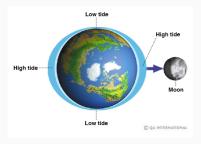
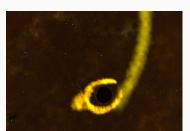
Tidal deformability of black holes immersed in matter (arXiv:1912.07616)

Francisco Duque (in collaboration with Vitor Cardoso) January 14, 2020

CENTRA, Instituto Superior Tecnico

Tides





Tidal Disrupton Event ASASSN-19bt (Image Credit: NASA's Goddard Space Flight Center)

Tidal disruption of a scalar cloud around a black hole (Image source: [Cardoso et al., 2020])

Volcanic Explosion in lo (Image Credit: NASA's Goddard Space Flight Center Cover image courtesy of NASA/JPL/University of Arizona)

Tides in Superradiance Clouds (arxiv:2001.01729)

Brief History of Tidal Love Numbers (TLNs)

Constraining neutron star tidal Love numbers with gravitational wave detectors

Éanna É. Flanagan and Tanja Hinderer Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA

Ground-based gravitational wave detectors may be able to constrain the nuclear equation of state using the early, low frequency portion of the signal of detected neutron star - neutron star inspirals. In this early adiabatic regime, the influence of a neutron star's internal structure on the phase of the waveform depends only on a single parameter λ of the star related to its tidal Love number, namely the ratio of the induced quadrupole moment to the perturbing tidal gravitational field. We analyze

Relativistic theory of tidal Love numbers

Taylor Binnington
Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada

Eric Poisson

Department of Physics, University of Guelph, Ontario, N1G 2W1, Canada; and Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario, M5S 3H8, Canada (Dated: September 16, 2009)

In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero. TLNs depend on the body's internal structure and the underlying theory of gravity.

Question: what if we measure a non-zero TLN for a body as compact as a Black Hole?

Possible Answers:

1. Correct GR

 $G_{\mu\nu} + ... = 8\pi T_{\mu\nu}$

2. Exotic matter

(Image Credit: Shutterstock)

3. Environment effects

(Image Credit: Mark Garlick/Science photo library/Corbis)

1. and 2. were explored in [Cardoso et al., 2017, Maselli et al., 2018, Maselli et al., 2019].

Tidal deformability in General Relativity

Natural framework: Black Hole Perturbation Theory

$$g_{\mu
u} = g^{(0)}_{\mu
u} + h_{\mu
u}$$

Focus on spherically-symmetric, static backgrounds

$$ds^{2} = -F(r) dt^{2} + G(r) dr^{2} + r^{2} d\Omega^{2}$$

In Regge-Wheeler gauge

$$\begin{array}{lllll} h_{\mu\nu}^{\rm even} & = & \begin{pmatrix} F\left(r\right) \, H_0^{lm}\left(r\right) \, Y^{lm} & H_1^{lm}\left(r\right) \, Y^{lm} & 0 & 0 \\ H_1^{lm}\left(r\right) \, Y^{lm} & G\left(r\right) \, H_2^{lm}\left(r\right) \, Y^{lm} & 0 & 0 \\ 0 & 0 & r^2 \, K^{lm}\left(r\right) \, Y^{lm} & 0 \\ 0 & 0 & 0 & r^2 \, K^{lm}\left(r\right) \, Y^{lm} & 0 \\ 0 & 0 & 0 & r^2 \, K^{lm}\left(r\right) \, Y^{lm} & 0 \\ 0 & 0 & 0 & r^2 \, K^{lm}\left(r\right) \, Y^{lm} \end{pmatrix} \\ h_{\mu\nu}^{\rm odd} & = & \begin{pmatrix} 0 & 0 & h_0^{lm}\left(r\right) \, S_{\theta}^{lm} & h_0^{lm}\left(r\right) \, S_{\varphi}^{lm} \\ 0 & 0 & h_1^{lm}\left(r\right) \, S_{\theta}^{lm} & h_1^{lm}\left(r\right) \, S_{\varphi}^{lm} \\ h_0^{lm}\left(r\right) \, S_{\varphi}^{lm} & h_1^{lm}\left(r\right) \, S_{\varphi}^{lm} & 0 & 0 \\ h_0^{lm}\left(r\right) \, S_{\varphi}^{lm} & h_1^{lm}\left(r\right) \, S_{\varphi}^{lm} & 0 & 0 \end{pmatrix} \end{array}$$

Regime of **Static Tides** \Rightarrow no t dependence and the system evolves **adiabatically**

Asymptotic expansions in Multipole Moments

$$g_{tt} = -1 + \frac{2M}{r} + \sum_{l \ge 2} \frac{2}{r^{l+1}} \sqrt{\frac{4\pi}{2l+1}} M_l Y^{l0} - \frac{2}{l(l-1)} r^l \mathcal{E}_l Y^{l0}$$

$$g_{t\varphi} = \frac{2J}{r} \sin^2 \theta + \sum_{l \ge 2} \frac{2}{r^l} \sqrt{\frac{4\pi}{2l+1}} \frac{S_l}{l} S_{\varphi}^{l0} + \frac{2r^{l+1}}{3l(l-1)} \mathcal{B}_l S_{\varphi}^{l0}$$

 \mathcal{E}_{l} , \mathcal{B}_{l} : External tidal field multipole moments

 M_l , S_l : Induced multipole moments of the compact object

Polar TLNs

$$k_l^E = -\frac{1}{2} \frac{l(l-1)}{M^{2l+1}} \sqrt{\frac{4\pi}{2l+1}} \frac{M_l}{\mathcal{E}_{l0}}$$

Axial TLNs

$$k_{l}^{B} = -\frac{3}{2} \frac{l(l-1)}{(l+1) M^{2l+1}} \sqrt{\frac{4\pi}{2l+1}} \frac{S_{l}}{B_{l0}}$$

Matter away from the horizon: Thin Shells

$$\begin{cases} F(r) = \bar{\alpha} \left(1 - \frac{2M}{r} \right) , \ G(r) = \frac{\bar{\alpha}}{F(r)} , \ r < r_0 \\ F(r) = \left(1 - \frac{2M_0}{r} \right) , \ G(r) = \frac{1}{F(r)} , \ r > r_0 \end{cases} \qquad \bar{\alpha} = \frac{1 - 2M_0/r_0}{1 - 2M/r_0} \\ \delta M \equiv M_0 - M \end{cases}$$

Shell composed by a perfect fluid: $S_{ab} = (\sigma + p) u_a u_b + p \gamma_{ab}$

Intrinsic coordinates of the shell: $y^a = (T, \Theta, \Phi)$

Shell located at:
$$\chi_+^\mu = (T, r_0, \Theta, \Phi)$$
 , $\chi_-^\mu = (A \, T, r_0, \Theta, \Phi)$

Darmois-Israel junction conditions

$$\begin{aligned} \left[\left[\gamma_{ab}\right]\right] & \equiv & \gamma_{ab}\left(r_{0_{+}}\right) - \gamma_{ab}\left(r_{0_{-}}\right) = 0 \\ S_{ab} & = & -\frac{1}{8\pi}\left(\left[\left[K_{ab}\right]\right] - \gamma_{ab}\left[\left[K\right]\right]\right) \end{aligned}$$

where

$$\begin{array}{lll} e^{\mu}_a & \equiv & \dfrac{\partial x^{\mu}}{\partial y^a} & & \gamma_{ab} \equiv g_{\mu\nu} \; e^{\mu}_a \; e^{\nu}_b & & \textit{K}_{ab} \equiv e^{\mu}_a \; e^{\nu}_b \; \nabla_{\mu} n_{\nu} \\ \\ n_{\mu} \; e^{\mu}_a & = & 0 & & n^{\mu} n_{\mu} = 1 & & u_a u^a = -1 \end{array}$$

Polar Sector "Walkthrough"

Strategy: solve the perturbed problem inside *and* outside the shell, and then impose the junction conditions

Solutions to the linearized field equations are Schwarzschild-type ones with the corresponding mass

$$H_0^{\text{ext}} = A_1 P_I^2 \left(r/M_0 - 1 \right) + A_2 Q_I^2 \left(r/M_0 - 1 \right) \quad , \quad H_0^{\text{int}} = A_3 P_I^2 \left(r/M - 1 \right)$$

$$H_1^{int} = H_1^{ext} = 0 \quad , \quad H_2 = H_0 \quad , \quad K = \mathcal{F}\left(H_0, H_0', r\right)$$

In addition to $h_{\mu\nu}$, we need to perturbe

1. Determined by junction conditions

$$\delta r_{\pm} = \sum_{l,m} \delta r_{\pm}^{lm} Y^{lm} (\Theta, \Phi) \qquad , \qquad (\delta \sigma, \delta \rho) = \sum_{l,m} (\delta \sigma^{lm}, \delta \rho^{lm}) Y^{lm} (\Theta, \Phi)$$

2. Determined by normalization/physical arguments

$$\delta u^a$$
 , $\delta n_{\mu+}$

8

Quadrupolar TLNs

Important limits
$$(\delta p = v_s^2 \, \delta \sigma \, , \, v_s^2 \equiv \left(\frac{dp}{d\sigma}\right)\Big|_{\sigma_0})$$

1. $r_0 \to \infty$

$$k_{2}^{E} \rightarrow - \frac{8 \,\delta M}{9 M + M_{0}} \frac{r_{0}^{5}}{M_{0}^{5}} + \mathcal{O}\left(r_{0}^{4}/M_{0}^{4}v_{s}^{2}\right)$$
 $k_{2}^{B} \rightarrow \frac{\delta M}{5 M_{0}} \frac{r_{0}^{4}}{M_{0}^{4}}$

Dependence on r_0/M_0 expected from dimensional grounds

Linear dependence on δM agrees with results from other models studied

2. $M_0 \rightarrow M$ and $r_0 \rightarrow 2M$

$$k_2^E \rightarrow \frac{8\left(3-8v_s^2\right)}{5} \frac{\delta M}{M} \left(\frac{r_0}{M}-2\right) \qquad \qquad k_2^B \rightarrow \frac{8}{5} \frac{\delta M}{M} \left(\frac{r_0}{M}-2\right)$$

Both results consistent with the vanishing of TLNs for a Black Hole.

Binaries in Astrophysical Setting

(Image Credit: SXS project)

Question: What portion of matter is relevant for the tidal effects in the dynamics and radiation emitted by the binary?

Leading order tidal effects appear in equations of motion at a Newtonian level

$$\frac{d^2 r^j}{dt^2} = -\frac{M_{\rm tot}}{r^2} \left(1 + \frac{3}{2r^5} \left(k_{2_1} \frac{M_2}{M_1} + k_{2_2} \frac{M_1}{M_2} \right) \right) \frac{r^j}{r}$$

To treat tidal effects perturbatively we need to guarantee

$$\frac{r_0}{r} \ll \min\left(1, \left(\frac{M_1}{\delta M} \frac{M_1}{M_2}\right)^{1/5}, \left(\frac{M_2}{\delta M} \frac{M_2}{M_1}\right)^{1/5}\right)$$

Binaries in Astrophysical Setting: the Shakura-Sunayev model

LISA detector frequency band: $f \in [10^{-5}, 1]$ Hz

Binary in circular orbit (d - binary separation)

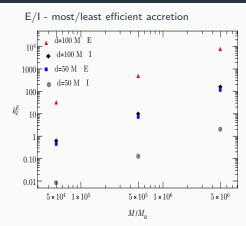
$$d \sim \left(rac{GM_{
m tot}}{(\pi f)^2}
ight)^{1/3} \Rightarrow {
m Lower~bound:}~ r \sim 10^6 \left(M_{
m tot}/M_{\odot}
ight)^{1/3} {
m km}$$

Model environmental matter as a **Shakura-Sunayev thin accretion disk** (2 "free" parameters)

- 1.Mass accretion rate parameter: $\sim 10^{-2} \le f_{\rm Edd} \le \sim 0.2$
- **2.**Viscosity parameter: \sim 0.01 $\leq \alpha \leq \sim$ 0.1

Gives r_0 , δM and v_s in terms of M.

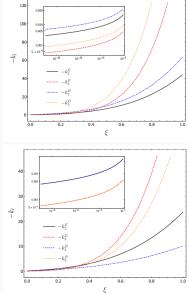
The minimum measurable TLN



Right upper panel: TLNs for a wormhole Right lower panel: TLNs for a gravastar

 $\xi = r_0/2M - 1$

source: [Cardoso et al., 2017]



How can we distinguish between a massive object surrounded by matter and an ultracompact object pointing towards new physics, from a measurement of Tidal Love Numbers?

$$\begin{split} &[[H_0]] = \left[\left[\frac{\delta r}{F} \frac{F'}{F} \right] \right] \quad , \quad \frac{2}{r_0} \left[[\delta r] \right] = - \left[[K] \right] \quad , \quad \left[\left[\sqrt{G} \, \delta r \right] \right] = 0 \\ & \frac{2}{r_0^2} \left[\left[\frac{\delta r}{\sqrt{G}} \right] \right] + \frac{2}{r_0} \left[\left[\frac{H_0}{\sqrt{G}} \right] \right] + \frac{1}{r_0} \left[\left[\frac{H_2}{\sqrt{G}} \right] \right] - \left[\left[\frac{K'}{\sqrt{G}} \right] \right] + \frac{1}{r_0} \left[\left[\frac{\delta r \, G'}{\sqrt{G^3}} \right] \right] - \\ & - \frac{2}{r_0} \left[\left[\frac{\delta r \, F'}{F \sqrt{G}} \right] \right] = 8\pi \, \delta \sigma + 8\pi \, \sigma \left(\frac{F' \, \delta r}{F} - H_0 \right) \\ & \frac{1}{2 \, r_0^2} \left[\left[\frac{\delta r}{\sqrt{G}} \right] \right] - \frac{1}{2 \, r_0} \left[\left[\frac{H_2}{F \sqrt{G}} \right] \right] + \frac{2}{r_0} \left[\left[\frac{K}{\sqrt{G}} \right] \right] - \frac{1}{4} \left[\left[\frac{H_2 \, F'}{F \sqrt{G}} \right] \right] + \\ & + \frac{1}{2} \left[\left[\frac{K \, F'}{F \sqrt{G}} \right] \right] + \frac{1}{2} \left[\left[\frac{K'}{\sqrt{G}} \right] \right] - \frac{1}{2} \left[\left[\frac{H'_0}{\sqrt{G}} \right] \right] - \frac{1}{2 \, r_0} \left[\left[\frac{\delta r \, G'}{\sqrt{G^3}} \right] \right] + \\ & + \frac{1}{r_0} \left[\left[\frac{\delta r \, F'}{F \sqrt{G}} \right] \right] + \frac{1}{2} \left[\left[\frac{\delta r \, F'}{f \sqrt{G}} \right] \right]' = 8\pi \, \delta \rho + 8\pi \, \rho \left(K + 2 \frac{\delta r}{r_0} \right) \\ & \delta \rho = v_s^2 \, \delta \sigma \, , \qquad v_s^2 \equiv \left(\frac{d\rho}{d\sigma} \right) \Big|_{\sigma_0} \end{split}$$

6 equations for 7 constants but 1 overall constant is irrelevant to compute the TLNs

Model environmental matter as a **Shakura-Sunayev thin accretion disk** (2 "free" parameters)

- 1.Mass accretion rate parameter: $\sim 10^{-2} \le f_{\rm Edd} \le \sim 0.2$
- **2.**Viscosity parameter: $\sim 0.01 \le \alpha \le \sim 0.1$

$$\begin{split} \tilde{r} & \equiv r / \left(GM/c^2 \right) \\ \Sigma_{\rm disk} \left(r \right) & \approx 7 \times 10^8 \frac{f_{\rm Edd}^{7/10}}{\tilde{r}^{3/4}} \left(1 - \sqrt{\frac{\tilde{r}_{\rm in}}{\tilde{r}}} \right)^{7/10} \left(\frac{0.1}{\alpha} \right)^{4/5} \left(\frac{M}{10^6 M_{\odot}} \right)^{1/5} {\rm kg \cdot m^{-2}} \\ \frac{H}{GM/c^2} \left(r \right) & \approx 3 \times 10^{-3} f_{\rm Edd}^{3/20} \left(1 - \sqrt{\frac{\tilde{r}_{\rm in}}{\tilde{r}}} \right)^{3/20} \left(\frac{0.1}{\alpha} \right)^{1/10} \left(\frac{10^6 M_{\odot}}{M} \right)^{1/10} \tilde{r}^{9/8} \end{split}$$

$$\delta M \approx 2\pi \int_{r_{\rm in}}^{r_{\rm out}} \Sigma_{disk} r \, dr \qquad r_0 = \frac{2\pi}{\delta M} \int_{r_{in}}^{r_{max}} \Sigma_{disk} r^2 \, dr \qquad H \sim \frac{v_{\text{s}} r}{\left(GM/r\right)^{1/2}} \label{eq:deltaM}$$

If we start without a BH, i.e. M=0, and analyse now the BH limit $r_0 \to 2M_0$ we obtain

$$k_2^E \rightarrow \frac{8}{5\left(9 + \sqrt{\frac{2}{\xi}} + 4v_s^2 + 3\log\xi\right)}$$

$$\xi \equiv 1 - \frac{2M_0}{r_0} \quad \mathcal{C} \equiv \frac{M_0}{r_0}$$

Cardoso and Pani claimed that the TLNs of an ECO would behave as $k\sim 1/\log\xi$ in the BH limit [Cardoso and Pani, 2019] . Their proof relies on imposing Robin type boundary conditions on the Zerilli function $a\Psi+b\Psi'=c$. There are two nuances

- 1. True scaling goes as $k \propto 1/\left(b + \log \xi\right)$ and b might diverge faster than $\log \xi$
- 2. For a thin-shell the perturbations are not differentiable at the boundary so it is not clear how to rephrase our boundary conditions in terms of these Robin-type ones.

Tidal effects and disruption in superradiant clouds: a numerical investigation.

Cardoso, V., Franzin, E., Maselli, A., Pani, P., and Raposo, G. (2017).

Testing strong-field gravity with tidal Love numbers.

Phys. Rev., D95(8):084014.

[Addendum: Phys. Rev.D95,no.8,089901(2017)].

ardoso, V. and Pani, P. (2019).

Testing the nature of dark compact objects: a status report.

Living Rev. Rel., 22(1):4.

Maselli, A., Pani, P., Cardoso, V., Abdelsalhin, T., Gualtieri, L., and Ferrari, V. (2018).

Probing Planckian corrections at the horizon scale with LISA binaries.

Phys. Rev. Lett., 120(8):081101.

Maselli, A., Pani, P., Cardoso, V., Abdelsalhin, T., Gualtieri, L., and Ferrari, V. (2019).

From micro to macro and back: probing near-horizon quantum structures with gravitational waves.

Class. Quant. Grav., 36(16):167001.