Women In Olfactory Science

Thursday 05 October 2017 - Friday 06 October 2017

SISSA, Trieste

Book of Abstracts
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signaling mechanisms in the accessory olfactory system</td>
<td>1</td>
</tr>
<tr>
<td>A cross-cultural perspective on olfaction</td>
<td>1</td>
</tr>
<tr>
<td>Multisensory influences on olfactory perception during food consumption</td>
<td>1</td>
</tr>
<tr>
<td>Reinforcement by reward enhances discrimination of odor stimuli</td>
<td>2</td>
</tr>
<tr>
<td>Considerations on structure-odour activity relationships in humans</td>
<td>2</td>
</tr>
<tr>
<td>From odors to brain: how odor binding is transduced into electrical signals traveling to the brain.</td>
<td>3</td>
</tr>
<tr>
<td>The Amphibian olfactory system as a model to study neuroregeneration</td>
<td>3</td>
</tr>
<tr>
<td>Pheromones: fashion fad or fact?</td>
<td>3</td>
</tr>
<tr>
<td>Olfactory associative learning during human sleep: Interplay between sleep stages, slow wave oscillations and behavior</td>
<td>4</td>
</tr>
<tr>
<td>Multisensory Integration and Cerebral Reorganization in Anosmia</td>
<td>4</td>
</tr>
<tr>
<td>Cognitive load alters neuronal processing of food odors</td>
<td>5</td>
</tr>
<tr>
<td>Food in the brain: taste and smell processing before and during eating</td>
<td>5</td>
</tr>
<tr>
<td>Olfaction and food: an unforgettable experience</td>
<td>6</td>
</tr>
</tbody>
</table>
Signaling mechanisms in the accessory olfactory system
Prof. SPEHR, Marc¹

¹ Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen Germany

Corresponding Author(s): m.spehr@sensorik.rwth-aachen.de

In most mammals, conspecific chemical communication controls complex behaviors. Information about individuality, social and reproductive status is conveyed by an elusive class of chemical cues – pheromones. The highly reproducible character of pheromone responses offers a unique opportunity to uncover the neuronal basis of genetically programmed behavior. The accessory olfactory system is a key component in rodent conspecific chemical communication. However, sensory detection and coding of socially relevant chemosignals within the vomeronasal organ and downstream brain areas - the accessory olfactory bulb, the ‘vomeronasal’ amygdala and the hypothalamus - is poorly understood. Combining molecular, biochemical, (electro)physiological, and live-cell imaging methods, as well as behavioral techniques in wildtype and mutant mouse models, we have extended existing models of sensory signal transduction in the vomeronasal organ, analyzed aspects underlying the principle coding logic of pheromone detection, and have, thus, shed light on the physiological basis of social behavior. More recently, we have begun to address the physiological signaling mechanisms in the rodent accessory olfactory bulb. Both in and ex vivo approaches from different electrophysiological angles reveal unexpected intrinsic as well as stimulation-dependent mitral cell properties.

A cross-cultural perspective on olfaction
Prof. MAJID, Asifa¹

¹ Centre for Language Studies, Radboud University, Nijmegen, The Netherlands Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands

Corresponding Author(s): asifa.majid@let.ru.nl

Although human research on olfaction acknowledges the tremendous individual variation there is in olfactory perception and cognition, the cultural shaping of olfactory functions is relatively under-explored. In this talk I will present recent work spanning small-scale hunter-gatherer and agricultural communities, as well as expert communities in the Netherlands and Middle East. I will show both olfactory language and memory are shaped by cultural practices, and consider the implications this has for a general science of human olfaction.

Multisensory influences on olfactory perception during food consumption
Prof. SEUBERT, Janina¹

¹ Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden

Corresponding Author(s): janina.seubert@ki.se

Identification of familiar food and avoidance of rotten or contaminated food is critical for human survival. While odors play a key role in this perceptual process, surprisingly few studies have studied the neural basis of olfactory influences on object perception. During this talk I will highlight the integration of odor into the food object perception during two separate stages of the eating process that draw on two distinct sensory pathways: the anticipatory stage, where odors are perceived by sniffing (orthonasally) in combination with a visual image of the food, and the consummatory stage, where the taste of a food object is bound together with the odor that reaches the nose through the passageways of the throat (retronasally). I will discuss some perceptual phenomena arising from concurrent presentation of semantically matched or
mismatched sensory information during food evaluation, and discuss evidence for interdependency of these phenomena. I will also present some neuroimaging data from simulations of both anticipatory and consummatory stages of food consumption to compare the cortical processes that integrate information during these distinct perceptual stages.

Human Olfaction #1 / 5

Reinforcement by reward enhances discrimination of odor stimuli

Dr. RODRIGUEZ-RACKE, Rea

1 Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Aachen, Germany

Corresponding Author(s): rrodriguez@ukaachen.de

An odor mixture in comparison to a pure odor might be processed differently, even if the participants are not able to perceptually discriminate them. It is established that participants can learn to discriminate likewise smelling odors in an aversive learning paradigm. Our hypothesis is that perceptual and neuronal discrimination can possibly also be enhanced by using a reinforcing feedback paradigm. In our experiment, all volunteers performed significantly better than chance level in an odor discrimination task, but only a subgroup that was identified using the signal detection theory, showed a significant improvement throughout the task. Comparing neuronal processing of a pure, pleasant lemon odor to a mixture consisting of a lemon odor and caproic acid, we observed increased activation of the left insula and ventral striatum/putamen in the pure odor compared to the odor mixture condition. The subgroup of good performers improved in differentiating the odors with reinforcement and showed a related activation of dorsal anterior cingulate cortex, midcingulate cortex, operculum and primary somatosensory cortex compared to the other group of participants. In conclusion, the mentioned areas are involved in odor discrimination learning, and processing of odors seems to depend on even subtle changes of odor quality.

Olfactory receptors, chemical structure and animal models / 6

Considerations on structure-odour activity relationships in humans

Prof. BUETTNER, Andrea

1 Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany

Corresponding Author(s):

Odor potency and odor character are obviously tightly linked to chemical structure. Numerous studies have shown that specific structural features such as thio groups or aromatic moieties bare a high potential of causing extremely low odor thresholds, and, accordingly, of inducing potent smells. Likewise, specific groups appear to be commonly associated with specific smell character such as ester functions being predominantly associated with fruity impressions, or terpene structures eliciting balsamic or herbal smells. However, when investigating specific substance groups with regards to their smell impact on individuals, one is astonished to find at times enormous variance in odor threshold levels, and also quite variable smell descriptions reported by different subjects. On first sight one might be tempted to assume that such differences in smell description are primarily related to linguistic issues rather than real differences in smell perceptions. Nevertheless, such questions can be resolved when asking panellists not only to rate their smell impressions for a specific substance but additionally relate the perceived smell to that of other substances; using this approach it is possible to elaborate which substances are perceived by the same person as being similar in smell. Based on such considerations, our group recently performed a number of systematic investigations on structure-odor activity relationships, starting with the synthesis of structurally related odorants belonging to different substance groups, namely odorants theoretically deriving from fatty acid oxidation, terpene-related compounds as well as phenol-, cresol- and guaiacol-derivatives (1-8). Our group further decodes odorants that
occur as artefacts in products of a modern world, namely odorous contaminants in any types of pigments, paints, glues and adhesives, polymers and plastics, to name but a few. Based on this comprehensive substance library, we undertake to characterise the smell sensitivity of individuals to specific compounds, and how these are perceived. This not only helps us to decode naturally occurring, yet unknown odorants, but to also form a broader understanding of smell perception in human individuals.

Olfactory receptors, chemical structure and animal models / 7

From odors to brain: how odor binding is transduced into electrical signals traveling to the brain.

Prof. MENINI, Anna¹

¹ International School for Advanced Studies (SISSA), Trieste, Italy

Corresponding Author(s): menini@sissa.it

The initial steps of olfaction occur in olfactory sensory neurons located in the olfactory epithelium of the nasal cavity of vertebrates. These neurons are responsible for the detection of odorant molecules present in the surrounding environment and the generation of neural signals that are transmitted to the brain. Once an odor molecule binds to a receptor in the cilia of an olfactory sensory neuron, it triggers a transduction cascade that initiates an electrical signal that travels from the sensory neuron to the olfactory bulb. The odor-induced transduction current is due to the activation of both cation and anion channels. It is well known that the calcium-activated chloride channel TMEM16B/ANO2 is highly expressed in the cilia of olfactory sensory neurons, but previous attempts to establish a physiological role in olfaction have been unsuccessful. We have recently found that genetic ablation of TMEM16B results in defects in the olfactory behavior of mice and the cellular physiology of olfactory sensory neurons.

Olfactory receptors, chemical structure and animal models / 8

The Amphibian olfactory system as a model to study neuroregeneration

Ms. HAWKINS, Sara Joy¹

¹ Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany

Corresponding Author(s): sarajoyhawkins@gmail.com

The olfactory system of Xenopus laevis tadpole is an optimal model to study the process of neuronal regeneration. Tadpoles are known for their elevated regenerative capacity, and the olfactory system exhibits lifelong cell turnover and a remarkable ability to recover even after severe lesion. By transecting the olfactory nerve we were able to observe and describe the events that occur as a consequence of this method of lesion that targets olfactory receptor neurons. We found that cell death and stem cell proliferation in the olfactory epithelium begin in the first 48 hours following olfactory nerve transection. New olfactory receptor neurons begin to repopulate the olfactory epithelium and show responses to natural stimulants approximately 1 week after nerve transection. Re-innervation of the olfactory bulb by newly formed olfactory receptor neuron axons also begins at this time. Second order neurons in the olfactory bulb, mitral-tufted cells, were found to lose dendritic tuft complexity after nerve transection, and begin to recover complexity 1 week post-transection. The olfactory bulb decreased in volume after nerve transection, due to cell death and de-innervation, beginning to recover 3 weeks after nerve transection, at which point some glomerular responses to olfactory stimuli were observed. Our results show that the olfactory system of Xenopus laevis loses function after olfactory nerve transection, and recovers in approximately 7 weeks. The detailed time-line we have established for the different events that occur during the process of de- and re-generation after lesion shed some light on the factors that influence the successful recovery of a neuronal system, thus creating a foundation for future work in this area.

Human Olfaction #2 / 9
Pheromones: fashion fad or fact?
Prof. SMEETS, Monique

1 Department of Social and Behavioral Sciences, University of Utrecht, Utrecht, The Netherlands Science Leader Strategic Science Group, Unilever R&D, Vlaardingen, The Netherlands

Corresponding Author(s): m.a.m.smeets@uu.nl

Pheromones – chemical messengers that convey a sender’s state or trait to a receiver – have long been controversial and may be considered more as a marketing tool to sell perfume than a robust scientific phenomenon. However, over the past years empirical evidence has accumulated demonstrating that humans can pick up dynamic states (e.g. emotion, sickness) and enduring traits (e.g. gender, age) from others via the sense of smell with body odor as the carrier of the information. Obvious next questions pertain to the nature and composition of the chemical substrate in body odour that conveys the message (the “odorprint”), and of the role of context and learning in how the message is perceived. I intend to present a framework to help advance our understanding on the role, significance and mechanisms underlying pheromone communication in humans based on De Groot, Semin and Smeets (2017, in press) which may serve as an avenue for future research.

Human Olfaction #2 / 10

Olfactory associative learning during human sleep: Interplay between sleep stages, slow wave oscillations and behavior
Dr. ARZI, Anat

1 Department of Psychology, University of Cambridge, Cambridge, UK

Corresponding Author(s): aa913@cam.ac.uk

Recent finding suggests that humans can learn novel information during sleep, and that this information can modulate behavior during wakefulness in a sleep stage-dependent manner. Specifically, new associations learned during non rapid eye movement sleep (NREM) had larger and longer lasting influence on behavior than associations learned during rapid eye movement (REM) sleep. NREM sleep, unlike REM sleep, is rich in slow oscillation and these oscillations promote memory consolidation of information previously learned during wakefulness. We set out to test whether slow oscillations are also part of the mechanism underlying olfactory associative learning during sleep. We recorded electroencephalogram (EEG) during partial-reinforcement conditioning in NREM and REM sleep. On reinforced trials (two-thirds of trials), the conditioned stimulus (tone or odor) was paired with an unconditioned stimulus (odor). On non-reinforced trials (one-third of trials), the conditioned stimulus was presented without an ensuing odor, which enabled us to measure learning without the interference of the unconditioned stimulus. We found an increase in slow oscillations (0.5-5Hz) power following the conditioned stimulus offset in non-reinforced trials during NREM sleep, compared to REM sleep and to a control experiment in which the same stimuli were presented in a random order during NREM. Moreover, during NREM the increase in slow oscillations following the conditioned stimulus offset was significantly larger when the conditioned stimulus was previously paired with an unpleasant odor than with a pleasant odor. This difference was not evident during REM sleep. Our results demonstrate that new associations learned during sleep increased slow oscillation activity during NREM sleep but not during REM sleep. Furthermore, the increase in slow oscillations depended on the unconditioned stimulus properties (odor valence). This work suggests a link between sleep stage dependent olfactory associative learning during sleep and slow oscillations.

Human Olfaction #2 / 11

Multisensory Integration and Cerebral Reorganization in Anosmia
Ms. PETER, Moa

1 Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
Behavioral and neuroimaging studies have demonstrated that auditory and visual sensory loss leads to neuronal reorganization and promotes enhanced abilities in certain aspects of the remaining sensory modality. In contrast, neuronal reorganization and cross-modal compensation in anosmia (olfactory loss) has obtained very little attention. The sparse existing literature provides mixed results and focuses mainly on performance in, and processing of, the spared chemical senses gustation and the trigeminal sense; the few studies focusing on morphology have used voxel-based analysis methods and indicate a minor decrease in gray matter volume within olfactory-associated cerebral areas. Given the olfactory sense dependence on heterogeneous sensory cerebral areas, a fact that makes pronounced neural reprogramming less plausible due to sustained inputs, we hypothesize that loss of olfactory functions might have supra-modal consequences. In this talk, I will provide an overview of findings from our ongoing projects on congenital and acquired anosmia in which we investigate the integration of auditory and visual stimuli via behavior and functional MRI. I will also discuss neuroplastic changes in individuals with acquired and congenital anosmia based on intrinsic connectivity (resting-state fMRI) and morphology (structural MRI) with a focus on cortical areas processing olfactory stimuli and integrating multisensory stimuli.

Cognitive load alters neuronal processing of food odors

Prof. FREIHERR, Jessica

1 Diagnostic and Interventional Neuroradiology, University Hospital, RWTH Aachen University, Aachen, Germany Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany

Corresponding Author(s): jfreiherr@ukaachen.de

Previous studies indicate that distraction (e.g., watching TV) during eating increases food intake and leads to impaired processing of food stimuli. Since olfaction renders the most important sense during flavor perception, we here examined the influence of cognitive load on olfactory perception and processing using a cognitive load paradigm during an fMRI study. Low (apple, orange) and high caloric food odors (chocolate, caramel) were presented in combination with either low or high cognitive load in a letter memory task. The efficacy of the memory task was verified by a lower task accuracy and an increase in skin conductance response during the high compared to low cognitive load condition. Our behavioral data reveals a diminished perceived intensity for low but not high caloric food odors during the high cognitive load condition. For low caloric food odors, both bilateral orbitofrontal (OFC) and piriform cortices (pirC) showed significantly lower activity during high compared to low cognitive load condition. For high caloric food odors, a similar trend was established in pirC but not OFC. We conclude that the increase of food intake during high workload conditions can at least partly be explained by an alteration of activation of typical olfactory processing nodes resulting in a diminished olfactory perception. The increase of food consumption can consequently be interpreted as compensation mechanism for the aroma and flavor loss caused by cognitive distraction.

Food in the brain: taste and smell processing before and during eating

Prof. OHLA, Kathrin

1 Psychophysiology of Food Perception, German Institute of Human Nutrition Potsdam-Rehbruecke Potsdam, Germany

Corresponding Author(s): kathrin.ohla@dife.de

Thirst and hunger warrant the supply with fluids and nutrients and ensure performance of body and mind. In modern societies, however, the main purpose of eating has shifted away from the maintenance of homeostatic needs and is instead more and more driven by hedonic experiences. The omnipresence of palatable and energy-rich food as well as aggressive advertising are contributing to rising obesity rates and problems in eating-related self-regulation. On the other hand, malnutrition is found particularly in the elderly and is, in part, caused by the
loss of sensory function such as the ability to taste and smell. In this talk, I will address the sensory characteristics of food that make it so tempting. In order to understand food choice and food intake behaviour, we need to understand the mechanisms of food perception and the pleasurable experiences thereof. Sensory and hedonic information about food is conveyed by all senses which activated more or less simultaneously having led to the notion that food perception is a multisensory experience. I will present data to demonstrate the mechanisms during the anticipatory (viewing and smelling) and consummatory (tasting) phases of food perception and provide examples of how expectations and experience impact food perception and neuronal processing.

Olfaction & friends / 14

Olfaction and food: an unforgettable experience

Prof. LAUREATI, Monica

1 Department of Food, Environmental and Nutritional Sciences DeFENS – Università degli Studi di Milano, Milano, Italy

Corresponding Author(s): monica.laureati@unimi.it

Memory is omnipresent in our life. All actions are regulated and influenced by memory, which constantly provides information necessary to manage and resolve the tasks of everyday life. One of the main functions of food memory is to recall previous experiences associated with food. Therefore, it guides food choice and intake. However, we are often unaware of using our memory. Actually, much of the knowledge about food is acquired incidentally, without any explicit attention or learning, and stored implicitly. The sense of smell is closely linked with memory, probably more than any of our other senses. Starting from the discussion of the processes involved in the memorization of the “higher” (i.e. vision and audition) and “lower” senses (i.e. olfaction, taste and touch), the present talk is aimed to describe how food memory functions in everyday life, how it can be ecologically measured and how it influences food liking, preference and selection. Age- as well as gender-related differences in the memorization of sensory stimuli are presented and discussed.