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Nonlinear Model Reduction for Complex Systems using Sparse
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We demonstrate the synthesis of sparse sampling and dimensionality-reduction to characterize and
model complex, nonlinear dynamical systems over a range of bifurcation parameters. First, we con-
struct modal libraries using the classical proper orthogonal decomposition in order to expose the
dominant low-rank coherent structures. Here, libraries of the nonlinear terms are also constructed in
order to take advantage of the discrete empirical interpolation method and projection that allows for
the approximation of nonlinear terms from a sparse number of grid points. The selected grid points
are shown to be effective sensing/measurement locations for characterizing the underlying dynamics,
stability, and bifurcations of complex systems. The use of empirical interpolation points and sparse
representation facilitates a family of local reduced-order models for each physical regime, rather than
a higher-order global model, which has the benefit of physical interpretability of energy transfer be-
tween coherent structures. The method advocated also allows for orders-of-magnitude improvement in
computational speed and memory requirements.
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Figure 1: The training module samples the various dynamical regimes (01, 82, -, fs) through snap-
shots. For each dynamical regime, low-rank libraries are constructed for the nonlinearities of the
complex system (@5, ®35,, P55, Pnr;). The DEIM algorithm is then used to select sparse
sampling locations and construct the projection matrix P. The execution module uses the sam-
pling locations to classify the dynamical regime ; of the complex system, reconstruct its full state
(u= Py g (P@L,gj)Tﬁ), and provide a ROM (Galerkin-POD) approximation (u = @, g a(t)).



