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Via Bonomea 265, 34136 Trieste, Italy
Contact: morepas2015@sissa.it

MoRePaS 2015 Organization

Themes, Committees and Partners

The workshop aims at an international exchange of new concepts and ideas with respect to the following
topics:

• Reduced basis methods

• Proper orthogonal decomposition

• Proper generalized decomposition

• Approximation theory related to model reduction

• Learning theory and compressed sensing

• Stochastic and high-dimensional problems

• System-theoretic methods

• Nonlinear Model Reduction

• Reduction of coupled problems/multiphysics

• Optimization and optimal control

• State estimation and control

• Reduced order models and domain decomposition methods

• Krylov-subspace and interpolatory methods

• Application to real, industrial and complex problems
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Prof. Gianluigi Rozza (SISSA, Trieste, Italy), Chair
Prof. Karsten Urban (Ulm University, Germany), co-Chair
Prof. Peter Benner (MPI Magdeburg, Germany)
Prof. Mario Ohlberger (University of Muenster, Germany)
Prof. Danny Sorensen (Rice University, USA)

2



Organization/Themes 3

Scientific Committee

Prof. Anthony Patera (MIT, Cambride, USA), Scientific Committee coordinator
Prof. Peter Benner (MPI Magdeburg, Germany)
Prof. Charbel Farhat (Stanford University, USA)
Prof. Martin Grepl (RWTH Aachen, Germany)
Prof. Serkan Gugercin (Virginia Tech, USA)
Prof. Bernard Haasdonk (University of Stuttgart, Germany)
Prof. Tony Lelievre (ENPC ParisTech, France)
Prof. Yvon Maday (Paris VI, France)
Prof. Mario Ohlberger (University of Muenster, Germany)
Prof. Gianluigi Rozza (SISSA, Trieste, Italy)
Prof. Wil Schilders (TU Eindhoven, Netherlands), COST EU-MORNET chair
Prof. Danny Sorensen (Rice University, USA)
Prof. Karsten Urban (Ulm University, Germany)
Prof. Karen Veroy-Grepl (RWTH Aachen, Germany)
Prof. Stefan Volkwein (University of Konstanz, Germany)
Prof. Karen Willcox (MIT, Cambridge, USA)

Local Organizing Committee

SISSA mathLab team.
Webmaster and book of abstracts: Dr. Francesco Ballarin (SISSA mathLab).
INDICO support by SISSA MediaLab team.

Support

COST initiative EU-MORNET

The event is supported and organized in the frame-
work of COST (European Cooperation in Science
and Technology) initiative EU-MORNET: European
Union Model Reduction Network (TD1307).

This Action brings together all major groups in Europe
working on a range of model reduction strategies with
applications in many domains of science and technol-
ogy. The increasing complexity of mathematical mod-
els used to predict real-world systems, such as climate
or the human cardiovascular system, has led to a need
for model reduction, which means developing system-
atic algorithms for replacing complex models with far
simpler ones, that still accurately capture the most
important aspects of the phenomena being modelled.
The Action emphasizes model reduction topics in sev-

eral themes: 1. design, optimization, and control theory in real-time with applications in engineering;
2. data assimilation, geometry registration, and parameter estimation with a special attention to real-
time computing in biomedical engineering and computational physics; 3. real-time visualization of
physics-based simulations in computer science; 4. the treatment of high-dimensional problems in state
space, physical space, or parameter space; 5. the interactions between different model reduction and
dimensionality reduction approaches. The focus of the Action is methodological; however, a wide range
of both scientific and industrial problems of high complexity is anticipated to motivate, stimulate, and
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ultimately demonstrate the meaningfulness and efficiency of the Action. The main objective of the
Action is to significantly bringing down computation times for realistic simulations and co-simulations
of industrial, scientific, economic and societal models by developing appropriate ‘model reduction’
methods.

Website: http://eu-mor.net

SISSA, International School for Advanced Studies, Trieste, Italy, University of Ulm and University of
Münster, Germany provide support and sponsorship for the event as well.

Previous MoRePaS editions were held in Germany: Münster (2009) and Gunzburg (2012).
Website: http://www.morepas.org
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Welcome

Dear Participants, dear Colleagues, dear Friends,

welcome to the Third MoRePaS workshop in Trieste, after Münster (2009) and Gunzburg (2012). As
for past editions we hope to provide you a pleasant and stimulating experience within a growing inter-
national community focused on reduced order methods with several and important themes.

We thank all the invited speakers for accepting to provide a talk on their topics of current recognized
research and expertise, as well as all the contributors for talks and posters, and all the delegates. We
acknowledge and thank MoRePaS Executive and Scientific Committees for all the work carried out, as
well as all the tasks faced Local organizing team and by several administrations (SISSA, Ulm, COST).

This new edition is characterized by the support provided through COST EU-MORNET action with
the goal of shaping a stronger and structured research network on model order reduction. The action
is organized in work-groups focusing from methodological developments to industrial applications in
model order reduction.

We hope you could enjoy also the city of Trieste and, last but not least, SISSA!

We wish you all the best for a fruitful workshop,

Gianluigi Rozza, Chair

Karsten Urban, Co-chair

Wil Schilders, COST EU-MORNET action chair
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Adjoint-Based PDE-Constrained Robust Optimization of Aircraft
Systems Using Reduced-Order Models

D. Amsallem1, C. Bou-Mosleh2, P. Avery1, Y. Choi1, and C. Farhat1

1Department of Aeronautics & Astronautics, Stanford University, Stanford, CA, US
2Notre Dame University, Beirut, Lebanon

Design optimization under PDE constraints is usually a computationally intensive task due to the
repeated computations associated with solving the PDE. Projection-based model reduction aims at al-
leviating that cost by reducing the dimensionality of the system of equations to be solved by considering
solutions confined to a subspace of much smaller dimension.

In this work, a comprehensive approach is developed for the robust optimization of full aircraft
systems with a large number of design variables. In addition, the operating conditions for the system
of interest are also parameterized. The proposed approach relies on the definition of two reduced-order
models: the first one for the forward system and the second one for the adjoint system. Both reduced-
order models are constructed by a greedy approach in the space of operating conditions parameters.
As the design of the aircraft evolves, the reduced-order models are also updated using a Trust-Region
Model Management framework.

An application to the robust design of an aircraft system will highlight the capability of the proposed
approach to accelerate the design process.
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Issues in the Loewner framework for the reduction of parametric
and bilinear systems

A. C. Antoulas1

1Rice University, Houston, TX, US and Jacobs University, Bremen, Germany

The purpose of this talk is to discuss two aspects of the Loewner framework for model reduction.
The first has to do with linear parametrized systems and the second with linear as well as bilinear
systems. We will show namely how the central concept of shifted Loewner matrices can be generalized
in the parametric case and how this leads to an explicit description of reduced parametrized systems.
Furthermore the issue of one-sided interpolation and the ensuing parametrizations will be discussed,
focusing on bilinear systems.

References

[1] A. C. Antoulas, S. Lefteriu, and A. Ionita. A tutorial introduction of the Loewner framework for
model reduction. In P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, editors, Model Reduction
and Approximation for Complex Systems. Birkhäuser, ISNM Series, 2015.
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Model reduction for integro-differential equations

T. Breiten1

1Institute for Mathematics and Scientific Computing, University of Graz, Graz, Austria

Model reduction approaches for general linear Volterra integro-differential systems are studied. A
structure-preserving method based on generalized system Gramians is introduced. It is shown that
these Gramians can be characterized as solutions of certain delay Lyapunov equations similarly arising
for other classes (e.g. finite delay) of systems. The usual energy interpretation of the Gramians is
provided and a reduced-order model is obtained by truncation of a balanced system. The new approach
allows to reduce coupled as well as time fractional systems. Numerical examples demonstrating the
applicability of the method are given.
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Structure-preserving Model Reduction

C. Beattie1

1Department of Mathematics, Virginia Tech, Blacksburg, VA, US

Dynamical systems form the basic modeling framework for an enormous variety of complex systems.
Direct numerical simulation of the correspondingly complex dynamical systems is one of few means
available for accurate prediction of the associated physical phenomena. However, the ever increasing
need for improved accuracy requires the inclusion of ever more detail in the modeling stage, leading
inevitably to ever larger-scale, ever more complex dynamical systems that must be simulated.

Simulations in such large-scale settings can be overwhelming and make unmanageably large de-
mands on computational resources; this is the main motivation for model reduction, which has as its
goal production of much simpler dynamical systems retaining the same essential features of the orig-
inal systems (high fidelity emulation of input/output response and conserved quantities, preservation
of passivity, etc.).

I will describe briefly the objectives and methodology of systems-theoretic approaches to model
reduction, focussing for the most part on interpolatory projection methods that are both simple and
capable of providing nearly optimal reduced order models in many circumstances. Interpolatory meth-
ods provide a framework for model reduction that allows for the retention of special structure such as
parametric dependence, port-Hamiltonian structure, and internal delays. Nonintrusive “data-driven”
approaches will be discussed as well.
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Model Reduction in PDE-Constrained Optimization

M. Heinkenschloss1

1Department of Computational and Applied Mathematics, Rice University, Houston, TX, US

The numerical solution of optimization problems governed by partial differential equations (PDEs)
requires the repeated solution of coupled systems of PDEs. Model reduction can be used to substantially
lower the computational cost at various stages of the optimization algorithm, for example, to construct
Hessian approximations for use within a traditional gradient based optimization algorithms, or to
generate surrogate models for use within a trust-region method. I will review recent approaches and
their convergence properties, and demonstrate their performance on example problems. The emphasis
is on nonlinear PDE constrained optimization problems, where precomputations of reduced order
models that are valid over the entire optimization parameter range are typically impossible.
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Reduced Order Models in the context of System Level Simulation

S. Kher1

1ANSYS Inc., Canonsburg, PA, US

The goal of system level simulation is to simulate and analyze virtual prototypes of the complete
product being designed. This requires the ability to combine detailed physics based models, with
behavioral models (such as those developed using languages like Modelica and VHDL-AMS), compact
device models (typically developed using C++) and controls and embedded software. ROMs are
particularly useful in this context.

This talk will cover some definitions of model types and ROMs in the context of system level
simulation. We will look at a typical model reduction/ROM flow in the context of commercial software
from ANSYS. We will then look at examples and applications where existing techniques work well
- for example S-parameter fitting for electronics and linear network fitting for LTI thermal systems.
Finally, we will present current areas of research and highlight key challenges - including the need and
motivation for standardization.
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Preconditioners for parameter-dependent equations and
projection-based model reduction methods

A. Nouy1 and O. Zahm1

1GeM UMR 6183, Ecole Centrale Nantes, Nantes, France

We present a method for the construction of preconditioners for large systems of parameter-
dependent equations [1], e.g. arising from the discretization of PDEs with uncertain coefficients.
The proposed preconditioner is an interpolation of the matrix inverse obtained by a projection of the
identity matrix with respect to the Frobenius norm. The use of randomized linear algebra allows
us to handle large matrices, with the guaranty of obtaining quasi-optimal interpolations with high
probability. Adaptive interpolation strategies are then proposed for different objectives in the context
of projection-based model order reduction methods: the improvement of residual-based error estima-
tors, the improvement of the projection on a given reduced approximation space, or the recycling of
computations for sampling-based model reduction methods.

References

[1] O. Zahm and A. Nouy. Interpolation of inverse operators for preconditioning parameter-dependent
equations. ArXiv e-prints, Apr. 2015.
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HIerarchical MODel (HI-MOD) reduction:
towards haemodynamics applications

S. Perotto1,∗

1MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy

A hierarchical model (Hi-Mod) reduction provides surrogate models suited to describe phenomena with
a dominant dynamics, even though locally featuring relevant transverse components. Istances of such
phenomena are the blood flow in arteries, the hydrodynamics in river networks, the gasdynamics in an
internal combustion engine.

The driving idea of a Hi-Mod reduction is represented by a different discretization of the dominant
and of the transverse dynamics, in the spirit of a separation of variables. In particular, according to the
original formulation [1, 2], the mainstream is tackled by affine finite elements, while a modal approx-
imation solves the transverse directions. This approach leads to solve along the principal direction a
”psicologically” one-dimensional model, with coefficients automatically including the effect of the trans-
verse dynamics. Moreover, the number of modes can be locally tuned along the mainstream, according
to the meaningfulness of the transverse information [3]. The rationale is that relatively few modes
are enough to capture the transverse dynamics of interest with an overall reduction of computational
costs.

In this presentation, we focus on the most recent advances in the Hi-Mod setting. The reference
application is the computational haemodynamics. This goal has led us to apply the Hi-Mod reduction
to 3D cylindrical geometries, in case with a curvilinear supporting fiber, by assuming the Stokes
equations as first reference model.

Another interesting issue is represented by the generalization of the Hi-Mod procedure to a param-
eter dependent setting, with a view to an estimation of the parameters involved in the haemodynamics
models.

References

[1] A. Ern, S. Perotto, and A. Veneziani. Hierarchical model reduction for advection-diffusion-reaction
problems. Numerical Mathematics and Advanced Applications, pages 703–710, 2008.

[2] S. Perotto, A. Ern, and A. Veneziani. Hierarchical local model reduction for elliptic problems: a
domain decomposition approach. Multiscale Model. Simul., 8(4):1102–1127, 2010.

[3] S. Perotto and A. Veneziani. Coupled model and grid adaptivity in hierarchical reduction of elliptic
problems. J. Sci. Comput., 60(3):505–536, 2014.

∗This work has been financially supported by the project NSF DMS-1419060 (PI: A. Veneziani).
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Sparse-Grid, Reduced-Basis Bayesian Inversion

Ch. Schwab1

1Seminar for Applied Mathematics, ETH Zürich, Zürich, Switzerland

We report on reduced basis accelerated Bayesian inversion methods for affine-parametric, linear opera-
tor equations, from joint work with Peng Chen [2, 1]. We allow a general class of non-affine parametric,
nonlinear operator equations. We present an analysis of sparsity of parametric forward solution maps
and of Bayesian inversion in to the fully discrete setting. The analysis includes Petrov-Galerkin high-
fidelity (HiFi) discretization of the forward maps. We develop adaptive, stochastic collocation based
reduction methods for the efficient computation of reduced bases on the parametric solution manifold.
The nonlinearity with respect to the distributed, uncertain parameters and the unknown solution is
collocated; specifically, by the so-called Generalized Empiricial Interpolation Method (GEIM). For the
corresponding Bayesian inversion problems, computational efficiency is enhanced in two ways: first,
expectations with respect to the posterior are computed by adaptive quadratures with dimension-
independent convergence rates, following [4, 3]. Our analysis accounts for the impact of the PG
discretization in the forward maps on the expectation of the Quantities of Interest (QoI). Second, we
perform the Bayesian estimation only with respect to a parsimonious, reduced basis approximation of
the posterior density. In [5], under general conditions on the forward map, the infinite-dimensional para-
metric, deterministic Bayesian posterior was shown to admit N-term approximations which converge at
rates which depend only on the sparsity of the parametric forward map. We present dimension-adaptive
collocation algorithms to build finite-dimensional parametric surrogates which realize these rates. In
several numerical experiments, the proposed algorithms exhibit parameter dimension-independent con-
vergence rates which equal, at least, the currently known rate estimates for N-term approximation.
We propose to accelerate Bayesian estimation by offline computation of reduced basis surrogates of the
Bayesian posterior density. The parsimonious surrogates can be employed for online data assimilation
and for Bayesian estimation. They also open a perspective for optimal experimental design.

Supported in part by Swiss National Science Foundation (SNF) and by the European Research
Council (ERC) under AdG 247277.

References

[1] P. Chen and C. Schwab. Sparse-grid, reduced-basis bayesian inversion. Technical Report 2014-36,
Seminar for Applied Mathematics, ETH Zürich, 2014.

[2] P. Chen and C. Schwab. Sparse-grid, reduced-basis bayesian inversion: Nonaffine-parametric non-
linear equations. Technical Report 2015-21, Seminar for Applied Mathematics, ETH Zürich, 2015.

[3] C. Schillings and C. Schwab. Sparse, adaptive smolyak quadratures for bayesian inverse problems.
Inverse Problems, 29(6):1–28, 2013.

[4] C. Schillings and C. Schwab. Sparsity in bayesian inversion of parametric operator equations.
Inverse Problems, 30(6), 2014.

[5] C. Schwab and A. Stuart. Sparse deterministic approximation of bayesian inverse problems. Inverse
Problems, 28(4), 2012.
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Towards automated model reduction: exact error bounds and
simultaneous finite-element reduced-basis refinement

M. Yano1

1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,
MA, US

We develop a reduced basis method for parametrized coercive partial differential equations (PDEs)
with two objectives: providing an error bound with respect to the exact weak solution of the PDE
as opposed to the typical finite-element "truth" solution; providing automatic adaptivity in both
physical and parameter spaces. The error bound builds on two key ingredients: a minimum-residual
mixed formulation which provides an upper bound of the dual-norm of the residual computed in an
infinite-dimensional function space; an extension of the successive constraint method which provides
a lower bound of the stability constant computed in the infinite-dimensional function space. The
automatic adaptivity is provided in the offline stage which combines a spatial mesh adaptation for
finite elements and a greedy parameter sampling strategy for reduced bases to yield a reliable online
system in an efficient manner. We demonstrate the effectiveness of the approach for parametrized
elasticity problems.
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A subspace projection-based method for stabilization and
enhancement of projection-based ROMs of the Navier–Stokes

equations

M. Balajewicz1 and I. Tezaur2

1Department of Aerospace Engineering, University of Illinois at Urbana-Champaign,
Champaign, IL, US

2Quantitative Modeling & Analysis Department, Sandia National Laboratories, Livermore,
CA, US

Computational fluid dynamics (CFD) has become an indispensable tool for many engineering ap-
plications. Unfortunately, high-fidelity CFD is often too expensive for parametric, time-critical and
many-query applications such as design optimization, control and uncertainty quantification. Reduced
order models (ROMs) are a promising tool for bridging the gap between high-fidelity, and real-time,
multi-query applications. Despite recent advances in the field, model reduction is still in its infancy,
particularly for high-Reynolds number turbulent flows.

For a projection-based ROM to be stable and accurate, the dynamics of the truncated subspace
must be taken into account. In fluid flow applications, the traditional approach involves the addition
of empirical energy-absorbing eddy-viscosity terms to the ROM. The drawback of this approach is that
empirical turbulence models destroy consistency between the Navier-Stokes equations and the ROM.
Accurately identifying and matching free coefficients of the turbulence models is another challenge.

In this work, an alternative approach for stabilizing and enhancing ROMs is proposed. Instead of
adding an empirical turbulence model term to the ROM, we derive a transformation of the projection
subspace that accounts for truncated modes [1]. Because only the projection subspace is modified,
consistency between the ROM and the Navier-Stokes equations is retained. The proposed approach
can be formulated mathematically as a trace minimization problem on the Stiefel manifold. The
reproductive as well as predictive capabilities of the method are evaluated on several compressible
flow problems, including a problem involving laminar flow over an airfoil with a high angle of attack
(Figure 1), and a channel-driven cavity flow problem.
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Figure 1: Nonlinear model reduction of the laminar airfoil. Evolution of modal energy (left), and phase
plot of the first and second temporal basis, a1(t) and a2(t) (middle); DNS (thick gray line), standard
4 DOF ROM (dashed blue line), stabilized 4 DOF ROM (solid black line). Stabilizing transformation
matrix (right)

References

[1] M. Balajewicz, I. Tezaur, and E. Dowell. Minimal subspace rotation on the Stiefel manifold for sta-
bilization and enhancement of projection-based reduced order models for the compressible Navier–
Stokes equations. Under consideration for publication in the journal CMAME.
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POD-Galerkin methods for parametrized problems in flow control
and fluid-structure interaction

F. Ballarin1 and G. Rozza1

1mathLab, Mathematics Area, SISSA, International School for Advanced Studies, Trieste,
Italy

We discuss a computational reduction framework based on POD-Galerkin projections for parametrized
problems in computational fluid dynamics with an offline/online computational splitting between a high
fidelity model (offline) and a reduced order one (online). Special attention is paid to the stabilization
of the resulting online system, and shape parametrization maps to efficiently handle deformation of the
computational domain. The results focus on some applications of the proposed framework to optimal
flow control problems, and to a fluid-structure interaction formulation. A simultaneous reduction of
both fluid and structural equations is sought; coupling of the multiphysics system on the interface
is handled by means of shape parametrization maps. In this context, domain-decomposition based
reduced order models are exploited and take advantage of the existing parametrized framework for
optimal control problems. They enforce the minimization of the jump of the velocity on either the
physical interface (between fluid and structure) or computational interfaces (between different parti-
tions of the domain). Cardiovascular flows problems provide a real-life computational challenge for the
developed methodology.
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Time-dependent Parametric Model Order Reduction for
Material-Removal Simulations

Mi. Baumann1, D. Hamann1, and Peter Eberhard1

1Institute of Engineering and Computational Mechanics, University of Stuttgart, Stuttgart,
Germany

Machining of thin and lightweight structures is a crucial manufacturing step in industries ranging from
aerospace to power engineering. Practical problems include machining of frame components, milling
of blades for aircraft propellers or turbines and many more. The applications demand high geometric
accuracy and excellent surface finish. The elastic workpieces, however, deform due to acting cutting
or clamping forces. For numerical simulations, typically, Finite-Element-(FE)-based simulations are
required to accurately predict the deflection of complex workpieces during machining.

To consider elastic effects as well as rigid body motions, elastic multibody systems (EMBS) are
used. In order to enable efficient simulations and solve typical tasks, like the prediction of process
stability, reduced elastic models have to be determined by linear model order reduction, [2]. Thereby,
the system matrices need to be constant, which cannot be assumed for elastic bodies with varying
geometry due to material removal. In [3], parametric model order reduction methods based on the
interpolation of reduced system matrices [1, 4] are extended and applied for systems with moving loads,
with the restriction that the FE mesh remains constant.

In this presentation we propose a technique to generate reduced elastic bodies for systems with
varying geometry and their application in time-domain simulations. Therefore, the interpolation of the
reduced system matrices, which are calculated for certain parameter samples individually, is applied.
Based on these systems, interpolated reduced systems are calculated and used during the time-domain
transient simulation. Due to the fact that the integration scheme in the multibody code has to be
adapted, the software package Neweul-M2 [5] is used. The adaption enables the generation of time-
dependent parametric system matrices and the solution of the nonlinear differential equation of the
EMBS. Results of the simulation of the material removal are illustrated for the model of a T-shaped
plate.
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ArbiLoMod: Communication Avoiding Localized Reduced Basis
Methods for Problems with Arbitrary Local Modifications

A. Buhr1, M. Ohlberger1, and S. Rave1

1Institute for Computational and Applied Mathematics, University of Münster, Münster,
Germany

During the development of today’s computer architectures in the last decade, communication capa-
bilities did not grow at the same speed as computation capabilities. This trend was accelerated by
the rise of accelerator devices, multiplying the available computing power in each node of a cluster.
Cloud environments pushed this trend to the extreme, allowing any user to request a high number of
workstations, connected to the user by an internet connection capable of transferring usually only a
few megabytes per second. To leverage these computing potentials for engineers working with finite
element based simulation software, we designed the localized reduced basis method “ArbiLoMod” which
is tailored to this computing environment. In all design decisions, avoiding of communication was the
primary goal, often trading computation in for less communication.

ArbiLoMod employs reduced basis techniques to find problem adapted low dimensional spaces in
which the solutions of a given parametrized partial differential equation can be quickly approximated
for arbitrary parameters. The reduced space is localized by a decomposition of the solution space into
overlapping local subspaces. Elements of other existing localized reduction methods are incorporated
[4, 5, 1, 2]. The use of localized reduced spaces not only allows for a good parallelization, but also
for a fast recomputation of the solution after arbitrary local modifications of the underlying problem,
a situation often occurring in engineering environments, hence the name “ArbiLoMod”. To guarantee
the quality of the solution, a localized a-posteriori error estimator is employed, based on the global
residual of the problem. When necessary, the reduced local spaces are enriched adaptively.

We will show numerical results, obtained by an implementation of the method in our model reduc-
tion framework pyMOR [3], for elliptic model problems.
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Time-parallel reduced-order models via forecasting
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Many-query and real-time scenarios demand reduced-order models (ROMs) for tractability. For
the many-query case, the relevant notion of simulation cost is core-hours, which dictates how many
queries are possible given fixed computing resources. In this sense, nonlinear ROMs have already
demonstrated significant savings, as ROMs can be simulated using a ‘sample mesh’ that necessitates
far fewer computing cores. In contrast, the relevant cost for real-time scenarios is wall time. Nonlinear
ROMs have been less effective at reducing this cost, as spatial parallelism is quickly saturated. For
example, on a compressible flow problem, the GNAT ROM yielded a 452X improvement in core-hours,
but only a 6.86X improvement in wall time [1]. Spatial parallelism was saturated with only 12 cores.

Time-parallel methods (e.g., parareal [3], PITA) constitute one approach to improve wall-time
performance. However, speedups are often modest (i.e., less than five), in part because typical time
integrators are often employed for the coarse propagator. As the coarse time step is usually outside the
asymptotic range of convergence, the coarse propagator can be inaccurate, yielding slow convergence.

The main idea of this work is to enable efficient time parallelism for ROMs by employing an accurate
coarse propagator that exploits time-evolution data available from offline training simulations. In
particular, we propose adopting the forecasting method introduced in Ref. [2] as a data-driven coarse
propagator. As shown in Fig. 1, the forecasting method can provide a much more accurate coarse
propagation than traditional time integrators, leading to significantly faster convergence.
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Figure 1: Time evolution of a state variable across time-parallel iterations for a ROM applied to the
inviscid Burger’s equation for two coarse propagators (left: backward Euler; right: forecasting).
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Time-Varying Parametric Model Order Reduction by Matrix
Interpolation

M. Cruz Varona1 and B. Lohmann1

1Institute of Automatic Control, Technische Universität München, Garching, Germany

Model Order Reduction of parametric linear time-invariant systems has been extensively investigated
over the last ten years. For this reason, there exist many different parametric model order reduction
(pMOR) approaches, which can be classified in either global or interpolatory methods. The inter-
polatory technique presented in [4] – based on the interpolation of reduced system matrices – is not
restricted to a certain type of parameter dependency and can be applied to efficiently obtain a para-
metric reduced order model from the precomputed reduced system matrices at different grid points in
the parameter space.

In many engineering applications the underlying high-dimensional system may depend not only
on different parameters, but on parameters which vary with time. Such systems show a time-varying
input-output behaviour which is caused by the time variability of the parameters. In this contribution
we consider model order reduction for large-scale linear parameter-varying (LPV) systems of the form

E(p(t))ẋ(t) = A(p(t))x(t) +B(p(t))u(t),

y(t) = C(p(t))x(t).
(1)

Since the system matrices explicitly depend on the time-varying parameter vector p(t) we develop
a projection-based, time-varying parametric model order reduction approach, which we call p(t)MOR,
to obtain a reduced order model of a large-scale LPV system. Based on this approach, we adapt the
reduction method of matrix interpolation to the time-varying case, whereby new time-derivative terms
emerge which must be considered during the reduction process.

In this talk, we first present the aforementioned time-varying parametric model order reduction
approach by matrix interpolation and then apply this method for the reduction of a system with
moving load. Unlike the publications [1, 3, 2], the varying load location is here considered as a time-
dependent parameter p(t) of the system model with ṗ 6= 0. Both the standard and the adapted
matrix interpolation with additional time-derivative terms will be employed for the reduction and
their performance compared to each other.
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Simultaneous Empirical Interpolation and Reduced Basis method
for non-linear problems

C. Daversin1 and C. Prud’homme1
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In this talk, we will focus on the reduced basis methodology in the context of non-linear and
non-affinely parametrized partial differential equations in which affine decomposition necessary for the
reduced basis methodology are not obtained.

To deal with this issue, it is now standard to apply the Empirical Interpolation Method (EIM)
methodology [1, 4] before deploying the Reduced Basis (RB) methodology. The EIM building step
can be costly and require many (hundreds) finite element solutions when the terms are non-linear that
forbids its application to large non-linear problems.

In this talk, we will introduce a Simultaneous EIM Reduced basis algorithm (SER) [2] based on
the use of reduced basis approximations into the EIM building step. Enjoying the efficiency offered
by reduced basis approximation, this method provides a huge computational gain and can require as
little as N + 1 finite element solves where N is the dimension of the RB approximation.

We will start this talk with a brief overview of the EIM and RB methodologies applied to non-linear
problems. The identification of the main issue, discussing the changes to be made in the EIM offline
step for such problems will then introduce the SER method detailed in the first part of the talk with
some of its variants.

The second part of the talk will first illustrate our method with preliminary results obtained on a
benchmark introduced in [4]. We will then assess its performances for large scale problems it is designed
for, through a 3D non-linear multi-physics reduced model used in high field magnet optimization
context introduced in [3].

The SER method is now available in the generic and seamlessly parallel reduced basis framework
of the opensource library Feel++ (Finite Element method Embedded Language in C++, http://www.
feelpp.org).
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MOR-based Uncertainty Quantification in Transcranial Magnetic
Stimulation

L. Codecasa1, L. Di Rienzo1, K. Weise2, and J. Haueisen3
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Electromagnetic computations rely on the perfect knowledge of material parameters. However,
for a wide range of examples in electrical and biomedical engineering some uncertainty should be
associated in that knowledge in the modeling process. In order to quantify the uncertainty of the
output quantities of interest coming from the lack of knowledge of the input material parameters,
the spectral stochastic finite element method based on Polynomial Chaos Expansion (PCE) can be
applied. This method, in both the intrusive and non-intrusive forms [2], allows to dramatically reduce
computational time with respect to Monte Carlo (MC) methods. Nevertheless, in many situations,
computational complexity can still be prohibitively large. This is the case of Transcranial Magnetic
Stimulation (TMS), a non-invasive technique to stimulate cortical regions of the human brain by the
principle of electromagnetic induction. In TMS there is an essential need for more effective techniques
of uncertainty quantification due to the increasing model complexity [1]. For such problems, a novel
approach based on Model Order Reduction (MOR) is proposed here.

The electromagnetic problem at hand is simplified due to the low electrical conductivities not
exceeding 10 S/m and moderate excitation frequencies which are in the range of 2− 3 kHz so that the
secondary magnetic field from the induced eddy currents are neglected. We use a realistic head model
which contains five different tissues, namely scalp, skull, cerebrospinal fluid (CSF), grey matter (GM)
and white matter (WM). The electrical conductivities of scalp and skull are modeled as deterministic,
while the conductivities of CSF, GM, and WM, which show a wide spread across individuals and
measurements, are modeled as uniform distributed random variables.

The starting point of the new MOR-based approach is a non-intrusive PCE method, in which the
PCEs of variables are estimated from the solutions of the deterministic problems for all values of the
random tissue parameters belonging to a sparse grid. The main idea of the proposed algorithm is
that of reducing the number of solutions of such deterministic problems by constructing a parametric
reduced order model, which is used to approximate the solution of the deterministic problems. Such
parametric reduced order model is tailored to approximating with chosen accuracy the deterministic
problems for the values of the random tissue parameters in the chosen sparse grid. The parametric
reduced order model is generated in an efficient way by solving a reduced number of deterministic
problems with respect to the non-intrusive PCE approach. The computational cost to construct the
parametric reduced order model is optimized by exploiting the relatedness among the solutions to the
deterministic problems for different values of the random material parameters.
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Reduced Basis Landweber method for nonlinear ill-posed inverse
problems

D. Garmatter1, B. Harrach1, and B. Haasdonk1

1University of Stuttgart, Stuttgart, Germany

The numerical solution of nonlinear inverse problems such as the identification of a parameter in
a partial differential equation (PDE) from a noisy solution of the PDE via iterative regularization
methods, e.g. the Landweber method or Newton-type methods, usually requires numerous amounts
of forward solutions of the respective PDE. One way to speed up the solution process therefore is to
reduce the computational time of the forward solution, e.g. via the reduced basis method.

The reduced basis method is a model order reduction technique which constructs a low-dimensional
subspace of the solution space. Galerkin projection onto that space allows for an approximative
solution. An efficient offline/online decomposition enables the rapid computation of the approximative
solution for many different parameters.

The simple and intuitive approach of weaving reduced basis methods into the solution process of
inverse problems is the replacement of the forward solution by a global reduced basis approximation
in a given regularization algorithm. The limitations of this approach in the context of imaging (very
high-dimensional parameter spaces) will be shortly discussed in this talk.

The main topic is the new Reduced Basis Landweber method. It combines the key concepts of
the reduced basis method with the Landweber method and is inspired by [1]. The general idea is to
adaptively construct a small, problem-oriented reduced basis space instead of constructing a global
reduced basis space like it is normally the case in reduced basis methods. This will be done in an
iterative procedure: the inverse problem will be solved up to a certain accuracy with a Landweber
method that is projected onto the current reduced basis space. The resulting parameter then is
utilized to enrich the reduced basis space and therefore fit it to the given problem. This iteration is
performed until an iterate is accepted as the solution of the inverse problem. Numerical results will
show a significant speed-up and the possibility to reconstruct very high-dimensional parameters.
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Reduced basis method for noncoercive variational inequalities

S. Glas1 and K. Urban1
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We consider variational inequalities with different trial and test spaces and a possibly noncoercive
bilinear form. Well-posedness has been shown under general conditions that are e.g. valid for the
space-time formulation [3] of parabolic variational inequalities. Using space-time formulations, we do
not have a time-stepping scheme anymore, but take the time as an additional variable in the variational
formulation of the problem. As an example for a parabolic variational inequality, we may think about
time-dependent obstacle problems or option pricing, e.g. for American Options.

Fine discretizations for such problems resolve in large scale problems and thus in long computing
times. To reduce the size of these problems, we use the Reduced Basis Method (RBM)[2]. The objective
of the RBM is to efficiently reduce discretized parametrized partial differential equations. Problems are
considered where not only a single solution is needed but solutions for a range of different parameter
configurations.

Combining the RBM with the space-time formulation, a residual based rigorous error estimator has
been derived in [1]. In this talk, we will provide new numerical results for a computational realization
of the model.
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Balanced Truncation Model Reduction for Quadratic-Linear
Systems
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We discuss balanced truncation for model reduction of continuous time quadratic-linear systems.
Balanced truncation for linear systems mainly involves the computation of Gramians of the system,
namely the controllability and observability Gramians. These Gramians were extended to the general
nonlinear setting by Scherpen (SCL,1993) where it was shown that the Gramians are the solutions of
nonlinear Hamilton-Jacobi equations. These solutions, in general, depend on the state vector which
makes it hard to utilize them in the model reduction framework. In this talk, we aim to determine
approximate Gramians for the quadratic-linear system which can be used to balance quadratic-linear
systems in order to identify a reduced-order quadratic-linear system. We also investigate the important
properties of the reduced-order system such as the Lyapunov stability of the system. The efficiency of
the reduced-order system obtained by the proposed method is demonstrated for various semi-discretized
nonlinear partial differential equations.
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POD model reduction for constrained optimal control problems
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We consider an optimal control problem for a parabolic partial differential equation (PDE) subject to
control and state constraints. Since the optimality conditions are nonlinear, model order reduction pro-
vided by proper orthogonal decomposition (POD) is applied [2] to limit the numerical effort. Classical
POD basis constructions usually contain heuristic information of the expexted optimal state solution
to the PDE and therefore lack of a-priori error estimators; these are available only if the optimal state
dynamics are included into the basis elements.

One way to compensate this drawback is to augment the reduced optimal control problem by inter-
preting the POD basis functions as optimization variables as well, introducing the information about
the optimal state trajectory by postulating the state equation as a side condition: The optimality sys-
tem proper orthogonal decomposition strategy (OSPOD). We will present a-priori [3] and a-posteriori
[4] error estimations for this augmented reduced-order optimal control problem, propose an efficient
solution algorithm [1] and illustrate our results by numerical tests.
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Figure 1: On the left, we see that the initial reference trajectory does not capture enough dynamics
of the optimal state to build up a sufficiently accurate reduced-order model ◦ while the quality of the
OSPOD basis ? matches the accuracy of the optimal one �. On the right, we estimate the OSPOD
model error ◦ by a-priori bounds ? based on eigenvalue estimations and by a-posteriori bounds � derived
by a perturbation argument.
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A New Selection Operator for the Discrete Empirical Interpolation
Method
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This paper introduces a new framework for constructing the Discrete Empirical Interpolation Method
(DEIM) projection operator. The interpolation nodes selection procedure is formulated using a QR
factorization with column pivoting. This selection strategy leads to a sharper error bound for the
DEIM projection error and works on a given orthonormal frame U as a point on the Stiefel manifold,
i.e., the selection operator does not change if U is replaced by UQ with arbitrary unitary matrix Q.
The new approach allows modifications that, in the case of gargantuan dimensions, use only randomly
sampled rows of U but are capable of producing equally good approximations.
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A Reduced Basis Kalman Filter for
Certified and Rapid State Estimation of

Parametrized PDEs
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The Kalman filter is a widely known tool in control theory for estimating the state of a linear system
disturbed by noise. However, when applying the Kalman filter on systems described by parametrized
partial differential equations (PPDEs) the calculation of state estimates can take an excessive amount
of time and real-time state estimation may be infeasible. In a recent article [1] we presented a low
dimensional representation of a parameter dependent Kalman filter for PPDEs via the reduced basis
method. This allows rapid state estimation, and in particular the rapid estimation of a linear output of
interest. It is also possible to derive a posteriori error bounds for evaluating the quality of the output
estimations. Additionally, the stability of the filter can be verified using an observability condition.
We will demonstrate the performance of the reduced order Kalman filter and the error bounds with a
numerical example modeling the heat transfer in a plate.
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Simultaneous Reduced Basis Approximation
of Parameterized Eigenvalue Problems
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Reduced basis methods for parameterized partial differential equations have been studied for many
problem classes like linear and non-linear equations, compliant and non-compliant outputs as well as
static and time-dependent problems. They are also used in the context of component mode synthesis
by static condensation reduced basis methods.

In many applications, e.g., in the field of vibro-acoustics during the planning process of large timber
buildings, it is necessary to simulate the same large eigenvalue problem numerous times, using differ-
ent material parameter values in each simulation. Furthermore, one is interested in approximating a
certain number of the smallest eigenvalues and eingenvectors rather than only one eigenvalue or eigen-
vector and the eigenvalues of interest usually have multiplicities that depend on the parameters. One
is interested in optaining the optimal parameter values for the components of the building. Reduced
basis approximations allow to handle these problems in a fast way that is nevertheless accurate.

This talk is about a model reduction framework for parameterized eigenvalue problems by a reduced
basis method [1], which, in contrast to the standard single output case, allows to approximate several
outputs simultaneously. The outputs considered in this case are a certain number of the smallest eigen-
values with multiplicities. We analyze the corresponding a posteriori asymptotically error estimators
for the eigenvalues, in order to achieve a fast and reliable evaluation of these input-output relations.
Moreover, we present different greedy strategies and systematically study their performances, paying
special attention to the multiple eigenvalues in the cases of the analysis of the estimator and the
development of the greedy part of the algorithm.

We introduce a method to build a single reduced space for the simultaneous variational approxi-
mation of the eigenvalue problem and compare the performance of this space to the performance of a
space built with a standard POD method.

Furthemore an extension of our reduced basis method to a component mode synthesis is shown,
which allows to establish a component library that can be used to simulate large composed timber
buildings.
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Large Eddy Simulation Reduced Order Models

T. Iliescu1

1Department of Mathematics, Virginia Tech, Blacksburg, VA, US

This talk proposes several large eddy simulation reduced order models (LES-ROMs) based on the
proper orthogonal decomposition (POD). To develop these models, explicit POD spatial filtering is
introduced. Two types of spatial filters are considered: A POD projection onto a POD subspace and
a POD differential filter. These explicit POD spatial filters allow the development of two types of
ROM closure models: phenomenological and approximate deconvolution. Furthermore, the explicit
POD spatial filters are used to develop regularized ROMs in which various ROM terms are smoothed
(regularized). The new LES-ROMs are tested in the numerical simulation of a three-dimensional flow
past a circular cylinder.
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Model Order Reduction for Magneto-Quasistatic Equations
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Design of complex integrated circuits with electromagnetic devices involves the numerical simulation
of Maxwell’s equations coupled with the network equations. In magneto-quasistatic problems, the
contribution of the displacement currents is neglected compared to the conductive currents. A finite
element discretization of the resulting Maxwell equations in the magnetic vector potential formulation
leads to a high dimensional nonlinear system of differential-algebraic equations (DAEs)

Eẋ = A(x)x+Bu, y = Cx

with the structured matrices

E =

[
M 0
XT 0

]
, A(x) =

[
−K(a) X

0 −R

]
, B = CT =

[
0
I

]
.

In model reduction of DAEs, special care should be taken while approximating the algebraic compo-
nents and algebraic constraints which restrict the solution to a manifold.

By employing the system structure, we develop an efficient model reduction approach for the
magneto-quasistatic DAE system. Our approach is based on transforming this system into the ODE
form and applying the proper orthogonal decomposition (POD) [2] combined with the discrete empirical
interpolation method (DEIM) [1] for efficient evaluation of the nonlinearity in the reduced-order model.
A further reduction in computational complexity can be achieved by using the matrix DEIM for the
approximation of the Jacobi matrix. We present an efficient implementation of the matrix DEIM
which avoids the vectorization of the snapshot matrices of the Jacobian and significantly reduces the
computational cost of the offline phase. Furthermore, we investigate the passivity of the infinite-
dimensional problem and the preservation of this property in the semidiscretized system and the
POD-DEIM reduced model. Numerical examples will demonstrate the properties of the developed
model reduction method.
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Model reduction for a coupled nearwell and reservoir models using
multiple space-time discretizations.
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Proper reservoir management often becomes challenging to be performed due to the intrinsic un-
certainties and complexities associated with the reservoir properties. To this end, accurate results for
reservoirs are obtained if fine grid discretization is induced into the model. This leads to large-scale
system of nonlinear equations that needs to be solved every time step. The importance of obtaining a
simpler model that can represent the physics of the full system is paramount to speed up the workflows
that require several (from dozen to thousands) calls of the forward model.

Over the past decade, numerous techniques have been applied in the context of porous media flow
simulation to reduce the computational effort associated with the solution of the underlying coupled
nonlinear partial differential equations. In many cases, reduced-order modeling techniques have shown
to be a viable way of mitigating computational complexity in simulation of the large-scale model,
while they maintain high level of accuracy when compared with here high fidelity models. Many of
these simulation models treat the reservoir as a whole model. In many cases, the nearwell accuracy is
very important because it controls the production rate. In fact, researchers often use more complex
near well models to achieve a high accuracy. In this talk, I will describe model reduction techniques
that consider near well and reservoir regions separately and use different spatial grids and temporal
accuracy to achieve efficient and accurate reduced order models.
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Detection of parameter-dependent regimes in complex flows via
compressed sensing and dynamic mode decomposition
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Complex flows are parameter dependent and are sensitive to changes in flow topology. Designing
controllers and observers for such systems is challenging due to the shear size of the state-space as well
as the parametric dependence. Reduced order models combined with an online estimate of the current
parameters can be used for observer and controller design for such complex systems.

Using sparse sensing and reconstruction techniques, we present a framework to detect dynamical
phenomena such as bifurcations and changes in flow topology in thermo-fluid dynamical systems. First,
a library of reduced order models of dynamic regimes is constructed, and online measurements are used
to identify the dynamic regime the flow resides at. The proposed method is based on dynamic mode
decomposition [2, 3] to obtain a low dimensional representation of the dynamics, and compressed
sensing [1], which allows for the use of few sensors to achieve the classification task. Moreover, by
processing time-sequential information from the sparse sensor array, the algorithm shows improved
robustness to noise. The method is purely data-driven, and can therefore be used in conjunction with
experimental or simulation data. This framework can be combined with adaptive reduced order models
for improved observation and control. Numerical results for the case of Navier-Stokes and Boussinesq
equations are presented.
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Nonlinear Model Reduction for Complex Systems using Sparse
Sensor Locations from Learned Nonlinear Libraries
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We demonstrate the synthesis of sparse sampling and dimensionality-reduction to characterize and
model complex, nonlinear dynamical systems over a range of bifurcation parameters. First, we con-
struct modal libraries using the classical proper orthogonal decomposition in order to expose the
dominant low-rank coherent structures. Here, libraries of the nonlinear terms are also constructed in
order to take advantage of the discrete empirical interpolation method and projection that allows for
the approximation of nonlinear terms from a sparse number of grid points. The selected grid points
are shown to be effective sensing/measurement locations for characterizing the underlying dynamics,
stability, and bifurcations of complex systems. The use of empirical interpolation points and sparse
representation facilitates a family of local reduced-order models for each physical regime, rather than
a higher-order global model, which has the benefit of physical interpretability of energy transfer be-
tween coherent structures. The method advocated also allows for orders-of-magnitude improvement in
computational speed and memory requirements.

Figure 1: The training module samples the various dynamical regimes (β1, β2, · · · , βJ) through snap-
shots. For each dynamical regime, low-rank libraries are constructed for the nonlinearities of the
complex system (ΦL,βj , Φ3,βj , Φ5,βj , ΦNL,βj ). The DEIM algorithm is then used to select sparse
sampling locations and construct the projection matrix P. The execution module uses the sam-
pling locations to classify the dynamical regime βj of the complex system, reconstruct its full state
(u = ΦL,βj(PΦL,βj)

†ũ), and provide a ROM (Galerkin-POD) approximation (u = ΦL,βja(t)).
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Certified Reduced Basis Approximation for the Coupling of Viscous
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We present a model order reduction approach for parametrized laminar flow problems including viscous
boundary layers. The viscous effects are captured by a Navier-Stokes model in the vicinity of the
boundary layer, whereas a potential model is used in the outer region [4]. By this, we provide an
accurate model avoiding the usage of the Kutta condition for potential flows as well as an expensive
numerical solution of a global Navier-Stokes model. The domain decomposition approach is combined
with the reduced basis method, which takes account of the parametrized nature of the heterogeneous
coupled system.

We avoid the more involved ansatz of posing localized, decoupled problems on the subdomains
[2] and instead consider a monolithic approach for this problem [3]. For this, we can apply recent
elements of the reduced basis methodology for non-coercive and nonlinear partial differential equations
[1, 5]. The accuracy of the reduced order model is ensured by computable a-posteriori error bounds.
Numerical experiments are conducted with a parametrized flow around a NACA airfoil, including
geometry variations. A considerable reduction of the computational times is obtained. Different
methods to approximate the inf-sup constant of the global Fréchet-derivative are compared.
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Space-Time RBM for parabolic PDEs with Parameter Functions
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We consider reduced basis methods for parabolic partial differential equations (PDEs) in space-
time variational formulation. The space-time approach avoids the (costly) time-stepping scheme in the
RB-online phase and provides a posteriori error bounds (cf. [2]). The PDE solution is a function in
space and time in an appropriate Bochner space.

We do not only allow parameters in the coefficients (for e.g. model calibration) but choose the
initial condition as a parameter (function) as well. A reduced basis method is introduced that han-
dels the parameter function and the corresponding infinite dimensional parameter space in a two-step
greedy procedure (cf. [1]). The space-time variational formulation is splitted. A reduced basis for the
initial condition is constructed first using a greedy procedure or proper orthogonal decompostion. In
the second step a greedy procedure leads to a basis for the evolutionary part of the solution. Here, the
reduced basis for the initial condition is involved. A posteriori error estimates are available. Online
we solve two small linear equation systems.

In option pricing, the method offers the possibility to use the same reduced basis for different types
of options as they differ only by their initial value (assuming the same model approach). Using the
reduced basis does not only reduce the computational effort in pricing but can also be used in the
PDE-constrained optimisation of the model calibration process.
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Goal-oriented error estimation for the reduced basis method
Application to sensitivity analysis
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The reduced basis method is a powerful model reduction technique designed to speed up the compu-
tation of multiple numerical solutions of parametrized partial differential equations. We consider a
quantity of interest, which is a linear functional of the PDE solution. A new probabilistic error bound
for the reduced model is proposed[1]. It is efficiently and explicitly computable. We show, on two
different practical examples, that this bound is clearly better than the naive Lipschitz bound and that,
at the expense of a slight, controllable risk, the performances of this new bound are better than the
ones of the existing dual-based output error bound[2].
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Figure 1: Comparison of the mean error bound on the non-corrected output, the mean dual-based error bound
(εcc) and the mean error bound on the corrected output (for risk α = 0.0001). The “equivalent” reduced basis
sizes are in abscissae.
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Offline Error Bounds for the Reduced Basis Method
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Error quantification is of vital importance in reduced-basis modeling. A reduced model is only
useful if it matches the high-dimensional model to within some tolerance. Even before it is time to
evaluate the error in a simulation, the reduced-basis method uses a posteriori error bounds to build
the model in an intelligent manner.

Reduced-basis models are most often generated iteratively using the greedy algorithm [3]. Each
time the basis needs to be expanded, the low-dimensional solution uN (µ) and the a posteriori error
bound ∆N (µ) are calculated for all parameters µ in some Ξ, which is a finite subset of the parameter
domain D. The basis is then enhanced using the high-dimensional solution u(µN+1) associated with
the parameter defined by

µN+1 = arg max
µ∈Ξ

∆N (µ)

‖uN (µ)‖ .

The greedy algorithm guarantees that the relative error is small for all µ ∈ Ξ. In practice, it is
expected that if Ξ is sufficently large and properly distributed, then the relative error will also be small
everywhere in D. For µ ∈ D \ Ξ the only way to verify that a tolerance has been met is to use a
posteriori error bounds. The difficulty is in dealing with error bounds that do not meet the tolerance:
either precomputed basis elements must be added to the basis [2] or new basis elements need to be
computed.

In real-time problems, which have been mentioned by many authors as possible applications of
reduced-basis modeling [1, 2], solutions are needed quickly and there is often no time to rerun simula-
tions with additional basis elements.

In this talk we propose a solution to this problem. The idea is to prove that the error will be
sufficiently small for all µ ∈ D. That cannot be achieved with traditional a posteriori error bounds,
but we present new error bounds that make it possible. We also demonstrate these ideas with numerical
results for some example problems.
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Using sensitivity analysis in the framework of proper orthogonal
decomposition with application to cake filtration
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We are considering a problem resulting from the mathematical modeling of an industrial process called
cake filtration [3]. It is described by a moving boundary problem involving a system of convection-
diffusion-reaction equations and kinetic equations. In our case the moving boundary is evolving in time
by a constant rate. The model exhibits various parameters, which influence the solution. The aim of
this study is to derive a reduced order model for a reference configuration and to adjust this model
under parameter change. Therefore we have to get rid of the time dependence of our computation
domain. To this end we apply a pullback operator. This results in a transformed formulation involving
a system of PDEs with time-dependent coefficients. As model reduction technique we choose proper
orthogonal decomposition (POD). It is well-known that the application of POD involves the solution of
an eigenvalue/eigenvector problem (cf. e.g. [5, 6]) using a snapshot matrix. Since we want to account
for the parameter sensitivity of our reduced model, a sensitivity analysis is performed. First of all
the sensitivity of the solution, i.e. of the snapshot matrix, is needed, in addition also the sensitivity
of the eigenvalue/eigenvector problem for computing the reduced basis [2, 4]. To derive an improved
approximation of the POD basis we combine POD and sensitivity analysis. Therefore we assume that
for at least one reference parameter configuration µ0 the POD basis and the corresponding sensitivities
are available. Then various methods can be used to approximate the POD for an arbitrary parameter
value µ, compare [1, 2, 4]. To solve the problem efficiently an offline/online decomposition is used, due
to the time dependence of the coefficients.
It is shown that the quality of the methods strongly depend on the underlying problem. In our case
the time horizon of the process has a large influence.
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Multifidelity methods for uncertainty quantification
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A classical and common remedy to reduce the runtime of uncertainty quantification is to replace the
high-fidelity (full) model by a cheap surrogate model of lower fidelity. Such a surrogate model can
be derived in various ways, including data-driven and projection-based model reduction, interpolation
and regression approaches from machine learning, and different modeling and physics assumptions. A
surrogate model is traditionally constructed with one-time high computational costs in an offline phase
and then replaces the high-fidelity model in an online phase to conduct the uncertainty quantification.
In this talk, we introduce multifidelity methods for uncertainty quantification that use in the online
phase a combination of the high-fidelity model with multiple surrogate models. Our multifidelity meth-
ods leverage surrogate models to accelerate the computation, but explicitly allow occasional recourse
to the high-fidelity model to establish accuracy guarantees on the overall uncertainty quantification re-
sult. These guarantees exist even in the absence of error bounds and error estimators for the surrogate
models themselves.

The key component of our multifidelity methods is model management that balances the model
evaluations across the high-fidelity and the surrogate models, and that combines the high-fidelity and
low-fidelity solutions. We discuss three cases: (1) Model management based on online adaptivity, where
a surrogate model (data-driven projection-based reduced model) is corrected online with sparse/partial
solutions of the high-fidelity model. (2) Model management based on importance sampling. (3) Model
management based on control variates, where we introduce an optimization problem to distribute
model evaluations between the high-fidelity model and an arbitrary number of surrogate models of any
type, including projection-based reduced models, data-fit interpolation models, and support vector
machines.

We show mathematically and demonstrate numerically that combining the high-fidelity model with
surrogate models of different approximation quality and costs is often more beneficial than combining
the high-fidelity model with accurate surrogate models only. In this sense, surrogate models that inform
different aspects of the high-fidelity model are better than surrogate models that are accurate but lack
a rich diversity. Numerical results with linear and nonlinear examples show that our multifidelity
methods achieve speedups by orders of magnitude compared to methods that invoke a single model
only.

46 Contributed Talks



A Modularized Modelling, Discretization and Model Order
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A major cause for performance degradation and failure of rechargeable Li-ion batteries is the dispo-
sition of a metallic Li-phase at the negative electrode of the battery cell (Li-plating). The process
leading to the formation of this additional phase, however, is still poorly understood. It is the aim
of the Multibat research project to gain a better insight into the causes of Li-plating with the help
of mathematical modelling and numerical simulation. However, since Li-plating is initiated on a mi-
crometer scale at the interface between electrode and electrolyte, battery models which resolve the
porous electrode geometry [2] are needed to accurately describe this effect. This in turn leads to high-
dimensional nonlinear finite volume discretizations [4] which require substantial computational effort
for their solution.

In this contribution we present the simulation workflow that has been established by Multibat
to tackle this challenging application problem. Model order reduction plays an integral role in this
workflow in order to make the microscale modelling approach computationally feasible for parameter
studies and responsive simulation tools. Our workflow is designed from ground up to be modular,
allowing different groups to contribute their expertise in the different parts of the modelling and simu-
lation pipeline, and allowing easy adaption of the developed algorithms and tools to similar application
problems based on transport processes in materials with microscale structure.

For the model order reduction we have implemented reduced basis approximation algorithms in
conjunction with empirical operator interpolation [1] for the nonlinear parts in the system’s space
differential operator as generic algorithms in our freely available model reduction software library
pyMOR [3]. Due to pyMOR’s interface-based approach, these algorithms can be automatically applied to
newly developed battery models in the battery simulation software BEST. At the same time, improved
reduction algorithms can be used without requiring changes in BEST. Moreover, pyMOR’s algorithms can
be easily reused with other PDE solvers to tackle new application problems.

Besides a presentation of the Multibat workflow, we will also cover the battery model and its
reduction in more detail and discuss our current results.
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Localization and adaptivity in Reduced Basis methods
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Reduced Basis (RB) methods are a powerful methodology to significantly reduced the compu-
tational complexity of solving parameterized partial differential equation problems. They allow for
speedups of several orders of magnitude, compared to traditional discretization methods (such as Fi-
nite Element methods), by splitting the computational process into an offline and an online part.
However, for interesting real-world problems, such as parametric multi-scale flow in porous media, the
offline part of the computation can become unbearably costly, thus limiting the usefulness of RB meth-
ods in these scenarios. In the past years, several methodologies arose incorporating localization ideas
from domain decomposition or numerical multi-scale methods into RB methods, such as the localized
reduced basis multi-scale method (LRBMS) [1, 2, 3].

The main idea of the LRBMS is to build several local reduced bases (associated with subdomains of
the physical domain) which are coupled in the spirit of discontinuous Galerkin methods. The resulting
local reduced bases consist of a locally varying number of local basis functions, representing possible
local influences of the parameterization. Since less global solution snapshots are required than with
traditional RB methods and all offline work can be executed in parallel on local quantities, the LRBMS
allows to balance the computational effort between the offline and the online part of the computation
by choosing an appropriate number of subdomains (see [1]).

We present a recent extension of the LRBMS, based on an offline/online decomposable localized a
posteriori estimate on the full error (including the discretization as well as the model reduction error, see
[2]). This estimate allows to efficiently identify subdomains where the local reduced basis is insufficient
during the online part of the computational process. By relaxing the traditional offline/online approach
the online adaptive LRBMS allows for local high-dimensional computations in order to adaptively
enrich these insufficient local reduced bases online, where required (see [3]).

The online adaptive LRBMS is thus suitable for complex real-world problems where we lack suffi-
cient resources to fully prepare a suitable reduced basis offline. We demonstrate the methodology in
the context of heterogeneous Darcy flow, compare it to related methods and discuss adaptivity in the
context of RB methods in general.
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The Algebraic Riccati Equation (ARE) is a quadratic matrix valued equation with a variety of
important applications in the field of dynamical systems, such as optimal feedback control, filtering
and state estimation, see e.g. [1]. As the modelling of many complex technical phenomena is usually
performed by means of partial differential equations, which after semidiscretization in space yield very
large time dependent ODE systems, the question arises how the resulting AREs can be solved efficiently.
Although many very efficient solution algorithms exist, real-time applications or many-query scenarios
in a parametric case can lead to infeasible calculation times. For that reason we are interested in
extending the reduced basis (RB) method (see e.g. [2]) for obtaining approximate solutions to the
ARE rapidly and with reliable error statements. RB methods aim at splitting the calculation in two
parts: A potentially expensive offline phase, where a suitable problem adapted basis is constructed,
followed by a projection of the original problem onto the low dimensional subspace. This expensive
procedure then pays off in the online phase, where approximate solutions can be calculated rapidly for
varying parameters, along with error bounds that quantify the quality of the approximation.

In order to apply the RB method for parametric AREs, we formulate a new procedure called “Low
Rank Factor Greedy” algorithm, which exploits a low rank structure in the solution matrices to build
a suitable low dimensional basis, cf. [4, 3]. We show how a new residual based error estimator can be
derived and how a computable version can be formulated by stating upper bounds for the constants
occuring in the error estimator. Furthermore, parameter separability of the data matrices will allow a
calculation completely independent of the original (high) dimension.

The solution to the ARE directly determines a so called gain matrix which solves an optimal feed-
back control problem for linear systems (linear quadratic regulator, LQR). As this is certainly among
the most interesting applications of the ARE, we state error bounds on the suboptimality imposed by
using the approximation from the proposed RB method as a surrogate for the true (expensive) solution
of the ARE, including bounds on the cost functional, the state and the output of the control systems.
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Data-driven interpolation of dynamical systems with after-effect

P. Schulze1 and B. Unger1

1Technische Universität Berlin, Berline, Germany

Simulation of complex physical, chemical or biological processes described by mathematical models
is a standard tool in research and industry. Besides the computational cost for solving high fidelity
models, it might even be challenging to develop the underlying dynamical system due to its complex
nature. Data-driven model order reduction is a promising approach to construct low-dimensional
models directly from measurements. The rate of change of realistic models often depends not only
on the current time point, but also on the configuration at previous time instances and we wish to
preserve this delay structure in the reduced model.

In this talk, we present a data-driven realization methodology for descriptor systems with retarded
argument and unknown delay, which is a generalization of the Loewner framework [1]. This is accom-
plished by using ideas from moment matching. The realization is obtained with low computational
cost directly from measured data of the transfer function. The internal delay is estimated by solving
a least-square optimization over some sample data. Our approach is validated by numerical examples,
which indicate the need for preserving the delay structure in the reduced model.
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Optimal local approximation spaces for component-based static
condensation procedures

K. Smetana1 and A. T. Patera2
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2Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,
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In this talk we introduce local approximation spaces for component-based static condensation (sc)
procedures that are optimal in the sense of Kolmogorov [2].

To facilitate simulations for large structures such as aircraft or ships it is crucial to decrease the
number of degrees of freedom on the interfaces, or “ports”, in order to reduce the size of the statically
condensed system. To construct optimal port spaces we consider a (compact) transfer operator that
acts on the space of harmonic extensions on the component pair associated with the respective port and
maps the traces (of the harmonic extensions) on the boundary ports to the trace on the shared port.
Solving the “transfer eigenproblem” for the composition of the transfer operator and its adjoint yields
the optimal space. For a related work in the context of the generalized finite element method we refer
to [1]. Next we introduce a spectral greedy algorithm to generalize the transfer eigenproblem procedure
to the parameter dependent setting and construct a quasi optimal parameter independent port space.
Moreover, we show that given a certain tolerance and an upper bound for the ports in the system, the
spectral greedy constructs a port space that yields a sc approximation error on a system of arbitrary
configuration which is smaller than this tolerance for all parameters in a rich train set. Numerical
experiments demonstrate the very rapid and exponential convergence both of the eigenvalues and the
sc approximation based on spectral modes also for non-separable and irregular geometries.
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A Model Reduction Approach to Structural Health Monitoring

T. Taddei1, Y. Maday2, A. T. Patera1, J. D. Penn1, and M. Yano1

1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,
MA, US

2Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris, France

We present a model reduction approach to the problem of Structural Health Monitoring of systems
modeled by parametric PDEs. The approach generates, by exploiting machine learning algorithms and
numerical simulations, a classifier that monitors the state of damage of the system.

Our approach is based on an offline/online computational decomposition. In the offline stage,
the field associated with many different system configurations, corresponding to different states of
damage, are computed and then employed to teach a classifier. In the online stage, the classifier is
used to associate measured data to the relevant diagnostic class. In addition, outlier detection schemes
can be applied to assess the relevance of the offline model and sampling assumptions.

In order to explore the high-dimensional parameter space associated with the possible system
configurations of the undamaged and damaged system, a component-based model reduction technique
based on static condensation Reduced Basis Element (scRBE) method is employed. The latter is
particularly effective in permitting large variations in geometry (and properties) and also variations in
topology.

We illustrate our method through an acoustic duct example: damage is represented as a side hole
of variable location and size; both the undamaged and damaged states are subject to uncertainty in
wavenumber; input impedance as a function of frequency is chosen as the classification feature.
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POD-Galerkin for finite elements with dynamic mesh adaptivity

S. Ullmann1,2, J. Lang1,2, and M. Rotkvic1

1Department of Mathematics, Technische Universität Darmstadt, Darmstadt, Germany
2Graduate School Computational Engineering, Technische Universität Darmstadt, Darmstadt,

Germany

Spatial adaptivity has recently gained interest in the context of snapshot-based reduced-order mod-
eling. Typically, one relies on the same spatial mesh for all snapshots, which allows only static
adaptivity [3]. Independent snapshot meshes have been investigated so far for wavelet-based [2] and
one-dimensional [1] discretization schemes. In this study, we consider POD-Galerkin modeling for
two-dimensional unsteady problems with dynamically adapted finite element snapshots.

We concentrate on snapshots obtained with newest vertex bisection based on some fixed initial
mesh. For any subset of such snapshots, by refinement one can find a common mesh on which all
snapshots in the subset can be represented exactly. Therefore, one way of creating a POD-Galerkin
model is to construct the common mesh of all snapshots, interpolate the snapshots onto this mesh, and
proceed with standard techniques. Alternatively, for PDEs with polynomial non-linearities one can
work with the common grids of all (N + 1)-tuples of snapshots, where N is the maximum polynomial
degree. This approach can be useful if the common mesh of all snapshots contains much more nodes
than each individual snapshot mesh.

As an example we study a viscous Burgers equation with smooth initial data. Figure 1 presents
adapted meshes at different solution times. Figure 2 shows the error of the projected snapshots (POD)
and the error of the POD-Galerkin solution (ROM) with respect to the original snapshots. The solution
of the reduced-order model stops converging when the basis functions start reproducing mainly spatial
discretization effects. At this point, however, the finite element error of the snapshots (FEM) already
suggests snapshot refinement in order to converge to the true solution.

Figure 1: Adaptive meshes at times t = 0.15 and t = 0.3.
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Figure 2: Convergence plot.

A necessary ingredient for our approach to POD-Galerkin modeling with adaptive finite element
snapshots is the ability to construct common meshes of sets of snapshots. While this may be difficult
to accomplish for arbitrary mesh structures, our work is a proof of concept for nested meshes, which
readily generalizes to projection-based methods other than POD.
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A Certified Reduced Basis Method for Variational Inequalities and
Optimal Control Problems

E. Bader1, M. Grepl1, M. Kaercher1, K. Veroy-Grepl1, and Z. Zhang1

1RWTH Aachen University, Aachen, Germany

In this talk, we present a method for computing reduced order models and associated a posteriori error
estimates for two problem classes: variational inequalities and optimal control.

In the first part of the talk, we present a minimum residual, slack–variable reduced basis approach
for variational inequalities of the first kind. The strict feasibility of the resulting approximations leads to
two significant improvements upon existing methods. First, it provides a posteriori error bounds which
are significantly sharper than existing bounds. Second, it enables a full offline–online computational
decomposition in which the online cost to compute the error bound is completely independent of the
dimension of the original (high–dimensional) problem.

In the second part of the talk, we discuss the use of reduced order models as surrogate models
for PDE–constrained optimal control problems. In this context, we develop rigorous and efficiently
computable a posteriori error bounds for both the optimal control and the associated optimal cost
functional.

Numerical results compare the performance of the proposed and existing approaches.
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Element-based model reduction for parameter dependent parabolic
PDE’s on networks

M. Walther1 and G.Leugering1

1Chair of Applied Mathematics 2, Friedrich-Alexander University Erlangen-Nürnberg,
Erlangen, Germany

We consider parameter dependent parabolic PDE’s on one-dimensional networks. For such networks
as well as component-based problems Maday and Rønquist [3] developed the reduced basis element
method (RBE). It is based on the idea of constructing a reduced basis for every network edge and
afterwards coupling the reduced components by a mortar-like method. This way, large networks can
be reduced without calculating a full solution of the given problem.

However, this decomposition procedure leads to a big problem for large parameter dependent
networks. Especially on edges far away from the boundary the solution is hardly predictable. Therefore,
the required boundary conditions for the edge problem in the POD process are not known. Based on
this, the computation of a reduced basis for this edge is not possible or leads to poor basis functions.
Initial approaches concerning this problem are given in the context of the static condensation reduced
basis element method (SCRBE) [2].

We present a method to calculate basis functions which remedies this problem and provides a good
basis representation for the single edges. Our approach uses piecewise linear functions to approximate
the unknown boundary conditions. Hereby, a new set of parameters is introduced which is additionally
considered in the POD method. Furthermore, we introduce an error analysis which substantiates the
good basis representation of the global solution.

We demonstrate our method on an one-dimensional network of heat equations with varying thermal
conductivity. The numerical treatment of the basis construction is based on the greedy-POD. Due to
the high number of parameters the method of Bui-Thanh et. al. [1] is applied which extends the greedy
by an optimization algorithm.
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An adaptive sampling approach for nonlinear dimensionality
reduction based on manifold learning

R. Zimmermann1 and T. Franz2

1Numerics Group, Institute Computational Mathematics, TU Braunschweig, Braunschweig,
Germany

2Institute of Aerodynamics and Flow Technology, German Aerospace Center (DLR),
Braunschweig, Germany

In [2], the authors and colleagues had proposed a non-intrusive dimensionality reduction method
for nonlinear parametric flow problems governed by the Navier-Stokes equations. The approach is
based on the manifold learning method of Isomap [3] combined with an interpolation scheme and
will be referred to hereafter as as Isomap+I. Via this method, a low-dimensional embedding space
is constructed that is approximately isometric to the manifold that is assumed to be formed by the
high-fidelity Navier-Stokes flow solutions under smooth variations of the inflow conditions.

As with almost all model reduction methods, the offline stage for the Isomap+I approach requires a
suitable design of experiment, i. e., a well-chosen sampling of high-fidelity flow solutions, the so-called
snapshots. The online stage, however, might be considered as an adaptive way for choosing for each
low-order prediction the most suitable local snapshot neighborhood rather than using all available
snapshot information in a brute-force way. The notion of locality is based on the Isomap metric.

This talk will focus on an adaptive construction and refinement of the underlying design of exper-
iment. Since Isomap comes with a natural non-Euclidean metric for measuring snapshot distances,
we make use of this metric to detect gaps in the embedding space. By the (approximate) isometry
between the embedding space and the manifold of flow solutions, we obtain in this way a manifold
filling design of experiment. In contrast, standard approaches like the Latin Hypercube method [1] aim
at a parameter-space filling design of experiment. The performance of the proposed manifold filling
method will be illustrated by numerical experiment, where we consider nonlinear parameter-dependent
steady-state Navier-Stokes flows in the transonic regime.
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Control of an elastic structure
based on Galerkin approximations

A. Zuyev1

1Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

In this talk, we consider an elastic shell model described by the following variational formulation:
∫

D



ρ
(
∂2r̃

∂t2
, δr

)
+

2∑

i,j=1

(
1

2

∂Φ

∂εij
δgij +

∂Φ

∂κij
δqij

)
− (W̃ , δr)



 |G̊|

1/2dξ1dξ2 −
∫

Γ
(F̃ , δr)ds = 0, (1)

for each admissible variation δr(ξ1, ξ2, t). Here ρ is the surface density, r̃(ξ1, ξ2, t) is the radius vector
describing the median surface of the shell, (ξ1, ξ2) ∈ D ⊂ R2 are the Lagrangian coordinates, Φ(ε,κ) is
the energy density, tensors ε = (εij) and κ = (κij) are introduced to measure the strain and bending,
G̊ is the metric tensor, gij and qij are components of the first and the second quadratic forms of the
median surface, respectively. We assume that the shell is controlled by the force F̃ on the boundary Γ
of D, and that external disturbances W̃ are distributed on the shell surface. Variational formulation (1)
is obtained by applying Hamilton’s principle within the framework of classic shell theory [1].

In order to derive a reduced model, we consider a finite set of basis functions r1(ξ1, ξ2), r2(ξ1, ξ2),
..., rN (ξ1, ξ2) and assume that

r̃(ξ1, ξ2, t) =
N∑

j=1

qj(t)rj(ξ
1, ξ2) and δr(ξ1, ξ2, t) ∈ span{r1(ξ1, ξ2), r2(ξ1, ξ2), ..., rN (ξ1, ξ2)}.

As a result, we get the following Galerkin system for (1):

Mq̈(t) +Kq(t) = B̄u+ d(t), q(t) =




q1(t)
q2(t)
...

qN (t)


 , u =




u1

u2
...
um


 , (2)

where u ∈ Rm is the control (represented in terms of the integral of F̃ over Γ) and d ∈ RN is the
disturbance vector (represented via the integral of W̃ over D). The procedure for computing the
components of matrices M , K, and B̄ is described in the paper [1].

We address the following problems for the Galerkin system in this talk:

1. for a given disturbance d, find a control u that minimizes the total stress in the shell;

2. identification of the disturbance vector d;

3. observer design problem for system (2) with the output from strain gauges;

4. stabilization of system (2) by a state feedback law and with an observer-based controller.

We also show some simulation results for reduced system (2) with two degrees of freedom where the
basis functions r1(ξ1, ξ2) and r2(ξ1, ξ2) are computed by a finite element method.
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Error Estimation in Frequency Domain and its Use for Model
Reduction of Quadratic Bilinear Systems

M. I. Ahmad1, L. Feng1, and P. Benner1

1Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

We consider interpolatory techniques for model reduction of quadratic bilinear systems. The input-
output representation of these nonlinear systems in frequency domain involves multivariate generalized
transfer functions, each representing a subsystem of the original system. Existing interpolatory tech-
niques [3, 1] for model reduction of quadratic bilinear systems interpolate these generalized transfer
functions at some random set of interpolation points or by using the corresponding linear iterative
rational Krylov algorithm. The goal here is to propose an approach that identifies a good choice of
interpolation points based on the error bound expressions derived recently in [2]. We extend the use of
error estimators to quadratic bilinear systems by identifying error bounds for the generalized transfer
functions. This allows us to iteratively update the interpolation points in a predefined sample space
by selecting the points corresponding to the maximal error bound. The approach results in a greedy
type algorithm for model reduction of the generalized transfer functions and therefore for the quadratic
bilinear system. Numerical results show the importance of choosing the interpolation points for some
benchmark examples.
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A Certified Model Reduction Approach
for robust optimal control with PDE constraints.

A. Alla1, M. Hinze1, O. Lass2, and S. Ulbrich2

1University of Hamburg, Hamburg, Germany
2TU Darmstadt, Darmstadt, Germany

We investigate the optimal placement of a permanent magnet in the rotor of a synchronous ma-
chine. The goal is to optimize the volume and position while maintaining a given performance level.
These quantities are computed from the magnetic vector potentials obtained by the magnetostatic
approximation of Maxwell’s equation. Our optimization problem is governed by an elliptic partial
differential equation and due to manufacturing, there are uncertainties in material and production
precision. We introduce a robust optimization problem that accounts for uncertain model and opti-
mization parameters. The resulting optimization problem, utilizing the robust worst-case formulation,
is of bi-level structure. The solution of this problem may involve the solution of several Partial Differen-
tial Equations and, for this reason, we introduce a model reduction technique in order to approximate
the problem efficiently. In particular, we propose a goal-oriented model order reduction approach in
order to avoid expensive offline stages and to provide a certified reduced order surrogate model for
the parametrized PDE which then is utilized in the numerical optimization. Numerical results are
presented to validate the presented approach.
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RBniCS – reduced order modelling in FEniCS

F. Ballarin1, A. Sartori1, and G. Rozza1

1mathLab, Mathematics Area, SISSA, International School for Advanced Studies, Trieste,
Italy

RBniCS [1] is a python-based library, developed on top of FEniCS [3], aimed at the developement
of reduced order models in the FEniCS environment. In particular, reduced order techniques such
as the certified reduced basis method and proper orthogonal decomposition-Galerkin methods are
implemented. The FEniCS project allows RBniCS to take advantage of the high-level (e.g., human
readable) code used for the automated solution of partial differential equations. Thanks to the features
of FEniCS the final user needs to prepare a short code (around 100 lines) to carry out a reduced order
simulation.

It is ideally suited for novice users willing to learn reduced basis methods and reduced order
modelling, thanks to an object-oriented approach and an intuitive and versatile python interface.
Indeed, it is a companion of the introductory reduced basis handbook [2], and has been already used
in doctoral classes within the “Mathematical Analysis, Modelling, and Applications” PhD course at
SISSA, as well as for courses within the “Master in High Performance Computing” held by SISSA and
International Centre for Theoretical Physics (ICTP).

RBniCS can also be used as a basis for more advanced projects that would like to assess the
capability of reduced order models in their existing FEniCS-based software, thanks to the availability
of several reduced order methods and algorithms in the library.
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PMOR for Nanoelectronic Coupled Problems

N. Banagaaya1, L. Feng1, and P. Benner1

1Max Planck Institute Dynamics of Complex Technical Systems, Magdeburg, Germany

Designs in nanoelectronics often lead to problems that are very large and that include strong
feedback couplings. Industry demands to include variability to guarantee quality and yield. These
parameter variations maybe due to material properties, system configurations, etc. It also requests to
incorporate higher abstraction levels to allow for system simulation in order to shorten design cycles,
while preserving accuracy. The transient circuit modelling and space discretized full Maxwell equations
yield parameterized differential-algebraic systems (DAEs). In this work, we consider those DAEs that
are quadratic in state space x = x(µ, t) and parameterized by a vector µ ∈ Rd,

E(µ)x′ = A(µ)x(µ) + xTF(µ)x+B(µ)u(t),

y = C(µ)x+D(µ)u(t),
(1)

where d is the number of parameters, x ∈ Rn is the state vector, the matrix E(µ) ∈ Rn×n is sin-
gular for every parameter µ, A(µ) ∈ Rn×n,B(µ) ∈ Rn×m,C(µ) ∈ R`×n,D(µ) ∈ R`×m. The ten-
sor F(µ) ∈ Rn×n×n is a 3-D array of n matrices Fi(µ) ∈ Rn×n, i = 1, . . . , n, and xTF(µ)x :=[
xTF1(µ)x, . . . ,x

TFn(µ)x
]T

∈ Rn. We assume that the matrices (E(µ),A(µ),B(µ),C(µ),D(µ)) and

the tensor F(µ) can be written as an affine parameter dependence, that is M(µ) = M0 +
m∑
i=1

fi(µ)Mi,

where the scalar functions fi determine the parametric dependency, which can be nonlinears function
of µ, and Mi can either be a constant matrix or a constant tensor. u = u(t) ∈ Rm and y = y(t, µ) ∈ R`

are the inputs (excitations) and the desired outputs (observations), respectively. We note that system
(1) includes electro-thermal couplings. The scientific challenges are to develop efficient and robust
techniques for fast simulation of strongly coupled systems, that exploit the different dynamics of sub-
systems, and that can deal with signals that differ strongly in the frequency range and parameter
variations. This calls for the application of parameterized model order reduction (PMOR) techniques.
However, there exist no such PMOR techniques for quadratic coupled DAEs. In [1], a PMOR method
for Electro-Thermal Package Models is proposed. This PMOR method involves first decoupling the
parameterized quadratic DAE (1) into quadratic differential (thermal part) and algebraic (electrical)
parts. Then the standard PMOR techniques such as PMOR based on implicit moment-matching [2]
can be used to reduce both parts which leads to reliable and accurate PROM. We intend to extend
these ideas to other coupled problems from nanoelectronics such as Power-MOS devices.

References

[1] N. Banagaaya, L. Feng, P. Meuris, W. Schoenmaker, and P. Benner. Model order reduction of an
electro-thermal package model. In 8th Vienna International Conference on Mathematical Modelling
(MathMod Vienna), Feb 17-20, volume 8, pages 934–935. Elsevier, 2015.

[2] P. Benner and L. Feng. A robust algorithm for parametric model order reduction based on implicit
moment-matching. In Reduced Order Methods for Modeling and Computational Reduction, MS&A
Series A. Quarteroni, G. Rozza (editors), volume 9, pages 159–186. Springer, 2014.

64 Poster Presentations



Stability Preserving, Adaptive Model Reduction of DAEs by Krylov
Subspace Methods

A. Castagnotto1, H. K. F. Panzer1, and B. Lohmann1

1Chair of Automatic Control, Technische Universität München, Garching, Germany

Model order reduction based on Krylov subspace methods stands out due to its generality and low
computational cost, making it a predestined candidate for the reduction of truly-large-scale systems.
Even so, the inherent flexibility of the method can lead to quite unsatisfactory results as well. In
particular, the preservation of stability is not guaranteed per se, attaching even more importance to
the careful selection of free design parameters. Whenever a given system is modeled by a set of linear
ordinary differential equations (ODE), some remedies for stability preservation are available, such as
the one presented in [4] for strictly dissipative realizations or the H2-pseudooptimal reduction strategy
introduced in [3, 5].

Oftentimes the object oriented, computerized modelling of dynamical systems yields a system
of differential algebraic equations (DAE), which present characteristics not covered by standard ODE
theory. In particular, the transfer behavior might be improper and in general, model reduction involves
the approximaton of the dynamical and preservation of the algebraic part [1]. Even though in recent
years many publications addressed DAE-aware reduction strategies for different indices and structures,
the problem of stability preservation is hardly covered.

In this contribution, we consider index-1 DAEs in semiexplicit form and propose two reduction
strategies that guarantee the stability of the reduced model. In this context, we will take special care
in effectively reducing the underlying ODE while operating on the DAE. We will show in theory and
through numerical examples that this is not always granted when extending the DAE-aware procedure
described in [1] to the case of one-sided reduction. Moreover, we will show that also in the DAE case
H2-pseudooptimal reduction has a series of advantages. The resulting stategy, adapted from [2], will
preserve stability and select adaptively both the expansion points and the order of the Krylov subspace.
The case of improper DAEs retaining an implicit feedthrough will be considered both in theory and
examples.
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Reduced Basis method applied to large scale non linear
multiphysics problems

C. Daversin1, C. Prud’homme1, and C. Trophime2

1Institut de Recherche Mathématique Avancée, Université de Strasbourg, Strasbourg, France
2Laboratoire National des Champs Magnétiques Intenses, CNRS Grenoble, Grenoble, France

The Laboratoire National des Champs Magnétiques Intenses (LNCMI) is a French large scale
facility [2] enabling researchers to perform experiments in the highest possible magnetic field. The
design and optimization of such magnets require the prediction of performance metrics which can be
the magnetic field in the center, maximum stresses, or maximum and average temperatures. These
outputs are expressed as functionals of field variables associated with a set of coupled parametrized
PDEs involving materials properties as well as magnet operating conditions. These inputs are not
exactly known and form uncertainties that are essential to consider, since existing magnet technologies
are pushed to the limits.

Solutions of a multi-physics model involving electro-thermal, magnetostatics and mechanics are
requested to evaluate these implicit input-output relationships, but represent a huge computational
time when applied on real geometries. The models typically include mesh (resp. finite element approx-
imations) with (tens of) millions of elements (resp. degrees of freedom) requiring high performance
computing solutions. Moreover, the non affine dependance of materials properties on temperature
render these models non linear and non affinely parametrized.

The reduced basis (RB) method offers a rapid and reliable evaluation of this input-output rela-
tionship in a real-time or many-query context for a large class of problems among which non linear
and non affinely parametrized ones. This methodology is well adapted to this context of many model
evaluations for parametric studies, inverse problems and uncertainty quantification.

In this talk, we will present the RBmethod applied to the 3D non-linear and non affinely parametrized
multi-physics model used in a real magnet design context. This reduced model enjoys features of re-
duced basis framework ([3, 1]) available with opensource library Feel++. (Finite Element method
Embedded Language in C++, http://www.feelpp.org). Validations and examples will be presented
for small to large magnet models, involving parametric studies and uncertainty quantifications.
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Adaptive Preconditioning of Fast Frequency Sweeps by ROMs

O. Floch1, A. Sommer1, D. Klis1, and R. Dyczij-Edlinger1

1Chair for Electromagnetic Theory, Saarland University, Saarbrücken, Germany

Adaptive multi-point methods of model-order reduction (MOR) provide a highly efficient way of
computing the broadband frequency response of electromagnetic structures by the finite-element (FE)
method. When the considered model is many wavelengths in size, however, the dimension of the
FE system is typically so large that it must be solved by iterative methods. Since the number of
expansion points for the reduced order model (ROM) tends to grow as well, generating the ROM
becomes computationally expensive.
To alleviate this problem, the present paper proposes to employ the ROM already available at a given
adaptive step for constructing an efficient two-level preconditioner [1]. As the preconditioner is built in
an adaptive manner, we use a domain-decomposition (DD) method [2] as a one-level preconditioner. To
demonstrate the benefits of the suggested approach, we consider a linear array of 50 Vivaldi antennas
in the frequency band f ∈ [1, 4] GHz. The geometry of a single radiator is shown in Figure 1. FE
discretization results in a linear system of dimension 8 · 106. It is solved by the restarted GMRES(30)
iterative method [3], with stopping criterion δ = 10−6. As shown in Figure 2, the ROM-based two-level
approach proposed in this paper reduces iteration count up to a factor of 20, compared to a standard
DD preconditioner.
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Simulating rigid body motion occurring in eddy current problems
by parametric model-order reduction

D. Klis1, O. Farle2, and R. Dyczij-Edlinger1

1Chair for Electromagnetic Theory, Saarland University, Saarbrücken, Germany
2CST AG, Darmstadt, Germany

In the numerical modeling of eddy current problems, such as wireless power transfer (WPT) systems,
one commonly encounters geometrical parameters, especially rigid body motion. One way of tackling
this class of problems is by a coupled finite-element boundary-element (FE-BE) scheme [2], which does
not require a mesh between the rigid bodies. The FE-BE method involves assembling and solving a large
system of equations. Projection-based methods of parametric model-order reduction (MOR) greatly
reduce computational times and thus enable tasks that require large numbers of function evaluations,
like numerical optimization or response surface modeling. However, such MOR methods require the
underlying model to exhibit affine parameterization, which is not the case for the boundary-element
part of the FE-BE method. To make the model accessible to MOR, we propose to approximate the
Green’s function in affine form by means of the empirical interpolation method [1].

We consider an inductive WPT system where the lateral position t and angle α of the receiver coil
are variable; see Figure 1. The resulting FE-BE model has about 250,000 degrees of freedom (DoF).
Figure 2 shows the inductive coupling factor k versus the geometrical parameters at f = 1 Hz, using
a reduced-order model (ROM) of 232 DoFs. The absolute error in k with respect to the full model,
depicted on Figure 3, confirms that the ROM is of sufficient accuracy compared to typical errors of
the underlying discretization methods. Online computational speed of the proposed method is more
than 4000 times faster than with the conventional approach.

Figure 1: Geometric parameters. Figure 2: Coupling factor. Figure 3: Absolute error.
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Model Reduction of a Nonlinear Crash Model of a Racing Kart

J. Fehr1, D. Grunert1, P. Holzwarth1, and P. Eberhard1

1Institute of Engineering and Computational Mechanics, University of Stuttgart, Stuttgart,
Germany

Nowadays, crash simulation with commercial Finite-Element (FE) software is a core area of vehicle
development. Bearing in mind that crash simulation is among the most calculation-time consuming task
in car design, the usage of model reduction for speed-up and data reduction is a logical consequence.
The dynamical behavior of a racing kart, depicted in Fig. 1, crashing into a rigid pole and exhibiting a
plastic deformation, see Fig. 2, should be approximated by a reduced order model in LS-DYNA. The
racing kart is a simple automobile. Hence, its crash behavior is strongly influenced by the nonlinear
plastic deformation characteristics of the frame. Therefore, the kart frame is an ideal example to
discuss the performance of various model reduction methods for structures in crashes.
In a crash scenario, some parts of the automobile exhibit large deformations, whereas others experience
merely small linear vibrations [1]. In order to determine which parts of the model exhibit deformations
and which can be considered as linear, it is necessary to run multiple simulations with varying para-
meters, e.g. impact velocity, in an offline step. Similar to passenger cars in frontal crashes, the plastic
deformation in the rear of the kart is rather small. As a consequence, this part is an area where an
approximation with linear ansatz functions is suitable. Subsequent to the substructure decision, the
correct modeling and handling of the interfaces between the linearly approximated and nonlinear part,
see e.g. [2], is decisive for good reduction results. For the calculation of the linear ansatz functions,
the nonlinear FE equationMMM e · q̈qq(t)+kkke(qqq, q̇qq, t) = fff(t) is linearized with the help of the implicit solver
option of LS-DYNA to a second order linear time invariant systemMMM e · q̈qq(t)+KKKtang

e ·qqq(t) = fff(t) where
the elastic stiffness vector kkke(qqq, q̇qq, t) is approximated by the tangential stiffness matrix KKKtang

e times
the deformations. Afterwards, the linearized model of the nonlinear LS-DYNA model is imported into
MatMorembs and the linear ansatz functions are calculated by model based projection methods, e.g.,
Krylov, Gram, modal. Finally, the reduced model consisting of a linear reduced part and a nonlinear
part is simulated with LS-DYNA in the online step. To evaluate the performance of the applied
approach, the accelerations of the driver calculated with various reduction and parameter settings are
compared with the accelerations measured when the original, unreduced nonlinear model is simulated.

Figure 1: Racing kart used as a surrogate model. Figure 2: Plastic strain after 35 ms.
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Chebyshev Interpolation for Parametric Option Pricing

K. Glau1, M. Gaß1, M. Mahlstedt1, and M. Mair1,2

1Technische Universität München, Garching, Germany
2Unicredit, Munich, Germany

In finance, for calibration, risk assessment and quotation tasks, the same pricing problem has to be
computed for a large range of parameter values on a day-to-day or even high-frequency basis. Given
the recurrent nature of the pricing problem, we exploit the way prices cohere for different parameters
so as to develop fast and accurate approximation methods for option prices.
To that extent, we propose a polynomial interpolation method for Parametric Option Pricing (POP).
The core idea of this method is to interpolate the prices in the parameter space with (tensorized)
Chebyshev polynomials. For parameters p the option price Pricep is then approximated by

Pricep ≈
∑

j∈J
cjTj(p)

for so-called Chebyshev polynomials Tj and known, precomputed coefficients cj . A demonstration of
the approximation capability of the method is given by Figure 1.
The procedure naturally splits into two phases. In the precomputational phase the prices are computed
for some fixed parameter configurations, the interpolation points. Here, any appropriate pricing method
for instance based on Monte Carlo, PDE or Fourier techniques can be chosen, which reveals the
universal applicability of the method. As the resulting prices may be conveniently stored, computing
the price for arbitrary parameter constellations in the second phase simply amounts to the evaluation
of a polynomial whose coefficients are explicitly known. The method thereby provides a significant
improvement in computation time for the derivation of option prices compared to alternative pricing
methods mentioned above. A thorough analysis of the Chebyshev approximation method and detailed
numerical studies are provided in [1].

2

T

1.5

Chebyshev error, Merton

1
0.50.8

1

-2

0

2

1.2

S0/K

×10-7

∆
P
ri
ce

2

T

1.5

Chebyshev error, CGMY

1
0.50.8

1

0

5

-5
1.2

S0/K

×10-8

∆
P
ri
ce

2

T

1.5

Chebyshev error, NIG

1
0.50.8

1

-2

0

2

1.2

S0/K

×10-4

∆
P
ri
ce

Figure 1: Absolute pricing error for a European call option in different models. The depicted error
surfaces are generated by a Chebyshev approximation for the two free variables S0/K and T . The
model parameters have been fixed to reasonable values. The interpolation operator has been set up
with a very low number of only N = 11 interpolation points in each of the two dimensions.
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Parametric Option Pricing with Fourier Methods

K. Glau1, M. Gaß1, and M. Mair1,2
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2Unicredit, Munich, Germany

We propose an interpolation method tailored to parametric option pricing of liquid options in finance.
In most of the relevant asset models, prices of liquid options have a representation in terms of the Fourier
transform of the distribution of the underlying random variable and of the payoff function. These types
of options and methods are used for model calibration, where the same pricing problem needs to be
solved for a large set of different parameters. In literature on parametric option pricing the main focus
is on Fast Fourier techniques, which typically enables efficient computation of the price for a large set
of option’s strike and the initial asset value – which is a specific parameter dependence. Additionally,
reduced basis for the related parametric Kolmogorov equations, which often are of parabolic type,
has been proposed in the literature. In contrast, to benefit from both the recurrent nature of the
option pricing problem and the explicitly given Fourier transforms of the option prices, we present
a new interpolation method for Fourier prices. For a large variety of option types and models, we
provide theoretical error estimates. Our numerical experiments confirm the theoretical findings and
show a significant gain in efficiency. Compared to our recent work, [1], where we explore (tenzorized)
Chebyshev interpolation for POP, the new interpolation method has two major advantages:

– The error decay can be estimated independently of the dimension of the parameter space.

– The interpolation yields an expansion that is explicit in the model parameters.

Our experimental results are illustrated in Figure 1.
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Optimal snapshot location for POD model order reduction in
optimal control

A. Alla1, C. Gräßle1, and M. Hinze1

1Department of Mathematics, University of Hamburg, Hamburg, Germany

In this work we present the approximation of an optimal control problem for linear parabolic PDEs.
The method is based on a model reduction technique using Proper Orthogonal Decomposition (POD-
MOR). POD-MOR is a Galerkin approach where the basis functions are obtained upon information
contained in time snapshots of the parabolic PDE related to given input data. In the present work we
show that it is important to have knowledge about the controlled system at the right time instances.
Several works focus their attention on the choice of the snapshots in order to approximate either
dynamical systems or optimal control problems by suitable surrogate models [2, 3, 4].
In our work, we address the question of optimal snapshot location by means of an a-posteriori error
control approach proposed in [1], where the optimality system is rewritten as a second order in time
and a fourth order in space elliptic equation. This equation then is approximated with a space-time
finite element approach whose advantage is the possibility to perform a space-time grid adaptivity
based on a-posteriori error estimates. In particular, the time adaptivity will turn out relevant to build
the optimal grid which should be used to solve the optimal control problem. Here the contribution for
the reduced control problem is twofold: we directly obtain snapshots from the optimal control problem
related to an approximation of the optimal control and, at the same time, information about the time
grid. Finally, we present numerical tests to illustrate our approach and to show the effectiveness of the
method in comparison to existing approaches.
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Rank-optimal approximations of higher-order tensors
for low-dimensional space-time Galerkin approximations

of parameter dependent dynamical systems

Ma. Baumann1, P. Benner2, and J. Heiland2

1Delft Institute of Applied Mathematics, TU Delft, Delft, Netherlands
2Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

We interpret a dynamical system of type

ẏ = f(y;µ), on (0, T ], y(0) = y0, as a map G : µ 7→ y

that maps an input or a parameter µ onto the state y which is a function of space x ∈ Ω and time
t ∈ [0, T ]. We assume that the state is observed in a time-space tensor space, i.e. y(t, x) = τ(t) · ξ(x),
with τ ∈ S := L2(0, T ) and ξ ∈ Y := L2(Ω). Thus, the state observations can be approximated
using the tensor product of some bases {ν1, . . . , νq} ⊂ Y and {ψ1, . . . , ψs} ⊂ S of finite dimensional
spaces of S and Y . If we also consider the inputs in a finite dimensional space span{µ1, . . . , µr}, then
an approximation of the Input/Output (I/O) map G is a mapping G : Rr → Rq · Rs, which can be
interpreted as a tensor H ∈ Rr×q×s.

Using a higher-order SVD of H, cf. [2], we propose some low-dimensional bases for subspaces of
Y and S optimized with respect to measurements in the space and time domain and sampling in the
input space. In [1], we have shown that this approach can be seen as a generalization of the well-known
proper orthogonal decomposition (POD) method. Basically, instead of using snapshots of the solution
trajectory at discrete time instances, time information is sampled by testing against test functions in
L2(0, T ). The space dimension Y of the I/O map is readily defined by the expansion of the state in a
Finite Element basis. The benefits of this approach are discussed and illustrated in [1].

In this contribution, we extend the I/O map based approach to control or parameter dependent
setups in two steps. Firstly, we also sample the parameter space which adds to the space and time
sampling and, thus, leads to a three dimensional input-to-output tensor. Secondly, we employ the
higher-order SVD [2] to define new space and time bases that are optimized with respect to inputs
and time or inputs and space, respectively. After a space-time Galerkin projection, the solution of the
reduced systems can be obtained as the solution of a small system of algebraic equations.

By means of Burgers’ equation for varying viscosity parameters, we compare this space-time-
parameter Galerkin approach with the standard POD method and discuss it’s relation to Proper
Generalized Decomposition [3] and computational issues such as online-offline decompositions and
stability of the approximations with respect to changes in the reduced bases.
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Reduced Basis Approximations for Maxwell’s Equations in
Dispersive Media

M. Hess1 and P. Benner1

1Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

The simulation of the propagation of an electromagnetic pulse through linear, temporally dispersive
media (like water) or systems (like a dielectric waveguide) is a typical problem of electromagnetics.

Consider the Maxwell-Debye model formulated in second-order form in the electric field E

1

µ0
∇×∇× E + ε0ε∞∂2tE = f − ∂2t P,

∂tP +
1

τ
P =

ε0(εs − ε∞)

τ
E,

with polarization P , relaxation time τ , relative permittivity at low-frequency limit εs and relative
permittivity at high-frequency limit ε∞, and a broadband input source f , which is modeled as a
Gaussian pulse, [2]. The equations are discretized with Nédélec finite elements of first order over a 2D
unit square. Dirichlet zero boundary conditions (i.e. PEC, perfectly electric conducting) are imposed
on all boundaries.

The model is parametrized by τ and ∆ε = εs−ε∞, defining the 2-dimensional parameter domain D.
Using a POD-greedy sampling driven by an error indicator, we seek to generate a reduced model which
accurately captures the dynamics in the parameter domain D, [3]. Typically, the reduced basis model
reduction reduces the model order by a factor of more than 100, while maintaining an approximation
error of less than 1%.

Since the POD step in each iteration of the greedy sampling is computationally expensive, we
test and compare an interpolatory decomposition, cf. [1], in place of the POD. First numerical re-
sults indicate that the interpolative decomposition gives at least comparable or even better results in
computational time and approximation quality to the POD for this model.
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The Versatile Cross Gramian
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The cross gramian matrix [1] is a tool for model order reduction and system identification of linear
control systems with special focus on symmetric systems. We illustrate the cross gramian’s relation to
the controllability and observability gramian, the Hankel operator and balanced truncation, which can
be used for model reduction. For system identification, the cross gramian can be utilized for sensitivity
analysis [7] and decentralized control [6]. Furthermore, the cross gramian can boast with relations to
the associated transfer function such as the Cauchy-index and system gain.

Beyond linear systems the cross gramian has been extended to nonlinear systems by a generalization
to gradient systems [5]. Alternatively, an empirical cross gramian [7, 2] has been developed, which can
also be used for parametrized systems [3]. Alongside, an extension of the cross gramian for parameter
identification and thus combined state and parameter reduction [2] is available. More recently the
cross gramian has been extended to non-symmetric systems [4] with a suprising result.

We give a tour through the results and applications of this system gramian uniting controllability
and observability as well as recent developments and the parallel empirical computation.
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Model Order Reduction for Pattern Formation in
FitzHugh-Nagumo Equation

B. Karasözen1, M. Uzunca1, and T. Küçükseyhan1

1Institute of Applied Mathematics & Department of Mathematics, Middle East Technical
University, Ankara, Turkey

We investigate the formation of Turing patterns in excitable media described by the diffusive FitzHugh-
Nagumo (FHN) equation. Different set of parameters satisfying Turing condition lead to labyrinth or
spot like patterns. The FHN equation consisting of one activator and one inhibitor is discretized in
space by the discontinuous Galerkin (DG) method [2] and by the Average Vector Field (AVF) method
in time [3]. Applying the POD-DEIM to the full order model (FOM) we show that using few POD
and DEIM modes, the dynamical behavior of the FHN equation and Turing patterns can be detected
accurately. Due to the local nature of the DG discretization, the POD-DEIM requires less number
of connected nodes for the nonlinear part of the FHN compared with the continuous finite element
POD-DEIM [1]. This leads to a significant reduction of the computation cost for DG POD-DEIM in
the reduced order mode (ROM).
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Model Order Reduction via a Balanced Truncation-Interpolation
Approach for Gas Networks

Y. Lu1, J. Mohring2, B. Liljegren-Sailer1, and N. Marheineke1

1Lehrstuhl Angewandte Mathematik 1, Friedrich Alexander University Erlangen-Nürnberg,
Erlangen, Germany

2Fraunhofer-Institut für Techno- und Wirtschaftsmathematik, Kaiserslautern, Germany

This work deals with the Gramian based model order reduction (MOR) [1, 2] of nonlinear, paramet-
ric systems of partial differential-algebraic equations which arise from transient gas network modeling.
We present an approach based on a linearization around parametrized static states, linear time-invariant
reduction and interpolation. The approximation quality is crucially determined by the choice of the
representative network states and the interpolation strategy, but also the underlying spatial discretiza-
tion and the index of the resulting temporal differential algebraic system play a non-negligible role.
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An algebraic approach to deal with nonlinearities in reduced basis
methods: the matrix discrete empirical interpolation

A. Manzoni1, F. Negri1, and D. Amsallem2

1CMCS-MATHICSE-SB, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
2Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, US

The low cost associated with the solution of reduced order models (ROMs) has in turn allowed their
use to accelerate real-time analysis, PDE-constrained optimization [2, 4, 5] and uncertainty quantifi-
cation [3] problems. In all these cases a suitable offline/online stratagem becomes mandatory to gain a
strong computational speedup. However, the complex parametric dependence of the discretized PDE
operators, as well as the nonlinear and (possibly, unsteady) nature of the equation, have a major
impact on the computational efficiency.

In this talk we show how to apply a Matrix version of the so-called Discrete Empirical Interpolation
(MDEIM) for the efficient reduction of nonlinear and nonaffine systems arising from the discretiza-
tion of parametrized PDEs [1]. Dealing with affinely parametrized operators is crucial in order to
enhance the online solution of ROMs such as the reduced basis method [6]. However, in many cases
such an affine decomposition is not readily available, and must be recovered through (often) intrusive
procedures, such as the empirical interpolation method (EIM) and its discrete variant DEIM. The
MDEIM approach presented in this talk allows instead to deal with nonlinearities, as well as with
non affinities arising from complex physical and geometrical parametrizations, in a non-intrusive, ef-
ficient and purely algebraic way. We propose different strategies to combine MDEIM with a state
approximation resulting either from a greedy algorithm or Proper Orthogonal Decomposition. The
capability of MDEIM to generate accurate and efficient ROMs is demonstrated on the solution of some
computationally-intensive classes of problems occurring in engineering contexts, namely parametrized
coupled problems, PDE-constrained optimization and uncertainty quantification problems.
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Model order reduction of dynamic skeletal muscle models

M. Mordhorst1,2, D. Wirtz1,2, and O. Röhrle1,2

1Institute of Applied Mechanics (CE), University of Stuttgart, Stuttgart, Germany
2Stuttgart Research Centre for Simulation Technology, Stuttgart, Germany

Forward simulations of three-dimensional continuum-mechanical skeletal muscle models are a complex
and computationally expensive problem. Considering a fully dynamic modelling framework based on
the theory of finite elasticty is challenging as the muscles’ mechanical behaviour requires to consider
a highly nonlinear, viscoelastic and incompressible material behaviour. The governing equations yield
a nonlinear second-order differential algebraic equation (DAE), which represents a challenge to model
order reduction techniques.
In detail, the governing equations to be solved in the solution domain are the balance of momentum
subject to the incompressibility constraint, i.e.

ρ0(X)
∂V

∂t
(X, t) = ∇P (X, t) +B(X, t) , s.t. J(X, t)− 1 = 0 , (1)

and a nonlinear constitutive equation of the form

P (X, t) = P iso(X, t) + P aniso(X, t) + P active(X, t) + P viscous(X, t) + p(X, t)F−T (X, t) . (2)

Herein, ρ0 is the muscle density, V is the velocity field, P is the first Piola-Kirchhoff stress tensor, B
are the body forces, J := detF is the Jacobian, F is the deformation gradient and p is the pressure.
Discretising the governing equations using the finite element method, one obtains the following system

Mu′′(t) +Du′(t) +K(u(t),w(t)) = 0 ,

s.t. g(u(t)) = 0 ,
(3)

where u is the vector of position coefficients, w contains the pressure coefficients, M , D, K are the
mass, viscous damping and generalised stiffness matrix, respectively, and g is the operator associated
with the incompressibility constraint.
For this complex problem, a simple transformation of the system into a first-order system in order
to obtain the general form of a parametric nonlinear dynamical sytem is not sufficient. Subsequent
reduction using existing MOR methods, such as POD combined with DEIM, see e.g. [3, 1], did not
lead to a stable reduced model. Therefore, other reduction methods and solution schemes need to be
investigated and modified. Conceivably, one could directly project and solve the second order system
by e.g. the Newmark method, see e.g. [2]. Further, to properly treat the constraint, the application of
theories for Hessenberg index 2 DAEs and ODEs on constraint manifolds are promising. Here, we will
show current results and discuss open questions.
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Time-Galerkin integrators for the dynamic simulation of local
reduced order models.
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3Department of Mechanical Engineering, Stanford University, Stanford, CA, US
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CA, US

Over the past decades, model order reduction (MOR) techniques have aided in the efficient description
of many highly computationally demanding models. One of the basic requirements for most developed
approaches, is that the response of a model can be well captured by a smaller (fewer variables, less
nonlinear equation evaluations, . . . ) model. However, some systems exhibit such strong nonlinearities
or are excited over such a wide range, that one such model cannot be constructed. In these cases
regular MOR methods cannot create a sufficiently small model to obtain the required size reduction.

Local reduced order models (LROM) can offer a solution when traditional MOR techniques are
not sufficient [1, 2]. In this approach a series of LROMs are constructed where each one provides good
accuracy only over a subregion of the system behavior. During the online evaluation the most suitable
LROM for a certain subregion is selected and evaluated. However, in a dynamic context, many jumps
from one LROM to the other can occur. These changes are generally nontrivial and have to be handled
properly in order to avoid parasitic dynamic effects. This is especially problematic for systems which
naturally exhibit a strongly energy conserving behavior, like (nonlinear) elastodynamic systems.

In this work we propose a time-Galerkin integrator which enables a highly flexible choice in how
the LROMs of (nonlinear) elastodynamic problems are handled while providing a guarantee of energy
conserving behavior, even over sudden model changes. Due to the common time-points between two
timeslabs, the time-Galerkin is perfectly suitable to perform model changes online. The proposed
approach is demonstrated on both linear and nonlinear examples. Through these examples, good
convergence and stability are demonstrated.
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Model Order Reduction of Nonlinear Magnetodynamics with
Manifold Interpolation

Y. Paquay1,2, O. Brüls3, and C. Geuzaine1
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In the model order reduction community, linear systems have been widely studied and reduced
thanks to various techniques [6, 7]. Proper Orthogonal Decomposition (POD) in particular has been
very successful, and has recently been gaining popularity in computational electromagnetics [4]. How-
ever, the efficiency of POD degrades considerably for nonlinear problems, in particular for nonlinear
magnetodynamic models—necessary for designing most of today’s electrical machines and drives.

We propose to investigate an algorithm which first applies the POD to construct reduced order
models of nonlinear magnetodynamic problems for discrete sets of values of the input parameters. Then,
for a new set of values of the input parameters, a nonlinear interpolation on manifolds is performed to
determine the reduced basis. This interpolation method is based on the theory previously studied for
aerodynamic problems [1, 2].

The goal here is not to speed up single shot calculations as in [5], but to be able to determine
efficiently reduced models for nonlinear problems based on previous offline computations. As a simple
application, we apply the procedure to a nonlinear inductor-core system, solved using a classical finite
element method [3]. In order to gauge the interest of manifold interpolation we compare the proposed
approach to the direct use of a precomputed reduced basis, as well as with the use of standard Lagrange
interpolation.
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Computational reduction strategies for bifurcations and stability
analysis in fluid-dynamics: applications to Coanda effect in cardiac

flows
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2Department of Mathematics, University of Houston, Houston, TX, US

We focus on reduced order modelling for nonlinear parametrized Partial Differential Equations, fre-
quently used in the mathematical modelling of physical systems.

A common issue in this kind of problems is the possible loss of uniqueness of the solution as the
parameters are varied and a singular point is encountered [3]. In the present work, the numerical
detection of singular points is performed online through a Reduced Basis Method, coupled with a
Spectral Element Method [2] for the numerically intensive offline computations.

Numerical results for laminar fluid mechanics problems will be presented, where pitchfork, hystere-
sis, and Hopf bifurcation points [1] are detected by an inexpensive reduced model.

Some of the presented 2D and 3D flow results [5] deal with the study of instabilities in a simplified
model of a mitral regurgitant flow [7] in order to understand the onset of the Coanda effect. The first
results are in good agreement with the reference [6, 4].
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Reduced Basis Approximation of Coupled Problems

M. Radic1

1Ulm University, Ulm, Germany

The coupling of two variational problems has many farreaching applications in several fields, such
as fluid flow through porous media [1] or chemical reactions in a catalyst or a fuel cell. We study
a coupled (time-dependent) convection-dominated problem on a domain Ω1 and a diffusion-reaction
problem on a domain Ω2, whereby Ω1,Ω2 are only connected through an interface. On this interface,
the interchange and interference between these two processes is modeled and therefore meaningful
boundary conditions have to be established. Different inflow conditions and reaction coefficients serve
as parameters.

Firstly, we can deduce a saddle-point formulation. However, existence and uniqueness of a solution
is not straightforward to prove. To overcome this issue, we will present an alternative approach partly
following [2]. Additionally, we apply the Reduced Basis Method on our coupled problem aiming a
reduction of computational time. To achieve this goal, we use an offline/online-decomposition and
efficient bounds for the arising error. Our approach is a space-time variational formulation of the
coupled problem and we utilize amongst others the error estimator developed in [3]. In this context,
we want to discuss the difficulties originating from the interferences on the coupling boundary. We
particularly consider the effect on the numerical determination of accurate bounds for the inf-sup and
continuity constants, which are crucial for the fast computation of efficient error estimators.
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Reduced Order Models for Distributed Adaptive Monitoring of
Atmospheric Dispersion Processes
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Atmospheric dispersion of hazardous materials due to chemical leaks can highly affect human
health and well-being. For this reason, online state and parameter estimation of these processes is
an important step for disaster response to enable the assessment of future impacts. The estimation
procedure relies on a combination of the forecasts of a process PDE-model and on measurements
obtained by multiple mobile sensor platforms, which are adaptively guided to locations where additional
measurements are most useful. The latter challenge can be solved by a cooperative vehicle controller
maximizing the quality of the estimates based on the current error covariance matrix [1, 2].

The described approach can be made more flexible and less prone to error if the required calculations
(model forecast, estimation procedure, vehicle control) are performed locally on-board of the sensor
vehicles instead of using a central supercomputer. While the on-board computing power is limited and
results have to be obtained in real-time, complex PDE-models are required to describe the dynamics
and to compute accurate forecasts. This highly motivates the use of model order reduction in this
context and demonstrates at the same time that the described problem scenario is a paradigmatic
application area for reduced order models.

A reduced joint state parameter estimation approach is developed for the advection-diffusion equa-
tion. The initial condition as well as possible source functions, shapes and locations are unknown.
However, it is assumed that the initial condition can be approximated by several radial basis functions
with height and shape parameter to be determined. Furthermore, source effects can be represented
by the convolution of the same radial basis functions with their height. In the offline phase, multiple
simulations with the different radial basis function as initial conditions are performed and snapshots
are taken. With the aid of Proper Orthogonal Decomposition, the reduced order model is constructed
out of the snapshot matrix and reduced model forecasts are performed locally to repeatedly and jointly
estimate process state and parameters of the radial basis functions with the Kalman Filter.

As a first step, a basic two-dimensional test-case, in which the true state is simulated along with
the estimation, is set up and promising results are obtained.
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Isogeometric analysis based reduced order modelling for
incompressible viscous flows in parametrized shapes: applications to

underwater shape design
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Italy

We provide a new concept "tool" from CAD-like geometry to final simulation with the aim of
dealing with parametrized shapes managed by efficient free-form deformation techniques into an iso-
geometric analysis setting. This tool is totally integrated into model order reduction techniques, based
on POD, developed for stable incompressible viscous flows (velocity and pressure) in parametrized
shapes. This computational environment has been created in the framework of the project UBE –
Underwater Blue Efficiency – for the optimization of the shapes of immersed parts of motor yachts,
including exhausting flows devices. The study is benefitting of several properties of reduced order
modeling approaches such as offline-online calculations for parametric design, as well as sinergies with
isogeometric analysis properties. Convergence, stability and consistency properties are verified as well
in test case and then applicative results are introduced.
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Physical and constraint DOF reduction of redundant multibody
systems using the Proper Orthogonal Decomposition
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Multibody simulation software has entered the industrial user’s market several years ago and is
nowadays part of a CAE engineer’s everyday life. Due to usability and time advantages in the mod-
eling process, such a simulation software is typically based on modeling strategies using a redundant
set of coordinates. Although such a redundant set simplifies the modeling process, modeling without a
minimal set of coordinates forces the multibody dynamics into differential algebraic equations (DAEs).
Unnecessary degrees of freedom (DOFs) are introduced easily through kinematic relations and espe-
cially when talking about planar problems, modeled in a 3D space, the number of unnecessary DOFs
increases rapidly. Further, unnecessary constraint equations which address such kinematic chains or
unstressed DOFs are typically introduced. The d-index three DAE systems of second order considered
in this contribution are modeled in the freeware multibody simulation softwareFreeDyn[1] using Euler
parameters and solved in the open source software Scilab [3] applying a HHT solver algorithm. Due
to the characteristic nonlinear system matrices, model reduction is not possible a-priori but needs at
least one full system forward simulation to rest on. Inspired by repetitive simulations necessary for e.g.
parameter identification [2], we focus on reducing such a highly redundant set of coordinates close to
a minimal set of coordinates representation by eliminating both, physical and constraint DOFs. This
contribution first gives a brief introduction to the underlying DAE system. In the second part model
reduction of redundant physical DOFs using a modified linear Galerkin projection based on a velocity
level Proper Orthogonal Decomposition (POD) is proposed. The subspace found by POD is further
applied to identify unneeded constraint equations related to a.) - constraints addressing unneeded
physical DOFs and b.) constraints which are orthogonal to the found subspace and, hence, satisfied
by the projection matrix. The method is illustrated using a simple analytical example and further
applied to a rigid V8 crankdrive consisting of 119 DOFs as well as 118 constraint equations. In the
conclusion the proposed methods are discussed and an outlook to parameter identification, using a
reduced adjoint system, and therewith arising special needs to the underlying subspace is given.
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Stochastic optimal control problem for Markov jump process:
asymptotic analysis and algorithms

W. Zhang1

1Institut für Mathematik, Freie Universität Berlin, Berlin, Germany

We consider certain stochastic optimal control problems for Markov jump process in the large number
regime. For both open loop and feedback control problem, based on Kurtz’s limiting theorems, we
prove the convergence of the value functions for the optimal control problem of Markov jump process
as the “species” number goes to infinity. In the case of finite time horizon, A hybrid control policy is
proposed to overcome the difficulties due to the large state space as the “species” number increases.
Numerical examples are studied to demonstrate the analysis and algorithms.

This is a joint work [1] with Prof. Carsten Hartmann and Max von Kleist at Freie Universität
Berlin.
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Additional Information

About SISSA

SISSA, the International School for Advanced Studies, was founded
in 1978 and is a scientific center of excellence within the national
and international academic scene. Located in Italy, in the city of
Trieste, it features 70 professors, about 150 post-docs, 250 PhD
students and 100 technical administrative staff. Situated on the
scenic Karst upland, the School is surrounded by a 25 acre park,
and offers a stunning view of the Gulf of Trieste.
The three main research areas of SISSA are Physics, Neuroscience
and Mathematics.
All the scientific work carried out by SISSA researchers is published
regularly in leading international journals with a high impact fac-
tor, and frequently in the most prestigious scientific journals such
as Nature and Science. The School has also drawn up over 300

collaboration agreements with the world’s leading schools and research institutes.
The quality level of the research is further confirmed by the fact that within the competitive field of
European funding schemes SISSA holds the top position among Italian scientific institutes in terms
of research grants obtained in relation to the number of researchers and professors. Such leadership
should also be seen in terms of SISSA’s ability to obtain funding, both from the private and public
sectors.
As for the National assessment of research quality involving all Universities and scientific institutes,
SISSA got top marks in mathematics and neuroscience, and came first among medium-sized depart-
ments in the field of physical science.
See also the official SISSA website http://www.sissa.it for additional information.

About SISSA mathLab

SISSA mathLab is a laboratory for mathematical modeling and scientific
computing devoted to the interactions between mathematics and its appli-
cations, established at SISSA in fall 2010. It is an interdisciplinary research
center powered by the interest in problems coming from the real world, from
industrial applications, and from complex systems, made up by a team of
scientists pursuing frontier research, while expanding the opportunities for
a dialogue across academic and disciplinary boundaries. SISSA mathLab
is also a partner for companies interested in mathematics as a tool for
innovation.
The research team is focusing on new trend in computational mechanics
and numerical analysis and it is an integrated group in SISSA Mathematics
Area, within the SISSA Phd Program in Mathematical Analysis, Modelling
and Applications, a master degree in Mathematics, and the SISSA-ICTP

Master in High Performance Computing.

Websites:
http://mathlab.sissa.it
http://math.sissa.it
http://www.mhpc.it
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Internet connections

Wireless network access is provided within the SISSA campus. You can use your Eduroam credentials
(from your institutions) or SISSA Guest Wi-fi. You should have received your credentials by email
through the GRS system (SISSA Guests Registration) after providing requested data.

Refreshments/services

Refreshments are served in the lobby (foyer) of the main lecture room. A cafeteria/restaurant is avail-
able in the main building A at the ground floor. On the opposite side, same floor, there is SISSA main
scientific library. In the lobby of building A there is an ATM (Unicredit). In the same lobby two reserved
rooms are available for small meetings and for group/individual work. Luggage storage and wardrobe
is available in the main lecture room lobby. For further needs/requests: morepas2015@sissa.it.

Emergencies

Call 911 using SISSA telephones for first aid, call 555 SISSA emergency team for on campus emer-
gencies. From cell phones numbers are +39 040 3787 911 and +39 040 3787 555, respectively. For
emergency off campus call 118.
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