{small} exist.

How can we explain this behavior?

Stability of the outer horizons

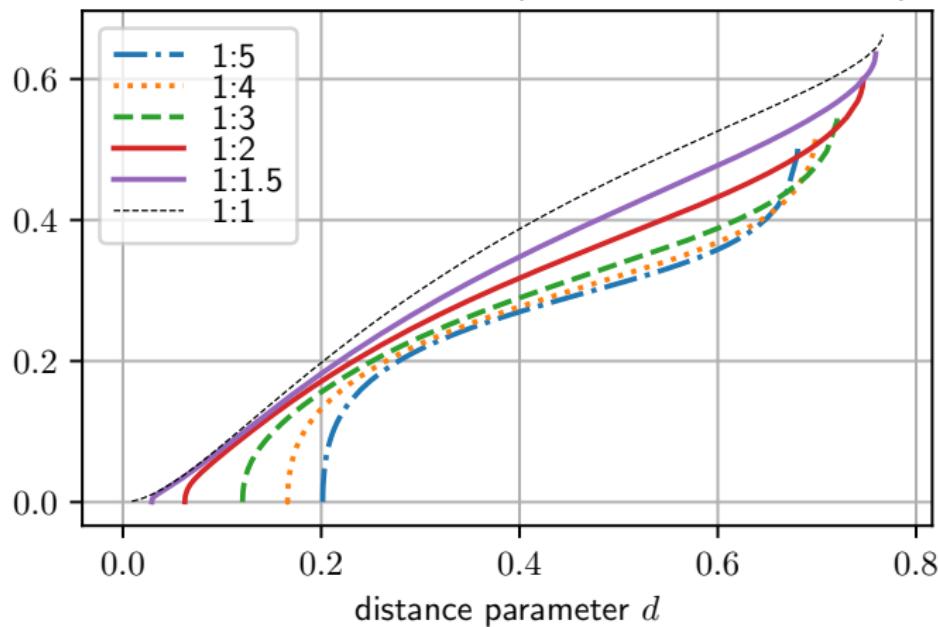


Stability of the outer horizons



Stability of the outer horizons

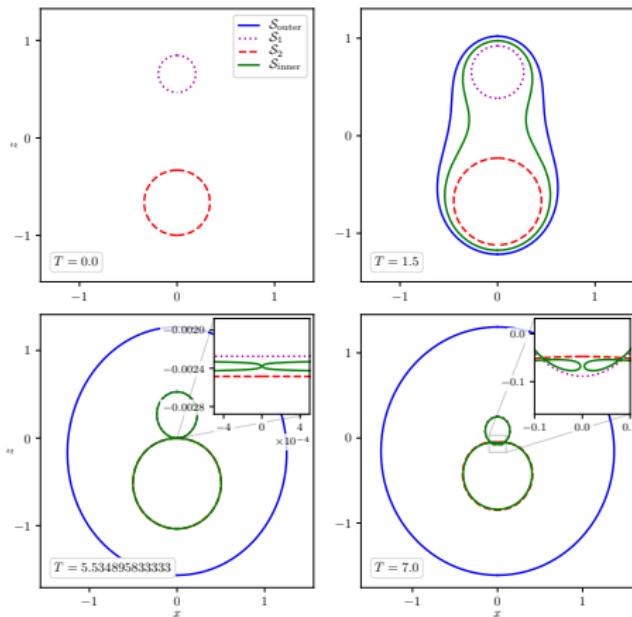
2nd stability eigenvalue (inner common MOTS)



Time evolution of Brill-Lindquist

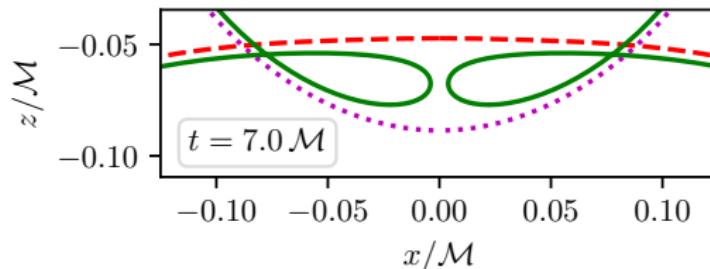
- After the study with initial data, we can apply the new horizon finder to time evolution
- Brill-Lindquist a good starting point – aim is to find sequence of MOTS connecting initial and final BHs

Time evolution of Brill-Lindquist

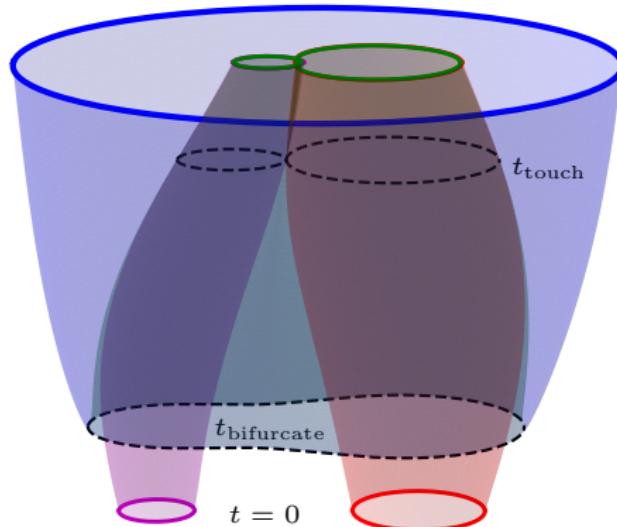


- Dramatic difference in behavior – the individual MOTSs now penetrate each other and merge with inner-common MOTS
- Self-intersections develop in inner-common MOTS immediately after merger

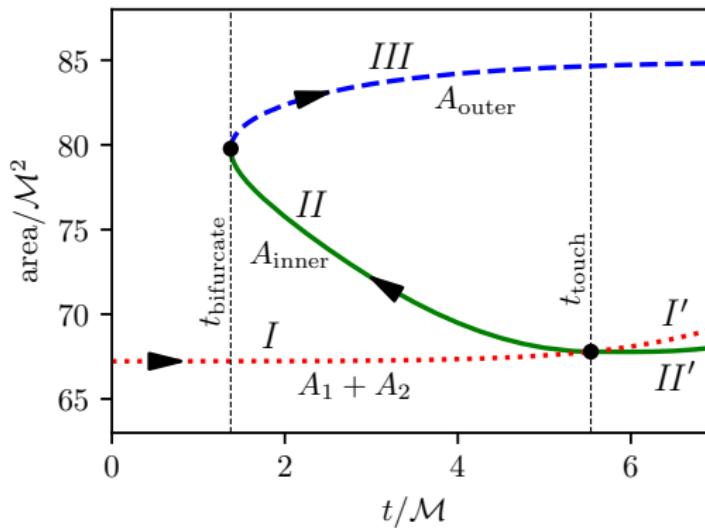
The self-intersecting MOTS



Analog of the “pair of pants picture”



The area increase law

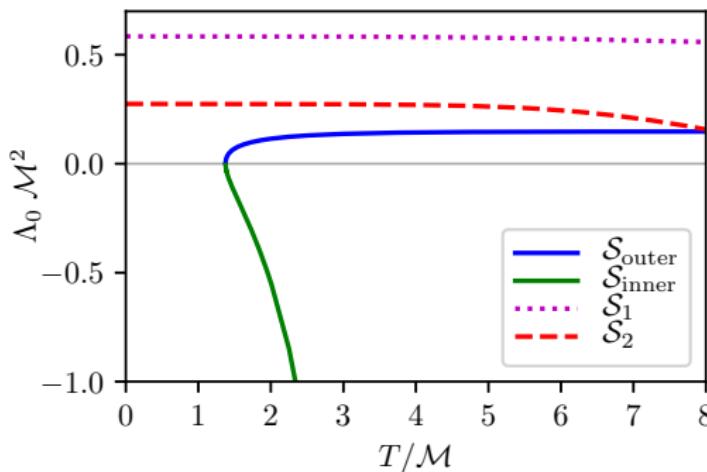


The stability spectrum and the merger

- Our numerical method allows us to calculate the spectrum highly accurately – operator is self-adjoint in the head-on collision of non-spinning black holes
- We need to watch out for vanishing eigenvalues – indicates a possible qualitative change in the geometry
- Start with the principal eigenvalue – the common horizon is born with $\Lambda_0 = 0$
- The outer horizon has always $\Lambda_0 > 0$, but the inner horizon is more interesting
- \mathcal{S}_{inner} has $\Lambda_0 < 0$ but $\Lambda_1 > 0$

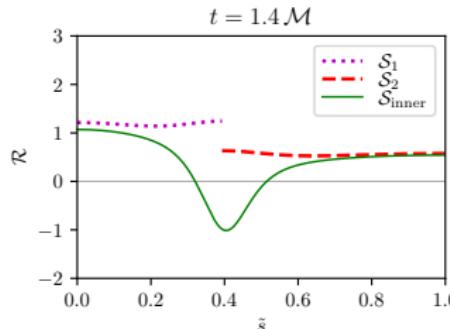
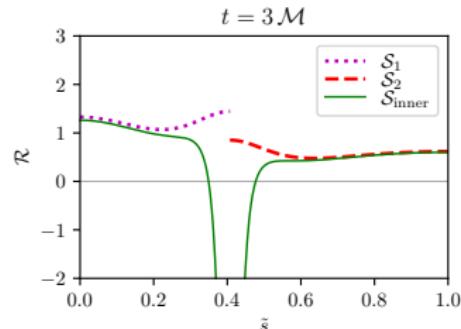
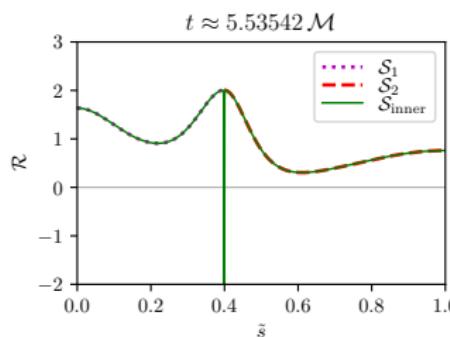
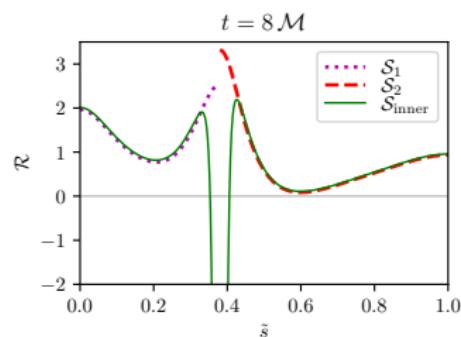
The stability spectrum and the merger

- Λ_0 becomes increasingly negative



Details of the cusp formation

(Vretinaris et al, In preparation)



- Allows us to track individual BH dynamics all the way through the merger

Binary black hole mergers

- In a BBH merger, we start from two BHs and end up with a single BH
- What happens to all of these inner horizons?
- Inricate sequence of bifurcations and “mergers” with more eigenvalues becoming successively unstable
- See talk by Ivan

- Ashtekar et al, Phys.Rev.Lett. **85** (2000) 3564-3567
- B. Krishnan, Class.Quant.Grav. **29** (2012) 205006
- I. Booth, Phys.Rev.D **87** (2013) 2, 024008
- J. Lewandowski, T.Pawlowski, Class.Quant.Grav. **31** (2014) 175012
- D. Dobkowski-Rylko, J. Lewandowski, T. Pawlowski, Class.Quant.Grav. **35** (2018) 17, 175016
- D. Dobkowski-Rylko, J. Lewandowski, T. Pawlowski, Phys.Rev.D **98** (2018) 2, 024008
- J. Lewandowski, C. Li, arxiv:1809.04715
- M. Scholtz, A. Flandera, N. Gurlebeck, Phys.Rev.D **96** (2017) 6, 064024
- A. Flandera, D. Kofron, T. Ledvinka, Phys.Rev.D **111** (2025) 2, 024020
- A.Ribes-Metidieri, B. Bonga, B. Krishnan, Phys.Rev.D **110** (2024) 2, 024069
- A.Ribes-Metidieri, B. Bonga, B. Krishnan, Phys.Rev.D, **111** (2025) 10, 104075

The characteristic initial value formulation

- Our approach is based instead on a characteristic initial value formulation for hyperbolic equations

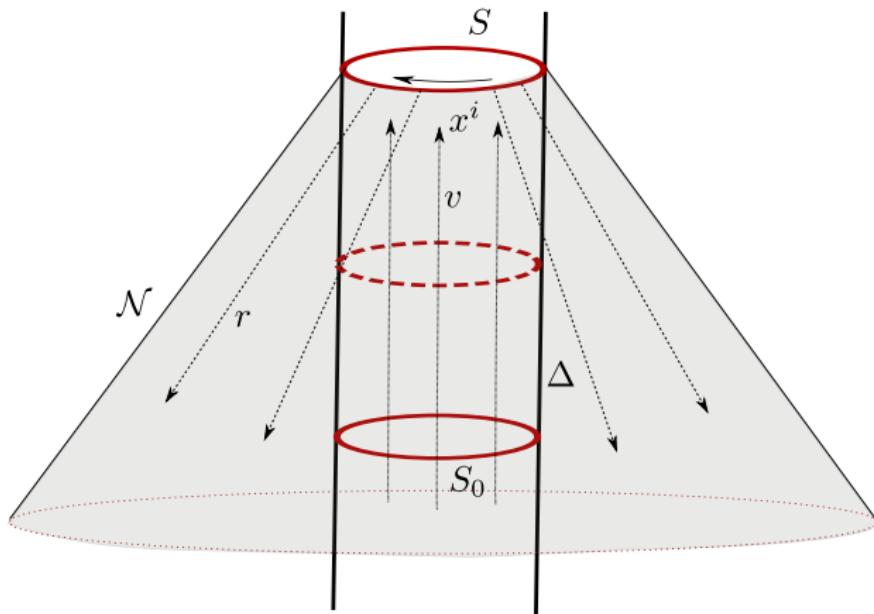
$$\sum_{J=1}^N A_{IJ}^a(x, \psi) \partial_a \psi_J + F_I(x, \psi) = 0.$$

$$A_{IJ}^a \xi_a > 0 \quad \text{for some } \xi_a$$

then equations are hyperbolic

- Standard initial value problem specifies ψ_I at $t = 0$ and solution is unique & guaranteed to exist locally
- Alternative: specify data on pair of intersecting null surfaces (Friedrich (1981), Friedrich & Rendall (2000))
- For us, the null surfaces are a weakly isolated horizon Δ and a transverse light cone \mathcal{N}

Near horizon coordinates



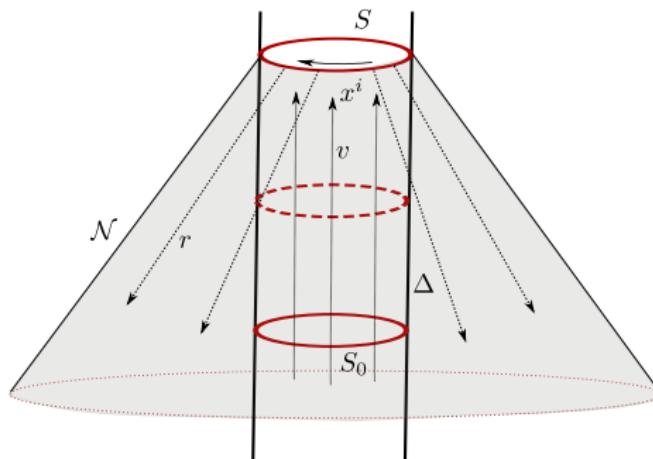
The Newman-Penrose formalism

- Tetrad formalism (ℓ, n, m, \bar{m}) such that $\ell \cdot n = -1$, $m \cdot \bar{m} = 1$:

$$g_{ab} = -\ell_a n_b - n_a \ell_b + m_a \bar{m}_b + \bar{m}_a m_b.$$

- Spacetime connection encoded in 12 complex scalars (spin coefficients)
- Weyl tensor is broken up as 5 complex scalars Ψ_k ($k = 0, 1, \dots, 4$)

Near horizon coordinates



- Start with coordinates x^i on S_0 and m^a
- Propagate on Δ as $\ell^a \nabla_a x^i = 0$, $\mathcal{L}_\ell m = 0$
- Propagate away from Δ using past null geodesics:
 $n^a \nabla_a \ell^b = 0$, $n^a \nabla_a m^b = 0$, $\ell^a \nabla_a x^i = 0$
- Affine parameter along $-n^a$ is r

The structure of the field equations

- Choose $n_a = -\nabla_a v$ and $n^a \nabla_a = -\partial_r$
- This implies

$$\ell^a \nabla_a := D = \frac{\partial}{\partial v} + U \frac{\partial}{\partial r} + X^i \frac{\partial}{\partial x^i},$$

$$m^a \nabla_a := \delta = \Omega \frac{\partial}{\partial r} + \xi^i \frac{\partial}{\partial x^i}.$$

$$U, X^i, \Omega \sim \mathcal{O}(r)$$

- The variables are: $U, X^i, \Omega, 12$ spin coefficients, 5 complex Weyl tensor components Ψ_k

The structure of the field equations

Introduction

Trapped
surfaces

The Trapping
Boundary

Marginally
trapped tubes

Binary Black
Holes

The near
horizon
geometry

Conclusion

The field equations are of 3 types

- Evolution equations along v
- Purely angular equations
- Radial equations along r

Strategy for solving them:

- Propagate data on S_0 to all points of Δ consistent with angular equations.
- Propagate transverse to Δ using radial equations
- Ensure consistency with non-radial equations away from Δ

The structure of the field equations

- In general, solution guaranteed only near Δ and global solution will exist only in certain cases

Free data:

- On horizon, we need a choice of ℓ^a , ω_a , geometry of S_0 , shear and expansion of n^a
- On \mathcal{N} we need Ψ_4 – The Bianchi identities do not specify radial derivative of Ψ_4
- We can follow the procedure iteratively in powers of r
- This results in solutions to the frame fields, Weyl tensor and spin coefficients as a power series in r

$$\Psi_k = \Psi_k^{(0)} + r\Psi_k^{(1)} + \frac{1}{2}r^2\Psi_k^{(2)} + \dots$$

$$g_{ab} = g_{ab}^{(0)} + g_{ab}^{(1)}r + \frac{1}{2}g_{ab}^{(2)}r^2 + \dots$$

Expansion of the Weyl tensor

Expressions for the Weyl tensor at first order:

$$\Psi_0 = \mathcal{O}(r^2),$$

$$\Psi_1 = -r\bar{\partial}\Psi_2^{(0)} + \mathcal{O}(r^2),$$

$$\Psi_2^{(1)} = -(\bar{\partial} + \bar{\pi}^{(0)})\Psi_3^{(0)} + 3\mu^{(0)}\Psi_2^{(0)},$$

$$\Psi_3^{(1)} = -(\bar{\partial} + 2\bar{\pi}^{(0)})\Psi_4^{(0)} + 4\mu^{(0)}\Psi_3^{(0)}$$

Expansion of the metric up to $\mathcal{O}(r^2)$

$$g_{ab}^{(0)} = 2\partial_{(a}r\partial_{b)}v + 2m_{(a}^{(0)}\bar{m}_{b)}^{(0)},$$

$$\begin{aligned} g_{ab}^{(1)} &= - \left(2\tilde{\kappa}\partial_{(a}v\partial_{b)}v + 4\pi^{(0)}m_{(a}^{(0)}\partial_{b)}v + 4\bar{\pi}^{(0)}\bar{m}_{(a}^{(0)}\partial_{b)}v \right. \\ &\quad \left. + 4\mu^{(0)}m_{(a}^{(0)}\bar{m}_{b)}^{(0)} + 2\lambda^{(0)}m_{(a}^{(0)}m_{b)}^{(0)} + 2\bar{\lambda}^{(0)}\bar{m}_{(a}^{(0)}\bar{m}_{b)}^{(0)} \right), \end{aligned}$$

Expansion of the metric

Ψ_4 appears only at the second order

$$\begin{aligned} g_{ab}^{(2)} = & 4 \left(|\pi^{(0)}|^2 - \text{Re}[\Psi_2^{(0)}] \right) \partial_{(a} v \partial_{b)} v \\ & + 4 \left(\mu^{(0)} \pi^{(0)} + \lambda^{(0)} \bar{\pi}^{(0)} - \Psi_3^{(0)} \right) m_{(a}^{(0)} \partial_{b)} v \\ & + 4 \left(\mu^{(0)} \bar{\pi}^{(0)} + \bar{\lambda}^{(0)} \pi^{(0)} - \bar{\Psi}_3^{(0)} \right) \bar{m}_{(a}^{(0)} \partial_{b)} v \\ & + 4 \left((\mu^{(0)})^2 + |\lambda^{(0)}|^2 \right) m_{(a}^{(0)} \bar{m}_{b)}^{(0)} \\ & + \left(4\mu^{(0)}\lambda^{(0)} - 2\Psi_4^{(0)} \right) m_{(a}^{(0)} m_{b)}^{(0)} + \left(4\mu^{(0)}\bar{\lambda}^{(0)} - 2\bar{\Psi}_4^{(0)} \right) \bar{m}_{(a}^{(0)} \end{aligned}$$

Perturbative approach

- Stationary BHs can be reconstructed from horizon data alone
- Perturb horizon data + Ψ_4 \rightarrow perturbed near horizon spacetime
- First order calculations are “straightforward”, but at second order we would need dynamical horizons (or “slowly evolving” horizons (Booth & Fairhurst (2004, 2007))
- Applications to tidal Love number calculations, ringdown,...
- (Talk by Beatrice)

- Trapped surfaces are not as ill-behaved as one might think
- Can prove useful mathematical results for them and can use them to study black holes
- The trapping boundary is understood in some simple cases, but the general case is still open.
- Applications in diverse areas from quantum gravity, GW Astronomy to numerical relativity
- Still left with the question: what is a dynamical black hole?
- Surface not unique but restrictions known
- Suggestion by Senovilla: core(s) of the trapped region?