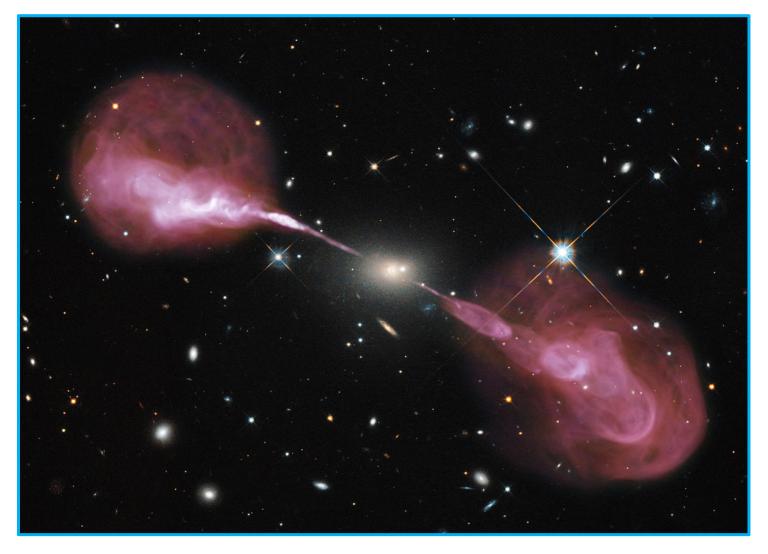
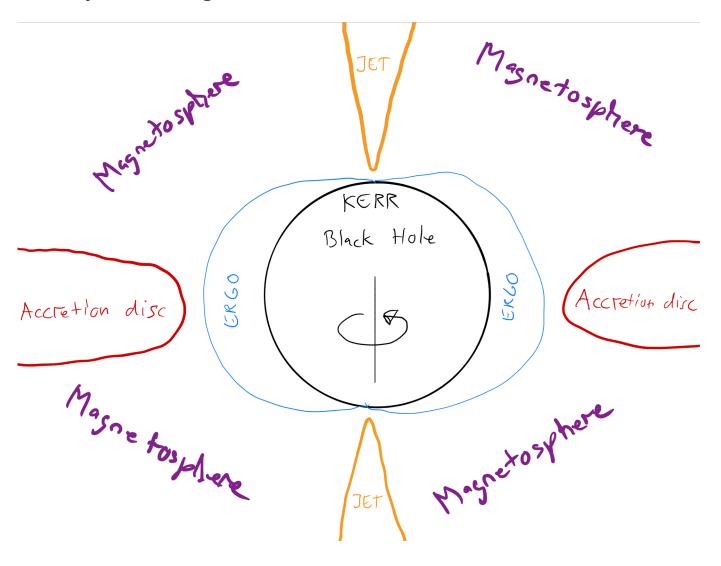
Blandford-Znajek monopole for Kerr magnetosphere


Troels Harmark, Niels Bohr Institute

Gravitational waves, black holes and fundamental physics
IFPU, Trieste, January 14, 2020

Talk mainly based on:


- TH, Orselli and Grignani, ArXiv:1908.07227 [gr-qc].
- TH, Orselli and Grignani, Phys.Rev.D98 (2018) no.8, 084056 (ArXiv:1804.05846 [gr-qc])

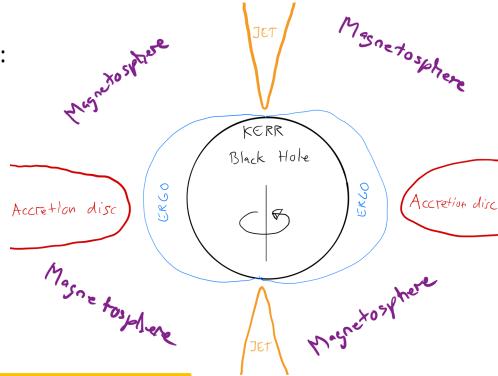
Astrophysical jets: Highly collimated and energetic jets of charged particles from compact objects, including black holes

Hercules A radio source in the 3C 348 elliptical galaxy. One can see jets emitted from the galactic nucleus.

What drives a jet that origins from a black hole?

Blandford-Znajek mechanism (1977):

Rotation energy of BH \rightarrow Magnetosphere \rightarrow Acceleration of charged particles


Can one make an analytical model of astrophysical jets from black holes?

Magnetosphere outside accretion disc:

Magnetic field >> plasma

Described to good approximation by force-free electrodynamics

$$abla_{[\mu}F_{
u
ho]}=0$$
 , $F_{\mu
u}
abla_{
ho}F^{
ho
u}=0$

Maxwell's equations + Conservation of energy-momentum of EM-field

Should be magnetically dominated: $F^2 > 0$

Can one make an analytical model of astrophysical jets from black holes?

No known analytical solution of force-free electrodynamics in the background of the Kerr black hole (magnetically dominated)!

One of the most successful analytical model is perturbative:

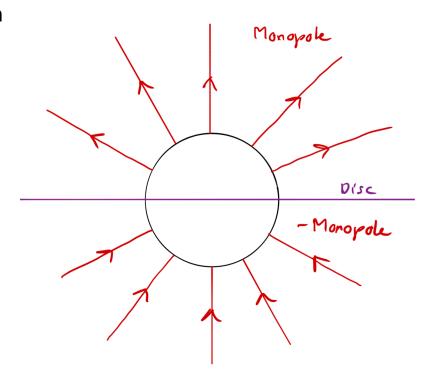
Blandford-Znajek split-monopole (1977)

- 1) Start with static magnetic monopole in background of Schwarzschild BH
- 2) Perturb monopole solution in small angular momentum J (Kerr background)
- 3) Make it into a split-monopole solution

Perturbation parameter: $\alpha = \frac{J}{GM^2}$

Zeroth order α^0 : Static

First order α^1 :


Background still Schwarzschild

Rotation of magnetosphere: Michel solution

Second order α^2 :

Metric corrected

First non-trivial correction to magnetosphere

Problem with Blandford-Znajek split-monopole:

Tanabe and Nagataki went to order α^4 in perturbation theory (2008)

Solution in terms of ψ = magnetic flux through loop around rotation axis

$$\psi = \psi_{(0)} + \alpha^2 \psi_{(2)} + \alpha^4 \psi_{(4)} + \mathcal{O}(\alpha^6)$$

They found at order $lpha^4$: $\psi_{(4)} \sim r^2$ (Tanabe and Nagataki 2008)

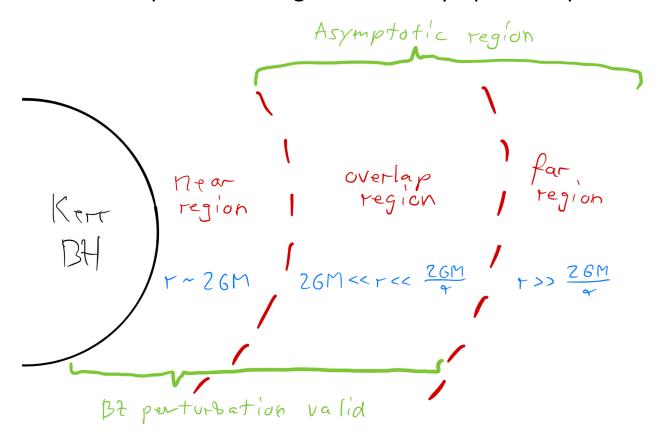
The perturbation in α blows up for large r

How is this possible?

Oth order:
$$\mathcal{L}\psi_{(0)}=0$$

2nd order:
$$\mathcal{L}\psi_{(2)}=S_2$$

4th order:
$$\mathcal{L}\psi_{(4)}=S_4$$


Oth order:
$$\mathcal{L}\psi_{(0)}=0$$
 2nd order: $\mathcal{L}\psi_{(2)}=S_2$ with $\mathcal{L}=\frac{1}{\sin\theta}\partial_r\left(1-\frac{2GM}{r}\right)\partial_r+\frac{1}{r^2}\partial_\theta\frac{1}{\sin\theta}\partial_\theta$ 4th order: $\mathcal{L}\psi_{(4)}=S_4$

Problem: Perturbation eqs. only valid for:

This requires:
$$r \ll \frac{2GM}{\alpha}$$

Perturbation eqs. invalid for $r \rightarrow \infty$

We tried to fix problem using Matched Asymptotic Expansions (MAE) technique

However, even at order α^2 one cannot match BZ expansion with the expansion in asymptotic region

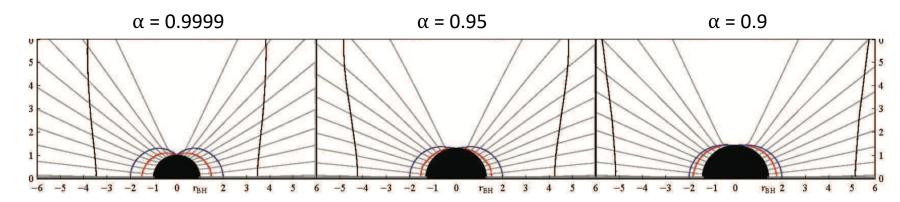
The analytical construction of the BZ monopole breaks down at first non-trivial order!

Force-free electrodynamics near rotation axis:

We consider force-free electrodynamics near rotation axis of Kerr BH

Enables us to prove no-go theorem:

Assumptions:


- 1) Regularity at horizon
- 2) Smoothness at inner and outer light surfaces
- 3) Monopole-like asymptotic behavior
- 4) Regularity at rotation axis
- 5) $\theta \rightarrow 0$ and $r \rightarrow \infty$ limits commute

Not possible to find solution that connects in the $\alpha \to 0$ limit to a static monopole-like solutions in the background of Schwarzschild BH

Conclusions:

How can our analytical results be reconciled with numerics?

From Nathanail and Contopoulos 2014

Can one make a new type of perturbative monopole solution by breaking assumptions?

Could one start with extremal Kerr solution instead?

→ Force-free electrodynamics in NHEK region

Lupsasca, Rodriguez and Strominger 2014. Lupsasca and Rodriguez 2015. Gralla, Lupsasca and Strominger 2016. Compère and Oliveri 2016