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Design of complex integrated circuits with electromagnetic devices involves the numerical simulation
of Maxwell’s equations coupled with the network equations. In magneto-quasistatic problems, the
contribution of the displacement currents is neglected compared to the conductive currents. A finite
element discretization of the resulting Maxwell equations in the magnetic vector potential formulation
leads to a high dimensional nonlinear system of differential-algebraic equations (DAEs)

Eẋ = A(x)x+Bu, y = Cx

with the structured matrices

E =

[
M 0
XT 0

]
, A(x) =

[
−K(a) X

0 −R

]
, B = CT =

[
0
I

]
.

In model reduction of DAEs, special care should be taken while approximating the algebraic compo-
nents and algebraic constraints which restrict the solution to a manifold.

By employing the system structure, we develop an efficient model reduction approach for the
magneto-quasistatic DAE system. Our approach is based on transforming this system into the ODE
form and applying the proper orthogonal decomposition (POD) [2] combined with the discrete empirical
interpolation method (DEIM) [1] for efficient evaluation of the nonlinearity in the reduced-order model.
A further reduction in computational complexity can be achieved by using the matrix DEIM for the
approximation of the Jacobi matrix. We present an efficient implementation of the matrix DEIM
which avoids the vectorization of the snapshot matrices of the Jacobian and significantly reduces the
computational cost of the offline phase. Furthermore, we investigate the passivity of the infinite-
dimensional problem and the preservation of this property in the semidiscretized system and the
POD-DEIM reduced model. Numerical examples will demonstrate the properties of the developed
model reduction method.
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