
Quasi-local
black hole
horizons

Badri
Krishnan

Introduction

Trapped
surfaces

The Trapping
Boundary

Marginally
trapped tubes

Binary Black
Holes

The near
horizon
geometry

Conclusion

Quasi-local black hole horizons

Badri Krishnan

IMAPP, Radboud University
Nijmegen, The Netherlands

Max Planck Institut für Gravitationsphysik
(Albert Einstein Institut)

Hannover, Germany

Trieste
January 15, 2026



Quasi-local
black hole
horizons

Badri
Krishnan

Introduction

Trapped
surfaces

The Trapping
Boundary

Marginally
trapped tubes

Binary Black
Holes

The near
horizon
geometry

Conclusion

Outline

1 Introduction

2 Trapped surfaces

3 The Trapping Boundary

4 Marginally trapped tubes

5 Binary Black Holes

6 The near horizon geometry

7 Conclusion



Quasi-local
black hole
horizons

Badri
Krishnan

Introduction

Trapped
surfaces

The Trapping
Boundary

Marginally
trapped tubes

Binary Black
Holes

The near
horizon
geometry

Conclusion

Event Horizons

• Black hole surfaces traditionally defined via event
horizons
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Event horizons

Event horizons have been used in key “classic”
investigations in black hole physics
• The area increase theorem
• Black hole thermodynamics
• The black hole uniqueness theorems
• Black hole perturbation theory
• Topological censorship
• Astrophysics – all we need is Kerr + perturbations?

Is there any need to go beyond event horizons?
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Event horizons are global and teleological

• Need to know the entire spacetime to locate event
horizons (which is why numerical simulations do not
rely on them)
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Usual first law is not local

• Consider the “usual” first law

δMADM =
κδA
8πG

+ΩδJADM

• A,Ω, κ are defined at the horizon (though the Killing
vector is normalized at ∞)

• MADM and JADM are defined at spatial infinity
• We would like a quasi-local version applicable to BHs in

our universe
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The Physical Process version of the second law

• Simple generalization of Schwarzschild for a varying
mass function M(v) with Ṁ(v) ≥ 0 and limv→∞ M(v)
finite

• Vaidya spacetime represents collapse of spherically
symmetric null-dust

ds2 = −
(

1 − 2M(v)
r

)
dv2 + 2dv dr + r2dΩ2 .

Tab =
Ṁ(v)
4πr2 ∇av∇bv .
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Event horizons can grow in flat space

• No general second law can be formulated for event
horizons i.e. we cannot write ∆A as a sum of local
fluxes

• This can only be done in perturbative settings + end
state boundary condition (Hartle & Hawking (1972))
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Quantum fluctuations can remove EHs

• Semiclassical calculations (Hajicek (1987)) show that
quantum fluctuations near the singularity can
completely remove the event horizon

• This is a semiclassical study of the Vaidya collapse
model

• Shows that the Hawking radiation is associated with the
apparent horizon, and not the event horizon
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The singularity theorems

• There is one classic result which does not use event
horizons directly

• The singularity theorem: the presence of a closed
trapped surface (+energy condition) implies geodesic
incompleteness in the future (Penrose (1965), Penrose)

• This paper also introduced closed trapped surfaces
which are key to understanding black holes
quasi-locally
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Expansion, shear and twist

Take a spacelike 2-surface S with intrinsic metric qab and
null normals ℓa,na

• The expansions are

Θ(ℓ) = qab∇aℓb , Θ(n) = qab∇anb .

→ Θ =
1
A

dA
dt

• Shear is the symmetric tracefree part:

σ
(ℓ)
ab := qc

(aqd
b)∇cℓd − 1

2
Θ(ℓ)qab

• (...and twist is the anti-symmetric part)
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Expansion, shear and twist
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Definition of a trapped surface

• S: closed spacelike spherical surface
• Outgoing and in going null normals: ℓ and n
• For a trapped surface, both sets of null rays are

converging: Θ(ℓ) < 0 and Θ(n) < 0
• Outer trapped surface: Θ(ℓ) < 0, and no condition on

Θ(n)

• Signature of black holes but not necessarily of strong
gravitational field

• Marginally trapped surface: Θ(ℓ) = 0, Θ(n) < 0
• Marginally outer trapped (MOTS): Only Θ(ℓ) = 0
• Outermost MTS on a Cauchy surface is called the

apparent horizon
• Boundary of trapped region on spatial slice is MTS –

Hayward & Kriele (1997), Andersson & Metzger (2007)
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The boundary of the trapped region

• Alternative definition of a black hole surface: boundary
of spacetime region containing trapped surfaces

• In Schwarzschild trapped surfaces extend all the way
up to the event horizon
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Trapped surfaces in Vaidya

Spherically symmetric
trapped surfaces do
not extend up to event
horizon
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Eardley’s conjecture
• Event horizons generally have positive expansion –>

cross sections of the event horizon cannot be a MOTSs
• As we try to push a MOTS towards the event horizon,

we cannot do it “uniformly” – and the limit will be
singular

• The basic problem already exists in spherical symmetry
(but with dynamics), and including angular momentum
and other complications etc. are (probably) not
qualitatively different

• Eardley was the first to recognize this in 1998 (“Black
hole boundary conditions and coordinate conditions”,
Phys.Rev.D 57 (1998) 2299-2304)

• Eardley’s conjecture: the event horizon is the boundary
of the trapped spacetime region

• A MOTS needs to be deformed in long “needle” like
shapes extending far to the future (or past) to approach
the event horizon
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Shapiro & Teukolsky and Wald & Iyer

• In 1991, Shapiro & Teukolsky claimed the existence of
naked singularities in a numerical simulation of the
Einstein-Vlasov system – they did not find any apparent
horizons though they had indications of singularities

• Wald & Iyer pointed out that there exist Cauchy slices
close to the singularity, even just in Schwarzschild,
which do not contain any trapped surfaces
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Shapiro & Teukolsky and Wald & Iyer
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Shapiro & Teukolsky and Wald & Iyer

• Actually, numerical horizon finders would happily find
an “apparent horizon” on these kinds of Cauchy
surfaces (i.e. Θ(ℓ) = 0).

• The “apparent horizon” would not satisfy Θ(n) < 0
• As far as we know, standard gauge choices in NR do

not lead to such Cauchy surfaces
• Finally, as we shall see later, for BBH mergers we

generally have MOTSs which do not satisfy Θ(n) < 0
everywhere (which are though entirely in the black hole
region)
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The trapping boundary
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• In Vaidya we can push outer marginally trapped
surfaces arbitrarily close to the EH (only Θ(ℓ) = 0)

• Marginal surfaces can also extend into flat region
(Schnetter & Krishnan, 2006)

• Analytic proof by Ben-Dov for Vaidya (2006)
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The trapping boundary

• Define “Kodama time” as

ξa = ∇ar −
(

1 − 2M(v)
r

)
∇av .

• Boundary of trapped surfaces is Σ̂ and not the event
horizon (Senovilla & Bengtsson (2010))

• The boundary may not always extend to the flat portion
• This is the case when limv→0+ M(v)/v < 1/8
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The trapping boundary
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The trapping boundary
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Marginally trapped tubes (MTTs)
• Marginally trapped tubes obtained by stacking up

Marginally outer trapped surfaces (MOTS)

TimeSt

• Think of marginally trapped tube as the smooth time
evolution of a MOTS

• Marginally trapped tube is defined as a 3-surface
foliated by MOTSs

• This is a covariant spacetime definition even if we might
use a 3+1 split to locate MOTSs in practice
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Isolated, dynamical and trapping horizons

• All these are different kinds of MTTs (Θ(ℓ) = 0)
• Dynamical horizon: spacelike MTT with Θ(n) < 0
• Isolated horizon: null MTT, no restriction on Θ(n)

• Trapping horizon: Null or spacelike, Θ(n) < 0,
LnΘ(ℓ) < 0

• Timelike membrane: timelike MTT
Some Review Articles:
• Ashtekar & Krishnan, Living Reviews (2004)
• Booth, Can. J. Phys. (2005)
• Gourgoulhon & Jaramillo, Physics Reports (2006)
• Ashtekar & Krishnan, Living Reviews (2025)
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The equilibrium case

• The goal is to model a black hole in equilibrium in a
universe that is otherwise dynamical

• Infinite dimensional set of solutions provided by
characteristic initial value formulation (see later)

• This is an approximation in several cases of interest
(inspiral, ringdown....)
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Non-expanding horizons

A smooth 3-dimensional null surface ∆ is said to be a
non-expanding horizon if:
• ∆ has topology S2 × R, and if Π : S2 × R → S2 is the

natural projection, then Π−1(x) for any x ∈ S2 are null
curves on ∆.

• The expansion Θ(ℓ) := qab∇aℓb of any null normal ℓa of
∆ vanishes.

• The Einstein field equations hold at ∆, and the matter
stress-energy tensor Tab is such that for any future
directed null-normal ℓa, −T a

b ℓ
b is future causal.
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Weakly exanding horizon

A weakly isolated horizon is a NEH ∆ with a choice of null
normal ℓa (defined up to constant positive rescalings) such
that

Lℓωa = 0

where ωa is defined as

X a∇aℓ
b = X aωaℓ

b

for any X a tangent to ∆

• Surface gravity is κℓ = ℓaωa which is constant on ∆
(zeroth law)

• Shear of ℓa vanishes → no fluxes across the horizon
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The zeroth and first laws

(Ashtekar, Beetle & Lewandowski (2001, 2002), Ashtekar,
Fairhurst & BK (2000), Booth (2001))
• The Weyl tensor is algebraically special on a NEH

Ψ0 = Ψ1 = 0

Ψ2 → time independent

Ψ3,Ψ4 determined byΨ2

• Ψ2 is thus gauge invariant
• The angular modes of Ψ2 are then the BH multipole

moments
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The zeroth and first laws

• Turn now to angular momentum and the first law
• Let φa be an axial symmetry of the intrinsic horizon

geometry
• Let ϕa be an axial vector in spacetime (not necessarily

a symmetry) such that

ϕa → φa on ∆

ϕa → φa
∞ at S∞

• The Hamiltonian which generates motions along ϕa on
phase space consists of boundary terms

Hϕ =

∮
S
· · ·+

∮
S∞

· · ·
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The zeroth and first laws

• The term at infinity is the ADM angular momentum
• Identify the horizon term with the BH angular

momentum

Jφ
∆ = − 1

8πG

∮
S
ωaφ

a d2V

• (Used routinely in NR simulations)
• For the energy consider a time evolution vector field

ta → cℓa − Ωφa on ∆

ϕa → τa at infinity

• Turns out that the corresponding Hamiltonian does not
always exist
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The zeroth and first laws

• The first law is the necessary and sufficient condition,
i.e. if

dE∆ =
1

8πG
κ(cℓ)dA +ΩdJ(φ)

∆

is an exact variation in phase space
• Thus we want c,Ω and the energy to be functions only

of (A, J(φ)
∆ )

• We can then consistently choose E∆, c,Ω to be the
corresponding Kerr values as functions of (A, J(φ)

∆ )

• This gives then the mass according to the usual Kerr
formula
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Evolution of MTSs in Time

• MTT shown to exist if MTS is strictly-stably-outermost
• Andersson, Mars & Simon (2005,2007)

• S is strictly-
stably-outermost
if it satisfies a
stability condition

• Some outward
deformation
along f r makes S
untrapped to
linear order:
δf rΘ(ℓ) > 0 for
f ≥ 0
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Properties of MTTs (Illustrative results)
• Key tool used in existence results is the elliptic stability

operator: δf rΘ(ℓ) = Lrf
• The MTT in the neighborhood of a stable MTS is

achronal
• It is spacelike if Tabℓ

aℓb is non-vanishing somewhere on
S – DHs are the most relevant for physics

• The foliation of a DH is unique (Ashtekar & Galloway)
• DHs have generically S2 × R topology
• Strictly Stable MTSs are barriers for trapped and

untrapped surfaces, i.e. this cannot happen:
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Uniqueness results (Ashtekar & Galloway)

• How many DHs are there in a typical BH spacetime?

H

J −(H)

No closed MTS in D−(H)− H: Ashtekar & Galloway 2005)
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Uniqueness results

• Uniqueness result rules this out:

H

H’

E

• But we can still have H ′ “threading” through H
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Star shaped MOTSs

Usual assumption: MOTS must be star shaped
• MOTS is defined by r = h(θ, ϕ)
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More general idea

Use a parameterized reference surface
• MOTS is then defined by d = h(θ, ϕ)
• Reference surface does not need to be star shaped
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Results with Brill-Lindquist

• First consider results with sequence of Brill-Lindquist
initial data

Time symmetric data: non-spinning BHs with zero
momentum and separation d

qab = ϕ4δab

ϕ = 1 +
m1

2r1
+

m2

2r2
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Results with Brill-Lindquist
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Results with Brill-Lindquist
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Results with Brill-Lindquist
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Results with Brill-Lindquist
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Results with Brill-Lindquist
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Results with Brill-Lindquist
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Properties of the 1:4 configuration

Large d Only Slarge, Ssmall exist.
d ≈ 0.6987 Common horizon appears and bifurcates into

SAH and Sin.
d ≲ 0.6987 Sin becomes increasingly distorted.
d ≲ 0.1660 Sin no longer found.
d ≲ 0.1646 Slarge no longer found.

Small d Only SAH and Ssmall exist.
How can we explain this behavior?
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Stability of the outer horizons
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Stability of the outer horizons
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Stability of the outer horizons
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Time evolution of Brill-Lindquist

• After the study with initial data, we can apply the new
horizon finder to time evolution

• Brill-Lindquist a good starting point – aim is to find
sequence of MOTS connecting initial and final BHs
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Time evolution of Brill-Lindquist
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• Dramatic difference in behavior – the individual MOTSs
now penetrate each other and merge with
inner-common MOTS

• Self-intersections develop in inner-common MOTS
immediately after merger
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The self-intersecting MOTS
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Analog of the “pair of pants picture”

ttouch

tbifurcate

t = 0
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The area increase law
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The stability spectrum and the merger

• Our numerical method allows us to calculate the
spectrum highly accurately – operator is self-adjoint in
the head-on collision of non-spinning black holes

• We need to watch out for vanishing eigenvalues –
indicates a possible qualitative change in the geometry

• Start with the principal eigenvalue – the common
horizon is born with Λ0 = 0

• The outer horizon has always Λ0 > 0, but the inner
horizon is more interesting

• Sinner has Λ0 < 0 but Λ1 > 0
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The stability spectrum and the merger

• Λ0 becomes increasingly negative
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Details of the cusp formation
(Vretinaris et al, In preparation)
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• Allows us to track individual BH dynamics all the way
through the merger
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Binary black hole mergers

• In a BBH merger, we start from two BHs and end up
with a single BH

• What happens to all of these inner horizons?
• Inricate sequence of bifurcations and “mergers” with

more eigenvalues becoming successively unstable
• See talk by Ivan
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The characteristic initial value formulation

• Our approach is based instead on a characteristic initial
value formulation for hyperbolic equations

N∑
J=1

Aa
IJ(x , ψ)∂aψJ + FI(x , ψ) = 0 .

Aa
IJξa > 0 for some ξa

then equations are hyperbolic
• Standard initial value problem specifies ψI at t = 0 and

solution is unique & guaranteed to exist locally
• Alterative: specify data on pair of intersecting null

surfaces (Friedrich (1981), Friedrich & Rendall (2000))
• For us, the null surfaces are a weakly isolated horizon
∆ and a transverse light cone N
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Near horizon coordinates
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The Newman-Penrose formalism

• Tetrad formalism (ℓ,n,m, m̄) such that ℓ · n = −1,
m · m̄ = 1:

gab = −ℓanb − naℓb + mam̄b + m̄amb .

• Spacetime connection encoded in 12 complex scalars
(spin coefficients)

• Weyl tensor is broken up as 5 complex scalars Ψk
(k = 0,1, . . . ,4)
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Near horizon coordinates

• Start with coordinates x i on S0 and ma

• Propagate on ∆ as ℓa∇ax i = 0, Lℓm = 0
• Propagate away from ∆ using past null geodesics:

na∇aℓ
b = 0, na∇amb = 0, ℓa∇ax i = 0

• Affine parameter along −na is r
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The structure of the field equations

• Choose na = −∇av and na∇a = −∂r

• This implies

ℓa∇a := D =
∂

∂v
+ U

∂

∂r
+ X i ∂

∂x i ,

ma∇a := δ = Ω
∂

∂r
+ ξi ∂

∂x i .

U,X i ,Ω ∼ O(r)

• The variables are: U,X i ,Ω, 12 spin coefficients, 5
complex Weyl tensor components Ψk
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The structure of the field equations

The field equations are of 3 types
• Evolution equations along v
• Purely angular equations
• Radial equations along r

Strategy for solving them:
• Propagate data on S0 to all points of ∆ consistent with

angular equations.
• Proagate transverse to ∆ using radial eauations
• Ensure consistency with non-radial equations away

from ∆
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The structure of the field equations

• In general, solution guaranteed only near ∆ and global
solution will exist only in certain cases

Free data:
• On horizon, we need a choice of ℓa, ωa, geometry of S0,

shear and expansion of na

• On N we need Ψ4 – The Bianchi identities do not
specify radial derivative of Ψ4

• We can follow the procedure iteratively in powers of r
• This results in solutions to the frame fields, Weyl tensor

and spin coefficients as a power series in r

Ψk = Ψ
(0)
k + rΨ(1)

k +
1
2

r2Ψ
(2)
k + . . .

gab = g(0)
ab + g(1)

ab r +
1
2

g(2)
ab r2 + . . .
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Expansion of the Weyl tensor
Expressions for the Weyl tensor at first order:

Ψ0 = O(r2) ,

Ψ1 = −rðΨ(0)
2 +O(r2) ,

Ψ
(1)
2 = −(ð+ π̄(0))Ψ

(0)
3 + 3µ(0)Ψ(0)

2 ,

Ψ
(1)
3 = −(ð+ 2π̄(0))Ψ(0)

4 + 4µ(0)Ψ(0)
3

Expansion of the metric up to O(r2)

g(0)
ab = 2∂(ar∂b)v + 2m(0)

(a m̄(0)
b) ,

g(1)
ab = −

(
2κ̃∂(av∂b)v + 4π(0)m(0)

(a ∂b)v + 4π̄(0)m̄(0)
(a ∂b)v

+ 4µ(0)m(0)
(a m̄(0)

b) + 2λ(0)m(0)
(a m(0)

b) + 2λ̄(0)m̄(0)
(a m̄(0)

b)

)
,
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Expansion of the metric

Ψ4 appears only at the second order

g(2)
ab = 4

(
|π(0)|2 − Re[Ψ(0)

2 ]
)
∂(av∂b)v

+ 4
(
µ(0)π(0) + λ(0)π̄(0) −Ψ

(0)
3

)
m(0)

(a ∂b)v

+ 4
(
µ(0)π̄(0) + λ̄(0)π(0) − Ψ̄

(0)
3

)
m̄(0)

(a ∂b)v

+ 4
(
(µ(0))2 +

∣∣∣λ(0)∣∣∣2)m(0)
(a m̄(0)

b)

+
(

4µ(0)λ(0) − 2Ψ(0)
4

)
m(0)

(a m(0)
b) +

(
4µ(0)λ̄(0) − 2Ψ̄(0)

4

)
m̄(0)

(a m̄(0)
b) .
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Perturbative approach

• Stationary BHs can be reconstructed from horizon data
alone

• Perturb horizon data + Ψ4 → perturbed near horizon
spacetime

• First order calculations are “straightforward”, but at
second order we would need dynamical horizons (or
“slowly evolving” horizons (Booth & Fairhurst (2004,
2007))

• Applications to tidal Love number calculations,
ringdown,...

• (Talk by Beatrice)
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Conclusion

• Trapped surfaces are not as ill-behaved as one might
think

• Can prove useful mathematical results for them and
can use them to study black holes

• The trapping boundary is understood in some simple
cases, but the general case is still open.

• Applications in diverse areas from quantum gravity, GW
Astronomy to numerical relativity

• Still left with the question: what is a dynamical black
hole?

• Surface not unique but restrictions knowm
• Suggestion by Senovilla: core(s) of the trapped region?
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