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Physics Questions

* During a merger what happens to the original black holes?

e \What else happens inside after the final apparent horizon forms?

e More specifically €Do bIack holes end7 How?

e \What does this question even mean’?




{ How do black holes end?

 black holes?
Should be: *no longer distinct

i. gravitationally bound region




{ How do black holes end?

 black holes?
e “oxternal fields” Should be: *no longer distinct

become so strong i gravitationally bound region
that the BH can no

longer be distinguished



Black hole mergers and event horizons
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Black hole mergers and event horizons

L final fate of

Causal black holes
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How do you know if you are inside a black hole?

£, -outward null normal

£ -inward null normal

™~ spacelike two-surface

"Regular” convex surface (ie sphere): 8, > 0and0_ < 0



How do you know if you are inside a black hole?

£, -outward null normal

£ -inward null normal

™~ spacelike two-surface

"Regular” convex surface (ie sphere): 8, > 0and0_ < 0

Trapped surface: 6, < 0and 6_ < 0O (everything falls inwards!)

Trapped surfaces imply the existence of singularities “inside”

and (if asymptotically flat) event horizons “outside” (Penrose PRL 65, Nobel 2020)




Apparent horizons and MOTS

apparent horizon
3 Pp

5

e The apparent horizon bounds the (outer) trapped rg -

o lItisamarginally outer trapped surface (MOTS) § Schwarzschild, RN, £
- Kerrevent horizons #
¢ are MOTS and '

! apparent horizons

I RNandKerrinner §
t horizons as well as |
¢ cosmo horizons are §

6, =0
e C(Coincides with oris inside the event horizon

6



A local characterization of apparent horizons
AMOTS S'in atime slice Z, is a (local) boundary and strictly stably outermost if:

1) Small outward deformations become outer untrapped

\ /
\

2) Smallinward deformations become outer trapped

"

Newman 1987
Hayward 1994
Andersson, Mars, Simon 2005
7 Pook-Kolb, Hennigar, Booth 2021



3D Stability Operator for (non-rotating) MOTS

o In atime slice £, with N unit normal to S and future outward null I, = u + N:

variation of stability 2D surface  Gauss square of
/ \  expansion operator Laplacian curvature null shear matter
{/ \| J J J j term
\ I J
\ 5 0, =L(l,N D+ (FH =2 12
\ / WOy = L(L, Ny = — Dy + ( oIl — )l//

(Andersson, Mars, Simon, 2005, PRL111102)
(Andersson Mars, Simon, Adv.Theor.Math.Phys. 12 (2008) 4, 853-888)

 Ly(l,, Ny = 6,50, isaselt-adjoint linear elliptic operator on yr
e Eigenvalue spectrum is discrete and real
e There is a smallest principal eigenvalue A4 . All other eigenvalues are larger.

e Principal eigenfunctiony,, > 0
e Define (ny, n_)-stability: ny, = # of vanishing eigenvalues
n_ = #of negative eigenvalues
o Strictly stable 4, > O <= all eigenvalues positive
<= outward deformations outer untrapped
s <= inward deformations outer trapped



Stability: MOTSs as local boundaries

“nearby” outer untrapped
surfaces contained in A/

“nearby” outer trapped
surfaces contained in N_

“nearby” outer trapped
surfaces contained in N

“nearby” outer untrapped
surfaces contained in N_

Strictly stable (4, > 0)

=> outer untrapped outside,
outer trapped inside

Local apparent horizon

Strictly unstable (4, < 0)

=> outer untrapped outside,
outer untrapped inside

Local inner horizon



Stability: MOTSs as local boundaries

“nearby” outer untrapped
surfaces contained in Ny ____.000000

----------------- Strictly stable (4, > 0)
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Anaside. . What does "stable” mean?

This is geometric stability in the sense of minimal surfaces/geodesics.

Stable (no nearby closed geodesics)

Unstable

(max) ——




Anaside. . What does "stable” mean?

This is geometric stability in the sense of minimal surfaces/geodesics.

Stable (no nearby closed geodesics)

Unstable

(max) ——

Stable

Unstable (nearby closed geodesics)

Almost exactly opposite of ODE stabil'ity!
ODE stability <= nearby solutions |
‘geometric stability < no nearby solutions

10



MOTSs can have “exotic” properties

Self-intersecting marginally outer trapped surfaces

Daniel Pook-Kolb,"»? Ofek Birnholtz,” Badri Krishnan."? and Erik Schnetter® 6

Phys. Rev. D 100, 084044 (2019)
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Most MOTS are not horizons/boundaries...

Schwarzschild
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Reissner-Nordstrom (around inner horizon)
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Existence is robust across coordinate systems and solutions
(B.Sievers, R.Hennigar, H.Kunduri, S.Muth, L.Newhook, IB)
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Pook-Kolb, Hennigar, Booth PRL2021 (Summary)
Pook-Kolb, Hennigar, Booth PRD 2021 (Theory)
Booth, Hennigar, Pook-Kolb PRD 2021 (Numerical Results)

Mergers are complicated...

wormhole straddling MOTS
I\ MOTSs at £ = 0.000000 M
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Second application of stability operator

Stability Operator and Evolution/Deformation

examples: time evolution, g in RN, A is dS, anything else
Problem: &, = one-parameter deformation of the geometry (;;, K;) of a slice Z,

Can we perturb Sin Z, so that it remains a MOTS?




Second application of stability operator

Stability Operator and Evolution/Deformation

examples: time evolution, g in RN, A is dS, anything else

Problem: &, = one-parameter deformation of the geometry (;;, K;) of a slice Z,

Can we perturb Sin Z, so that it remains a MOTS?
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Second application of stability operator

Stability Operator and Evolution/Deformation

examples: time evolution, g in RN, A is dS, anything else

Problem: &, = one-parameter deformation of the geometry (;;, K;) of a slice Z,

Can we perturb Sin Z, so that it remains a MOTS?

small distortion
of § -6, =0




Second application of stability operator

Stability Operator and Evolution/Deformation

examples: time evolution, ¢ in RN, A is dS, anything else
Problem: 5, = one-parameter deformation of the geometry (;;, K;;) of a slice Z,

Can we perturb Sin Z, so that it remains a MOTS?
total change in expansion\ / change due to (i, K') deformation

Solution: Lookfora y forwhich: 0 = 60, = 6,0, + 5WN9+\ change from §
— 0=90,0, +Ly(l,,N)y perturbation
=y =-L'(,N)5,9,]

wis unique if Ly(l,, N) is invertible <= L¢(l,, N)) has no vanishing eigenvalues
Strict stability (4, > 0) is sufficient but not necessary for uniqueness

Non-uniqueness: If y, is an eigenfunction with A, = 0 and yis a particular solution then
W=y + kyy

is also a solution. 6



Example: time evolution

® Time evolution of a MOTS:
0 =50, + 5,40,
Y =— L_l(l_p N)[5[8+]

e Unique if there are no vanishing eigenvalues

e |f the MOTS is marginally stable then there exists a
function yy, such that: 6, y8, = Ly = 0

7 Andersson Mars Simon, PRL 05



Example: time evolution

® Time evolution of a MOTS:
0 =50, + 5,40,
Y =— L_l(l_p N)[5[9+]

e Unique if there are no vanishing eigenvalues

e |f the MOTS is marginally stable then there exists a
function yy such that: 5, y6, = Lyyy =0 /

-----------------------------------

/

/

.Then: 5(%+WON)9+ — O SO
7" + y,N is an equally good
"time-evolution” vector

7 Andersson Mars Simon, PRL 05



MOTS time evolution - an example

Huge shell of dust falls into black hole

Booth, Brits, Gonzalez, Van Den Broeck
CQQ 2006
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MOTS time evolution - an example

Huge shell of dust falls into black hole

Booth, Brits, Gonzalez, Van Den Broeck
CQQ 2006



MOTS time evolution - an example

New marginally stable outer MOTS forms

Booth, Brits, Gonzalez, Van Den Broeck
CQQ 2006



MOTS time evolution - an example

Bifurcates into unstable and stable MOTS

Booth, Brits, Gonzalez, Van Den Broeck
CQQ 2006



MOTS time evolution - an example

Bifurcates into unstable and stable MOTS

Booth, Brits, Gonzalez, Van Den Broeck
CQQ 2006



MOTS time evolution - an example

Unstable MOTS approaches inner stable

Booth, Brits, Gonzalez, Van Den Broeck
CQQ 2006



MOTS time evolution - an example

Inner MOTS marginally stable

Booth, Brits, Gonzalez, Van Den Broeck
CQQ 2006



MOTS time evolution - an example

Inner MOTS (original black hole) "dissolves”

Booth, Brits, Gonzalez, Van Den Broeck
CQQ 2006



MOTS time evolution - an example

_ MOTS pair annihilation X

-

Booth, Brits, Gonzalez, Van Den Broeck
5 CQQ 2006



MOTS evolution and the stability operator

), points_of \ -~

non-unique
2t evolution
dits
Ztl_

radius
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Numerical experiments:
horizon dynamics

Pook-Kolb, Hennigar, Booth PRL2021 (Summary)

Pook-Kolb, Hennigar, Booth PRD 2021 (Theory)
MOTS during black hole mergers

Booth, Hennigar, Pook-Kolb PRD 2021 (Numerical Results)

creation and annihilation points

MOTSs at £ = 0.000000 M
1.0
20 1
0.5 - O
60
2 40- N i
\\\\\ // -1.04
0 : T T T : T T T T T T
0 1 2 . 1 5 6 —1.0 —0.5 0.0 0.3 1.0}
x /M
Black = stable MOTS = apparent horizons
Ly has a vanishing eigenvalue at

Blue = unstable MQOTS

21 (Pook-Kolb, Booth, Hennigar 2021)



Binary Mergers

Only the initial and final
outer AHs are stable

Other MOTS are unstable
and do not bound
trapped regions

Eigenvalues vanish at
creation/annihilation
events

Stable

22




Binary Mergers

Stable

e Only the initial and final
outer AHs are stable

. 5 MOTS can annihilate (boundary gone) - dissolved
| ® Involves interactions with unstable, internal MOTS |
,j ® Are creat|ons/ann|h|lat|ons the onIy |nteract|ons7

o Elgenvalues vamsh at
creation/annihilation
events

22




Clue 1: Vanishing eigenvalues, smoothevolutlon o

Pook-Kolb, Booth,
Hennigar, PRD 2021
"Ultimate fate...Il..
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Clue 2: Tri-furcations in Reissner-Nordstrom???

2 =0.10M Q = 0263M Q = 0.60M Q= V7TM 4

Hennigar, Chan, Newhook, Booth PRD 2022 (Interior MQTS...)
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Recall bifurcation theory for dynamical systems...

Fixed points for differential equations

= a4+ x> x=x(a+x)
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Recall bifurcation theory for dynamical systems...

Fixed points for differential equations

X=a+ x>

a < 0 has fixed points:
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More generally:

e x = fla,x) = forafixed point f(ar,x,) =0
o Near fixed point: x = x, + 6x = ox =f,6x

oStable  f(a,x,) <O f=x(x+a)
Unstable f.(a,x,) > 0 = f,=2x+a
=}fa = X
| e DE for a curve of fixed points X()
’ | . (fla. X(@)) = f, + /X, =0
i — A, A\0)) = =
» \\\ da a X Ta
\\ Unique solution it X, = _Ja -__°
- 0,05 0 005 0.10 f)’c 2 X+ a

b) Transcntical

At bifurcation point (a, x) = (0,0), X is unconstrained

26




Even more generally...
i = fi(a,x) = forafixed point fi(a,x!) =0
e Nearfixed point: x' = x} + 6x' = &i' = f' 6/
oStable J; all negative eigenvalues

Unstable fl] one or more positive eigenvalues
e DE for a curve of fixed points X'()
(fla.X(@) =fi+fiX,=0 = X;=-[f1",

if inverse exists

d
da
® |f ff]. has a vanishing eigenvalue, Xé is unconstrained in that direction.

e Vanishing eigenvalue <= non-invertible <= bifurcation point

27



And now: bifurcation theory for MOTSs

Phase space

Fixed points

Linearization
Stability

Birfurcations

"Direction”of
bifurcation

ODEs

coordinates : x*
(finite dimensional)

fla,x)=0

x' = x'+ eAx!

f Aa +ﬂAxi =0
all eigenvalues of f'.

negative

vanishing 4, of f'.

eigenvector v,

28

MQOTSs
surfaces S : X%(0, ¢)
(infinite dimensional)

0.(X(0,¢9)) =0
X% = X%+ ewyN*
56194- + LSl// — 0

eigenfunction y,



Spherical Reissner-Nordstrom-deSitter
Symmetry

ds? = — Fdv? + 2dvdr + r*dQ?

A, 2m  g° ,
F=-— ?r +1 - +— for functions A(a), m(a), g(a)
rooor

MOTSs bifurcations are exactly ODE bifurcations (modulo naming) with

dr
= —f— (radial null geodesics)
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Axi-symmetric
bifurcations

from Back to Reissner-Nordstrom: order emerges

spherical symmetry | ) Tl ircation o § = 3 ~ 00
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Axi-symmetric
bifurcations
from

spherical symmetry

a) Transcritical bifurcation al
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Back to Reissner-Nordstrom: order emerges

¢) Saddlenode bifurcation at -‘“’, = ]
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Only axisymmetry

Weyl-Schwarzschild

e All static, axisymmetric metrics can be written in the form

d82 _ _eUdtQ i 6_2U+2V (dZZ —I—dp2) 4+ 6_2Up2d§b2
where U = U(p,z)and V= V(p,z).

e These are vacuum solutions if U is a solution of the flat space Laplace equation:

82_U N 10U N 02U
0p?>  pOdp  0z°

and &V _ ([2U]°, [oU))  ov _, ouau
8,0_p Op 0z ' 0z '08,082

e [ solutions can be classified in the usual way: monopole, dipole, quadrupole, octopole etc.

=0




Weyl-distorted Schwarzschild

ds? = —e?V <1 — 2_m) 4 e 2UF2V < dr® — + 7“2d92> e 2U 2 sin29dq§2

e |f we demand no conical singularities on the horizon and deform from infinity, then
the metric on the horizon at r=2m is:

dS? = 4m2e Y ( AU —4uo 492 4 gin? 0dgb2)

where U(2m, 0) Zoz@ (cos8) and V(2m, ) = 2U (2m, 6) —

with U(2m,0) = U(2m, ) = u, , Zagk 1 =0, Zagk—uo




Weyl Distorted Schwarzschild 7o "

CQG 28:125018,2011

e Quadrupole solutions give a one-parameter («) family of distortions

e r = 2mbendsbutitdoesn't break!

Not
embeddable

a=0.124 a>0.125

2Lmeridian
Circumference
Area=16z*m?e=%*
Circumference = 4zm \\\
2,




Eigenvalues of quadrupole-distorted
Schwarzschild
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Take aways

Most MOTS are not boundaries of trapped regions:
they simply identify regions of (very) strong gravity

Rich set of unstable MOTS inside all black holes studied
Strictly stable MOTS are (at least local) boundaries
Stability operator also determines MOTS evolution
Evolution is unique except at stability transitions

These include the well-known pair-creations and
nair-annihilations (principal eigenvalues, saddle-node)

These involve interactions with internal (unstable) MOTS
Other possibilities include transcritical and pitchfork

Possible bifurcations are universal
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