Well-posedness of characteristic formulations of GR

Thanasis Giannakopoulos

Instituto Superior Técnico

Gravitational Waves, Black Holes and Fundamental Physics, Trieste, January 15, 2020

Based on work in progress with:

David Hilditch & Miguel Zilhão

Well-posedness

What: Property of a Partial Differential Equation (PDE) problem.

- There exists a solution
- It is unique
- It depends continuously on the given data, in some norm

Why: A numerical solution can converge to the continuum one only for well-posed PDE problems.

Well-posedness & hyperbolic PDEs

 $\mbox{Hyperbolic PDE system:} \quad \ A^t \, \partial_t {\bf V} + A^p \, \partial_\rho {\bf V} = {\bf S} \, ,$

$$\mathbf{V} = (v_1, v_2, \dots, v_q)^T, \quad A^{\mu} = \begin{pmatrix} a_{11} & \dots & a_{1q} \\ \vdots & \ddots & \vdots \\ a_{q1} & \dots & a_{qq} \end{pmatrix}, \quad det(A^t) \neq 0.$$

Principal symbol: $P^s = (A^t)^{-1} A^p s_p$, with s^i arbitrary unit spatial vector.

- ullet Weak hyperbolicity: P^s has real eigenvalues $\forall \ s^i$
- ullet Strong hyperbolicity: P^s is also diagonalizable $\forall \ s^i$

 ${f No}$ strong hyperbolicity $\to {f No}$ well-posed initial boundary value problem.

Characteristic formulations of GR

Spacetime foliated with null hypersurfaces.

Asymptotically flat (Bondi-Sachs)

Gravitational waveforms (CCE & CCM)

Asymptotically AdS (ingoing Eddington-Finkelstein)

Numerical holography (heavy ion collisions)

The setup

Characteristic Initial Boundary Value Problem (CIBVP)

 $det(A^u) = 0$

Initial Boundary Value Problem (IBVP)

 $det(A^t) \neq 0$

$$A^t \partial_t \mathbf{V} + A^p \partial_p \mathbf{V} \simeq 0$$

Well-posed characteristic initial value problem \leftrightarrow well-posed Cauchy problem. 1

¹Alan Rendall, 1990

Analysis & Results

Analysis:

$$A^u \partial_u \mathbf{V} + A^r \partial_r \mathbf{V} + A^z \partial_z \mathbf{V} \simeq 0$$

- Linearization on a fixed background
- 1st order reduction
- Coordinate transformation to IBVP

Result: The PDE system is only weakly hyperbolic \longrightarrow ill-posed in L_2 norm.

- Non-diagonalizable Az, only block diagonal
- ullet True \forall 1st order reductions within the basis

Toy models

Weakly hyperbolic:

$$\frac{\partial_r \psi_v - \partial_z \psi}{\partial_u \psi - 2 \partial_r \psi - \psi_v} = 0 \qquad \longrightarrow \qquad A^z = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix},
\mathbf{V} = (\psi_v, \psi)^T$$

Strongly hyperbolic:

$$\frac{\partial_r \psi_v - \partial_z \psi}{\partial_u \psi - 2 \partial_r \psi - \partial_z \psi_v - \psi_v} = 0 \qquad \longrightarrow \qquad \mathbf{V} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \\
\mathbf{V} = (\psi_v, \psi)^T$$

Norm convergence

For different resolutions:

- Exact solution $\psi = 0$
- Random noise on given data

•
$$L_2 =$$

$$\left[\int \left(\psi_v^2 + \psi^2\right) dr dz\right]^{1/2}$$

- Coarse resolution: R
- Convergence ratio:

Summary & Future work

Summary:

- Asymptotically flat: axially symmetric Bondi-Sachs (1)
- Asymptotically AdS: planary symmetric ingoing Eddington-Finkelstein (2)

(1) & (2) \rightarrow weak hyperbolicity \rightarrow ill-posed CIBVP in L_2 norm

<u>Future work:</u> how to fix or evade the problem?

- Modify the gauge choice
- Evolve the curvature

Summary & Future work

Summary:

- Asymptotically flat: axially symmetric Bondi-Sachs (1)
- Asymptotically AdS: planary symmetric ingoing Eddington-Finkelstein (2)

(1) & (2) \rightarrow weak hyperbolicity \rightarrow ill-posed CIBVP in L_2 norm

<u>Future work:</u> how to fix or evade the problem?

- Modify the gauge choice
- Evolve the curvature

Thank you!

Bondi-Sachs axially symmetric:

$$ds^{2} = \left(\frac{V}{r}e^{2\beta} - U^{2}r^{2}e^{2\gamma}\right)du^{2} + 2e^{2\beta}du\,dr + 2Ur^{2}e^{2\gamma}\,du\,d\theta - r^{2}\left(e^{2\gamma}\,d\theta^{2} + e^{-2\gamma}\sin^{2}\theta\,d\phi^{2}\right). \tag{1}$$

Metric functions:

$$\beta(u,r,\theta)$$
, $\gamma(u,r,\theta)$, $U(u,r,\theta)$, $V(u,r,\theta)$.

Ingoing Eddington-Finkelstein planary symmetric:

$$ds^{2} = -Adv^{2} + \Sigma^{2} \left[e^{B} dx_{\perp}^{2} + e^{-2B} dz^{2} \right] + 2drdv + 2Fdvdz.$$
 (2)

Metric functions:

$$A(v,r,z)$$
, $B(v,r,z)$, $\Sigma(v,r,z)$, $F(v,r,z)$.