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Physics Questions

• During a merger what happens to the original black holes?

• What else happens inside after the final apparent horizon forms?

• More specifically : Do black holes end? How?

• What does this question even mean?



How do black holes end?
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How do black holes end?

black holes end?How do

i. gravitationally bound region 
from which light can’t escape

ii.distinguishable from  
surrounding spacetime

•no longer distinctShould be:
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How do black holes end?

black holes end?How do

i. gravitationally bound region 
from which light can’t escape

ii.distinguishable from  
surrounding spacetime

•``external fields’’ 
become so strong 
that the BH can no 
longer be distinguished

•no longer distinct

``Dissolved’’

Should be:
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Black hole mergers and event horizons

Causal black holes

• regions of spacetime that 
cannot send signals to  ℐ+

• event horizon is a null 
surface determined by future 
boundary conditions

region from which  
light can’t escape

NOT distinguishable at 
any fixed instant in time

strength of gravitational 
field NOT directly involved

Hawking-Ellis 1973
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Black hole mergers and event horizons

Causal black holes

• regions of spacetime that 
cannot send signals to  ℐ+

• event horizon is a null 
surface determined by future 
boundary conditions

• don’t tell us anything about 
internal structure

• interesting but picture is 
definitely incomplete

Hawking-Ellis 1973

final fate of  
original AHs??



• “Regular” convex surface (ie sphere):  and ℓ+ > 0 ℓ− < 0

- inward null normalθ−

 - outward null normalθ+

spacelike two-surface
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How do you know if you are inside a black hole?



• “Regular” convex surface (ie sphere):  and ℓ+ > 0 ℓ− < 0
• Trapped surface:  and   (everything falls inwards!)ℓ+ < 0 ℓ− < 0
• Trapped surfaces imply the existence of singularities “inside” 

and (if asymptotically flat) event horizons “outside” (Penrose PRL 65, Nobel 2020)

- inward null normalθ−

 - outward null normalθ+

spacelike two-surface

5

How do you know if you are inside a black hole?

(Outer) trapped surfaces are inside black holes
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Apparent horizons and MOTS

Σt

trapped surfaces
apparent horizon

• The apparent horizon bounds the (outer) trapped region

• Coincides with or is inside the event horizon

ℓ+ = 0

• It is a marginally outer trapped surface (MOTS) Schwarzschild, RN, 
Kerr event horizons  
are MOTS and  
apparent horizons

RN and Kerr inner 
horizons as well as  
cosmo horizons are 
MOTS
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A local characterization of apparent horizons

1) Small outward deformations become outer untrapped

2) Small inward deformations become outer trapped

Newman 1987 
Hayward 1994 
Andersson, Mars, Simon 2005 
Pook-Kolb, Hennigar, Booth 2021

A MOTS  in a time slice  is a (local) boundary and strictly stably outermost if:S Σt

S

S



3D Stability Operator for (non-rotating) MOTS
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• In a time slice  with  unit normal to  and future outward null :Σt N S l+ = u + N

(Andersson, Mars, Simon, 2005, PRL 111102)

2D surface 
Laplacian

Gauss  
curvature

square of  
null shear matter 

term

δψNℓ+ = LS(l+, N)ψ = − 𝒟2ψ + (𝒦 − 2∥σ+∥2 − G++) ψ
(Andersson, Mars, Simon, Adv.Theor.Math.Phys. 12 (2008) 4, 853-888)

ℓ+ = 0

stability 
operator

variation of 
expansion

•   is a self-adjoint linear elliptic operator on LS(l+, N )ψ = δψNℓ+ ψ
• Eigenvalue spectrum is discrete and real

• There is a smallest principal eigenvalue .  All other eigenvalues are larger. λo

• Principal eigenfunction  ψo > 0
• Define —stability:  

                                                      
(n0, n−) n0 = # of vanishing eigenvalues

n− = # of negative eigenvalues

• Strictly stable  all eigenvalues positive 
                                                 outward deformations outer untrapped 
                                                         inward deformations outer trapped

λo > 0 ⟺
⟺

⟺
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Stability: MOTSs as local boundaries

Strictly stable ( ) 
 outer untrapped outside, 

       outer trapped inside 
Local apparent horizon

λo > 0
⇒

Strictly unstable ( ) 
 outer untrapped outside, 

       outer untrapped inside 
Local inner horizon

λo < 0
⇒



9

Stability: MOTSs as local boundaries

Strictly stable ( ) 
 outer untrapped outside, 

       outer trapped inside 
Local apparent horizon

λo > 0
⇒

Strictly unstable ( ) 
 outer untrapped outside, 

       outer untrapped inside 
Local inner horizon

λo < 0
⇒

Canonical Example: Reissner-Nordström 
Outer horizon  : strictly stable 

Inner horizon  : strictly unstable

rOH = m + m2 − q2

rIH = m − m2 − q2
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What does “stable” mean?

Stable 
(min)

Unstable 
(max)

Stable (no nearby closed geodesics)

Unstable (nearby closed geodesics)

This is geometric stability in the sense of minimal surfaces/geodesics.

An aside…
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What does “stable” mean?

Stable 
(min)

Unstable 
(max)

Stable (no nearby closed geodesics)

Unstable (nearby closed geodesics)

This is geometric stability in the sense of minimal surfaces/geodesics.

Almost exactly opposite of ODE stability! 
ODE stability  nearby solutions 
geometric stability  no nearby solutions 

⟺
⇔

An aside…
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Phys. Rev. D 100, 084044 (2019)

MOTSs can have “exotic” properties

stable

unstable

self 
intersections!
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Most MOTS are not horizons/boundaries…

IB, R.Hennigar, S.Mondal (PRD 2020) 

Schwarzschild

Unstable!
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Reissner-Nordström (around inner horizon)

R.Hennigar, B.Chan/Sievers, L.Newhook, IB PRD 2022

Existence is robust across coordinate systems and solutions  
(B.Sievers, R.Hennigar, H.Kunduri, S.Muth, L.Newhook, IB)

Unstable!

≈ 0.661M

≈ 0.417M
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Mergers are complicated…

original smaller AH

original larger AH

final outer AH

wormhole straddling MOTS

Most MOTS do not bound trapped regions 

Pook-Kolb, Hennigar, Booth PRL 2021 (Summary) 
Pook-Kolb, Hennigar, Booth PRD 2021 (Theory)   
Booth, Hennigar, Pook-Kolb PRD 2021 (Numerical Results)
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During a merger

All other MOTS are 
unstable.

The original and final  
apparent horizons are  
stable.
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Stability Operator and Evolution/Deformation

 = one-parameter deformation of the geometry  of a slice δα (hij, Kij) ΣtProblem: 

examples: time evolution,  in RN,  is dS, anything elseq Λ

Can we perturb  in   so that it remains a MOTS?S Σt

Second application of stability operator
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distorted 
  (hij, Kij)

ℓ+ S
≠ 0
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Stability Operator and Evolution/Deformation

 = one-parameter deformation of the geometry  of a slice δα (hij, Kij) ΣtProblem: 

examples: time evolution,  in RN,  is dS, anything elseq Λ

Can we perturb  in   so that it remains a MOTS?S Σt

Second application of stability operator

small distortion 
of  S → ℓ+ = 0
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Stability Operator and Evolution/Deformation

 = one-parameter deformation of the geometry  of a slice δα (hij, Kij) ΣtProblem: 

Solution: Look for a    for which:  ψ 0 = δℓ+ = δαℓ+ + δψNℓ+
⟺ 0 = δαℓ+ + LS(l+, N)ψ
⟺ ψ = − L−1

S (l+, N)[δαℓ+]

 is unique if  is invertible   has no vanishing eigenvaluesψ LS(l+, N ) ⟺ LS(l+, N )

Strict stability ( ) is sufficient but not necessary for uniquenessλo > 0

Non-uniqueness: If   is an eigenfunction with  and  is a particular solution thenψ0 λ0 = 0 ψ
ψ̃ = ψ + kψ0

is also a solution. 

examples: time evolution,  in RN,  is dS, anything elseq Λ

Can we perturb  in   so that it remains a MOTS?S Σt
total change in expansion change due to  deformation(h, K )

change from   
perturbation

S

Second application of stability operator
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Example: time evolution

• Time evolution of a MOTS: 
          
    

0 = δtℓ+ + δψNℓ+
⟺ ψ = − L−1(l+, N)[δtℓ+]

• Unique if there are no vanishing eigenvalues 

• If the MOTS is marginally stable then there exists a  
function  such that:  ψ0 δψ0Nℓ+ = LΣψ0 = 0

𝒱 = t + ψN

Andersson Mars Simon, PRL 05
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Example: time evolution

• Time evolution of a MOTS: 
          
    

0 = δtℓ+ + δψNℓ+
⟺ ψ = − L−1(l+, N)[δtℓ+]

• Unique if there are no vanishing eigenvalues 

• If the MOTS is marginally stable then there exists a  
function  such that:  ψ0 δψ0Nℓ+ = LΣψ0 = 0

• Then:   so:  
                  is an equally good  
                  “time-evolution” vector

δ(𝒱+ψ0N)ℓ+ = 0
𝒱 + ψ0N

𝒱 = t + ψN

Andersson Mars Simon, PRL 05
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MOTS time evolution - an example

t1

Huge shell of dust falls into black hole

Booth, Brits, Gonzalez, Van Den Broeck 
CQQ 2006
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MOTS time evolution - an example

t2

Huge shell of dust falls into black hole

Booth, Brits, Gonzalez, Van Den Broeck 
CQQ 2006
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MOTS time evolution - an example

t3

Huge shell of dust falls into black hole

Booth, Brits, Gonzalez, Van Den Broeck 
CQQ 2006
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MOTS time evolution - an example

t4
Booth, Brits, Gonzalez, Van Den Broeck 
CQQ 2006

New marginally stable outer MOTS forms
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MOTS time evolution - an example

Booth, Brits, Gonzalez, Van Den Broeck 
CQQ 2006

t5

Bifurcates into unstable and stable MOTS
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MOTS time evolution - an example

t6
Booth, Brits, Gonzalez, Van Den Broeck 
CQQ 2006

Bifurcates into unstable and stable MOTS



18

MOTS time evolution - an example

t7
Booth, Brits, Gonzalez, Van Den Broeck 
CQQ 2006

Unstable MOTS approaches inner stable
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MOTS time evolution - an example

t8
Booth, Brits, Gonzalez, Van Den Broeck 
CQQ 2006

Inner MOTS marginally stable
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MOTS time evolution - an example

t9
Booth, Brits, Gonzalez, Van Den Broeck 
CQQ 2006

Inner MOTS (original black hole) “dissolves”
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MOTS time evolution - an example

Booth, Brits, Gonzalez, Van Den Broeck 
CQQ 2006

MOTS pair annihilation

MOTS pair creation
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MOTS evolution and the stability operator

points of 
non-unique 
evolution

t 𝒱



 has a vanishing eigenvalue at 
creation and annihilation points
LΣ
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MOTS during black hole mergers

Black = stable MOTS = apparent horizons 
Blue  = unstable MOTS 
Fading = lost for numerical reasons

(Pook-Kolb, Booth, Hennigar 2021)

Pook-Kolb, Hennigar, Booth PRL 2021 (Summary) 
Pook-Kolb, Hennigar, Booth PRD 2021 (Theory)   
Booth, Hennigar, Pook-Kolb PRD 2021 (Numerical Results)

Numerical experiments: 
horizon dynamics
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• Only the initial and final  
outer AHs are stable 

• Other MOTS  are unstable 
and do not bound  
trapped regions 

• Eigenvalues vanish at  
creation/annihilation 
events

StableStable

Binary Mergers
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• Only the initial and final  
outer AHs are stable 

• Other MOTS  are unstable 
and do not bound  
trapped regions 

• Eigenvalues vanish at  
creation/annihilation 
events

StableStable

Binary Mergers

• MOTS can annihilate (boundary gone) - dissolved
• Involves interactions with unstable, internal MOTS
• Are creations/annihilations the only interactions? 
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Pook-Kolb, Booth,  
Hennigar, PRD 2021 
“Ultimate fate…II..”

Clue 1: Vanishing eigenvalues, smooth evolution

What is happening in these cases?

Non-axisymmetric 
eigenvalues

spacetime deformation
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Clue 2: Tri-furcations in Reissner-Nordström???

Hennigar, Chan, Newhook, Booth PRD 2022 (Interior MOTS…)

More complicated splits/annihilations can occur
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Recall bifurcation theory for dynamical systems…
Fixed points for differential equations

·x = α + x2 ·x = x(α + x) ·x = x (α + x2)
  has fixed points:  α < 0

xo = ± |α |
fixed points:  
xo = 0, − α

fixed points: ,  x = 0
α < 0 : xo = ± |α |



25

Recall bifurcation theory for dynamical systems…
Fixed points for differential equations

·x = α + x2 ·x = x(α + x) ·x = x (α + x2)

stable unstable
stable

unstable

stable

unstable

  has fixed points:  α < 0
xo = ± |α |

fixed points:  
xo = 0, − α

fixed points: ,  x = 0
α < 0 : xo = ± |α |
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More generally:

• for a fixed point  ·x = f(α, x) ⟹ f(α, xo) = 0
• Near fixed point: x = xo + δx ⟹ δ ·x = fx δx
•Stable         

 Unstable  
fx(α, xo) < 0
fx(α, xo) > 0

• DE for a curve of fixed points X(α)
d

dα (f(α, X(α)) = fα + fxXα = 0

 
 

f = x(x + α)
⟹ fx = 2x + α
⟹ fα = x

Unique solution if Xα = − fα
fx

= − x
2x + α

At bifurcation point ,    is unconstrained(α, x) = (0,0) Xα
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Even more generally…

• for a fixed point  ·xi = f i(α, x) ⟹ f i(α, xj
o) = 0

• Near fixed point: xi = xi
o + δxi ⟹ δ ·xi = f i

,j δxj

•Stable         
 Unstable  

f i
,j all negative eigenvalues

f i
,j one or more positive eigenvalues

• DE for a curve of fixed points Xi(α)
d

dα (f i(α, Xj(α)) = f i
α + f i

,jX
j
α = 0 ⟹ Xi

α = − [ f i
,j]−1 f j

α

if inverse exists
• If   has a vanishing eigenvalue,  is unconstrained in that direction.f i

,j Xj
α

• Vanishing eigenvalue  non-invertible  bifurcation point⟺ ⟺
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And now: bifurcation theory for MOTSs
ODEs MOTSs

Phase space coordinates : xi surfaces S : Xα(ℓ, ϕ)
(finite dimensional) (infinite dimensional)

Fixed points f j(α, xi) = 0 ℓθ(Xα(ℓ, ϕ)) = 0

Linearization xi → xi + ϵΔxi Xα → Xα + ϵψNα

fαΔα + f j
,iΔxi = 0 δαℓ+ + LSψ = 0

Stability all eigenvalues of f i
,j all eigenvalues of LS

negative positive
Birfurcations vanishing λν of f i

,j vanishing λν of LS

“Direction”of 
bifurcation

eigenvector vν eigenfunction ψν

opposite name 

conventions!!!
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Reissner-Nordström-deSitter

ds2 = − F dv2 + 2dvdr + r2dΩ2

F = − Λ
3 r2 + 1 − 2m

r
+ q2

r2 for functions  Λ(α), m(α), q(α)

MOTSs bifurcations are exactly ODE bifurcations (modulo naming) with 

               (radial null geodesics)·r = dr
dv

= f = F
2

Spherical 
Symmetry
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Back to Reissner-Nordström: order emerges
Axi-symmetric  
bifurcations  
from  
spherical symmetry 



30

Back to Reissner-Nordström: order emerges
Axi-symmetric  
bifurcations  
from  
spherical symmetry 



Weyl-Schwarzschild

• All static, axisymmetric metrics can be written in the form 
 
 
where  and   .  

• These are vacuum solutions if  is a solution of the flat space Laplace equation: 
 
 
 
and                                                       . 

•  solutions can be classified in the usual way: monopole, dipole, quadrupole, octopole etc. 

U = U(ρ, z) V = V(ρ, z)

U

U

Only axisymmetry



Weyl-distorted Schwarzschild

• If we demand no conical singularities on the horizon and deform from infinity, then 
the metric on the horizon at r=2m is:

where                             and 
 
with  

Focus on quadrupole case



Weyl Distorted Schwarzschild

• Quadrupole solutions give a one-parameter  family of distortions (α)

•  bends but it doesn’t break!r = 2m

α = 0α = − 0.2α = − 0.8α = − 3.2 α = 0.124 α ≥ 0.125

Not 
embeddable

T.Pilkington, A.Melanson, 
J. Fitzgerald, IB  
CQG 28:125018,2011 

α

2Lmeridian
Circumference

Circumference = 4πm

Area=16π2m2e−2α

1
10

100
1000

0.1
0.01 2 4-4 -2
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Eigenvalues of quadrupole-distorted 
Schwarzschild

transcritical

pitchfork
increasing α

α > αcritical
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Take aways
• Most MOTS are not boundaries of trapped regions: 

they simply identify regions of (very) strong gravity
• Rich set of unstable MOTS inside all black holes studied
• Strictly stable MOTS are (at least local) boundaries
• Stability operator also determines MOTS evolution
• Evolution is unique except at stability transitions
• These include the well-known pair-creations and 

pair-annihilations (principal eigenvalues, saddle-node)
• These involve interactions with internal (unstable) MOTS
• Other possibilities include transcritical and pitchfork
• Possible bifurcations are universal


