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e Quantum Geometry has many sophisticated realizations. Here we limit
ourselves to the (very) conservative circle of ideas associated with a quan-
tum field theory approach to Riemannian Geometry: viz. How Rieman-
nian structures are generated out of a suitably controlled spectrum of
(random or quantum) fluctuations around a background fiducial geome-
try. Qe flow
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e Ricci curvature, with its subtle connections to diffusion, optimal transport,
(Kantorovich - Rubinstein) - Wasserstein geometry and renormalization
group, features prominently in such a scenario.



e In this talk, based on work done with Annalisa Marzuoli, Francesca Famil-
iari, Claudio Dappiaggi and Christine Guenther, we touch upon some of
these themes as well as on some unconventional aspects that Ricci curva-
ture still holds in store and which stress its basic role in a QFT approach

to quantum geometry.
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The CLASSICAL FRAMEWORK:

(M, g) a C* compact or complete n—dimensional manifold, (n > 3), endowed
with a Riemannian metric g, the associated Riemannian measure dpu,, Levi-

Civita connection V, and its Riemann curvature M
T p
e Rin(g)(X,Y)Z = (VxVy — VyVx — Vixy) Z. :
‘gv curvature
Ricci curvature in the direction p— TR
—=]

e Ric(g)(u,u) := tracey (£ —> Rm(g)(&,u)u) , / < v/

e Equivariance under / /\/
the action of Dif f(M):

e . Basic role of the (normalized) Einstein—Hilbert
Ric(6"g) = ¢"Ric(g) = ( )

. _ f ional
VIR, = %ka : unctiona
contracted Bianchi identity

(D.Hilbert, J. Kazdan) Sp-nlg] = VOlg(M)%n /M R(9) dpg,



Insight into the Ricci curvature is
provided by its expression in
normal geodesic coordinates
(Bertrand-Puiseaux)

o oxp} (dpig)

= (1 — gRa(p) 2'(@)z"(q) + ..

dp g : Euclidean measure on 1, M

locus
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Ricci curvature as »
the solid angle spanned
by a pencil of geodesics

e Ricci curvature: distortion (w.r.t. dug)

, N A of the solid angle subtended by a small

I A pencil of geodesics issued from p in the
R/ M) \ direction X = exp, '(q).




Ric(g) o< expy(dpg)/dpr = There must be a Laplacian around.

From the point of view of geometric analysis insight on the nature of Ricci
curvature is provided by the expression of its components in local harmonic
coordinates (U, {z'}; Ay2' = 0), (C. Lanczos, D. DeTurck, J. Kazdan, ...):

Rik =har — %A(g) (f(ik)) + Qik (9_1a 59) s fik) = Gik s

Hence in harmonic coordinates the Ricci curvature acts as a semi-linear elliptic
operator on each scalar function f(;z) := gix: the metric tensor components g;
have maximal regularity in harmonic coordinates.

% (g : generator of the Brownian
motion diffusion lurks in the background.

When passing from normal geodesic
coordinates to harmonic coordinates
we gain control on the components

of the metric tensor in terms of the
Ricci curvature rather than of the full
Riemann tensor

(DeTurck-Kazdan, Jost-Karcher)




Given the interplay between Ric(g), du, and diffusion, it is not surprising that
the analysis of Ricci curvature often calls for weighted Riemannian manifolds
(or Riemannian measure spaces) (M, g, dw) i.e. smooth n—dim Riemannian
manifolds endowed with a probability measure dw

The relevant operator on (M, g, dw) are:
the dw—weighted di.vergence
Viwo = el V (e*fo)

Probability measure do

the dw—weighted Laplacian
AGY b= (8 =V V) ¢

A weighted Riemannian manifold
(Riemannian measure space)

A Riemannian manifold

e When dw =¢—/ dp, the basic player is the Bakry-Emery Ricci curvature

RicP (g, dw) := Ric(g) + Hess, f

.

The contracted Bianchi identity V' R;;, = %Vk R is replaced by

) . 1 er
Ew) Rch — §VI€RP 3



R (g) := R(g) + 24, f — |Vf|3 = R(g) + QASU)JC + |Vf|3

— Perelman’s modified scalar curvature.

In such a framework, the role of the Einstein-Hilbert functional is played by
Perelman’s energy

Foip)= [ R = [ (Rlo) + VAZ) e,

which induces a subtle geometric functional on (M, g)

Flg] = inf / RY"(g) dw
{(fewr2(M), [ efdp,=1} JMm

the lowest eigenvalue \1[g] of the
Schrodinger-like operator on (M, g)

—4 A, + Rg)y = Mg, = e /2



This suggests that the geometry of Ric(g) is more appropriately framed in the
Space of weighted Riemannian manifolds (M, g, dw), i.e. Met(M)x [Prob(M),d)"],
where Met(M) is the space of all smooth Riemannian metrics over M, and
Prob(M) denotes the space of probability measures dw over M endowed with

e The quadratic Kantorovich - Rubinstein - Wasserstein distance dgv(dwl, dws).

N dy o, do,)

Elementary aspects of this
framework in discussing Ricci
curvature follows from the
interplay between scaling and
Diff (M) equivariance in
Riemannian geometry

—
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Appendix: The quadratic Wasserstein distance dgv (dwy, dws)

_Construction site

The quadratic Wasserstein distance dgv(dwl,dwg) plays a basic role in the
Monge-Kantorovich problem of optimally transporting one distribution of mass
dwy, (say from an excavation site on the manifold (M, g)) onto another distri-
bution dws, (realized at the construction site on (M, g)), where optimality is
measured against a cost function provided by the squared Riemannian distance
function d(x,y).



4V (dw.df) =  inf d sr(dewdd) )

I(dw,df) C Prob(M x M) : the set of probability measures on M x M with
marginals dw and df; (I(dw,df): is called the set of couplings between dw and
df).

Transport along geodesics
avoiding curvature

dg‘;(dw, df) represents, as we consider all possible couplings between the mea-
sures dw and df, the minimal cost needed to transport dw into df provided
that the cost to transport the point x into the point y is given by d,(x,y)®. The

distance g,",(dw, d0) metrizes Prob(M) turning it into a geodesic space.



Besides diffeomorphisms, the metric ¢ is naturally acted upon also by overall
rescalings according to

gr— Ag, VA& R-q,
(in local coordinates (U, z%), gir — A gir and g% — X\71 gtF).

dy(p,q) =  dxg(p,q) = A2 dy(p,q)
Vol,(B) = Voly,(X) = A2 Vol,(%),

v =y
Hessngy = Hess,
Axg) AT Ag) -
Rm(Ag) Rm(g)
Sec(Mg)(X,Y) A Sec(g)(X,Y)
Ric(A\g) Ric(g)
R(Ag) AT R(g)




e These scalings relations imply that not only Einstein, but also Quasi-
Einstein Metrics do matter in Riemannian geometry.

e A Riemannian metric g is Einstein if its Ricci tensor Ric(g) = p,) g for
some constant p(g).

e The Einstein constant p(,) scales non-trivially: Since Ric(g) is scale-
invariant, we must have p(yq) — A1 P(qg)-



Quasi—Einstein metrics are characterized by a Ricci tensor which can be written
as

. 1 1
Ric(g) = pg) 9 — 55\/(9) 9= "9~ 3 (ViVi + VW)

for some constant p(,) and some complete vector field Vi, € C°°(M,TM).

o If V is a gradient, V* = ¢'*0 f for some f € C°°(M,R), then the quasi
—FEinstein condition becomes

o RicP’ P (g,dw) := Ric(g) + Hessyg [ = pig) g

e i.e. the isotropy of the Bakry—Emery Ricci curvature of the Riemannian
manifold with density (M, g,dw = e~ /du,)).



e (Quasi—Einstein metrics have a significant dynamical characterization

e For 0 < <e< %, define A(3) = (1 —2p(4) B).

e Consider the one-parameter family of diffeomorphisms ¢g : M — M
solution of the non—autonomous ordinary differential equation

0 1

L - V o = id

55 96%) = 5737 Vi (@90, 90 = idar
e and the one—parameter family of metrics — A4

defined by
9(B) = A(B) ¢39 -

with g(8 =0) = g.

e By scale invariance and Dif f(M)—equivariance
we compute

55 9(8) = =298 9(B) + Ly, 9(B) = —2Ric(g(8))




Hence, under the combined action of this family of diffeomorphisms and of the

scaling, the quasi—Einstein metric g generates a self—similar solution g(f5) :=
AB) 959, 0 < B <, of the Ricci flow , (R. Hamilton, 1982)

2 9u(B) = —2Ras(B),

gab(/8 — 0) — Gab 0 é /8 < 2p1(g) .

These solutions are known as Ricci solitons, (R. Hamilton, 1988).

a nhon-trivial
deformation

a trivial
defprmation




Appendix: Ricci Flow as dynamical system on Met(M) ...

The Ricci flow can be thought of as a
(weakly—parabolic) dynamical
system on Met(M).

Met(M) — Met(M)

(M,g) = (M,g(B)),
defined by deforming the metric
(M, g) in the direction of —2Ric(g)

thought of as a (non-trivial)
vector in T, Met(M), i.e.,

%gab<ﬂ> — _ZRabw)a

Jar(3 = 0) = gap,

0<6< 6" <To



A deeper rationale ...

. underlying the connection among Ricci curvature, Ricci flow and weighted
Riemannian manifolds, suggested by scaling and Di f f (M )-equivariance, follows
by observing that we can use the (weighted) heat kernel of (M, g, dw), (t,0,) —>
p¥ (o, x), with source at x € M, to generate an injective embedding of (M, g, dw)

e+ (M,g) < (Prob(M), dg\f)
T o ipe(w) = pi(o,x).

in the space (Prob(M), d,") of all
probability measures over M endowed
with the quadratic Wasserstein distance

d gv’ (N.Gigli-C. Mantegazza, for the pure
Riemannian case, M.C. for the general
case of (M, g,dw) and the relation

with Renorm group for NLoM).



Let x vary in (M, g) and consider the (minimal positive)
weighted heat kernel p¥(y, z), centered at z, solution of

a w w
(a - (g,y)) pt (y7$) — O b

i pe (v, x) = 02(y)

p, (¥, X)

1

where A‘E’g,y) = ADgy) — VS V(y denotes the
weighted Laplace—Beltrami operator on (M, g, dw).

Varadhan’s large deviation formula,
Sl ¢n [y, )] = 20




For any smooth vector field v over M, and ¢ > 0, there exists a unique smooth
solution %y , .), smoothly depending on the data t, z, v, of the elliptic PDE

o (P 2) VI ey () = =0 (2) V) (0, 2)

and with ng) a(t,z’v)(y) % 0 for all v # 0. (F.Otto’s parametrization associ-
ated with the heat kernel (here based ate the generic point z))

~F VO ez ()
v(2) t
3§ T.(M) — Tpe Prob(M)

AN

M, g, do) v(z) = VW V(t,20)(Y)

1



By exploiting this heat kernel parametrization of the vector fields of (M, g), and
by pulling—back via the injective embedding

e+ (M,g) < (Prob(M), d\gN)
v (@) = (o)

the Wasserstein distance dy’ (p’ (o, x), pf(o,y)) to M one defines, for all t €
(0, 00), a t—dependent metric tensor g on M according to

g1 (v(x), w(z)) = /M T* W) VY Dty W) VY D120y () D (Y, ) dpag (y)

y (Y, X) V4
(Gigli-Mantegazza in the pure pt y, /

Riemannian case, m.c. for the =z
general case). There is a similar
time evolution for the measure M, g(t)_..C
w — w(t) induced by

the constraint

Jar €1 dpgay = 1.



This is the scale dependent metric induced on M by the heat kernel immersion.
As t N\, 0, the metric g; reduces to g, i.e. limy\ o g¢(v,v) = g(v,v), v e T, M,

y € M, and

QKf—E tg('u, ,U) ’

where K f —E denotes the lower bound of the Bakry-Emery Ricci curvature of
(M, g,dw)), RicP~F(g,dw) := Ric(g) + Hess, f.

gr(v,v) < e~

A rather sophisticated use
of the (weak) Riemannian
geometry of the Wasserstein
space (Pfrob(M, q), dgv)),
(related to the Riemannian |
geometry of the diffeomorphisms
group Dif f(M) a’ la Arnold,
e.g. A. F. Solov’ev, Curvature of a distribution, Matematicheskie Zametki, 35
(1984) 111-124; N. K. Smolentsev, Curvatures of the diffeomorphism group and
the space of volume elements, Sibirskii Matematicheskii Zhurnal, 33 (1992) 135-
141; A. M. Lukatsky, On the curvature of the diffeomorphisms group, Annals
of Global Analysis and Geom. 11 (1993) 135-140; B. Khesin, J. Lenells, G.
Misiolek, and S. C. Preston, Geometry of diffeomorphisms groups, complete
integrability and geometric statistics, arXiv: 1105.0643v1)...



allows us to get full-fledged flows for the metric t — ¢(¢) and for the measure
field t — f(?):

0
i NG,
ot o 7

%gt(uj w) = — 2 Ric®) (u,w) — 2 Hess f (u,v)

—2 /M (H ess Vi) - Hess %,w) i (y, 2) dw(y) .

where Ric(*) denotes the Ricci curvature of the evolving metric (M, g;), and

where {D\(t’u), {b\(mw) are the tangent vectors in Prob(M) representing the mani-
fold tangent vectors u and w, respectively.

Hence we get an extended Ricci flow coupled
with a (backward) parabolic evolution for
the measure dw = e~/ dpg.

M.C. The Wasserstein geometry of
nonlinear o models and the
Hamilton - Perelman Ricci flow,
Reviews in Mathematical Physics
Vol. 29, No. 1 (2017) 1750001



A QFT perspective (slightly expanded w.r.t. the talk)

These flows generated by the Wasserstein space construction can be reinter-
preted in terms of the (perturbative) analysis of the Renormalization Group for
(Dilatonic) Non-Linear o Model (NLoM), the quantum field theory avatar of
harmonic maps from a Riemann surface (X, h) into the weighted Riemannian
manifold (M, g, dw).

This describes scale-dependent
fluctuations of the maps and provides
a QFT renormalization group
perspective of the nature of

Ricci curvature.

Heat kernel embedding of
constant (harmonic) maps
from (S, h) into (M,g), as
providing a scale-dependent
(t) fluctuations of the maps




The dilatonic NLoM action

Sié: a. f. gl = % L PavVh [W70,610,6 gi + 20 Kn(z) f(6(x))]

KCr, : Gauss curvature of the surface (3, h)

a~'qg ... the metric coupling

f: M — R ... the dilaton coupling



Quantum (actually, random) fluctuations of ¢ : ¥ — M around a classical
configuration ¢.,,, (a center of mass of a large collection (— oo) of constant
maps {¢(;)},i.i.d. distributed with respect to a sampling functional measure),
can modify the geometry of (M, g, w)

by exploiting a scale
dependent (8 := at,t > 0)
perturbative renormalization

/X7 (M, f(B+388))
we get a RG-Flow controlled by a large deviation mechanism w.r.t. the Gaussian
fluctuations around the (classical) background ¢, (i.e. by the control of the
exponential decline of large field fluctuations, around ¢,,, as the energy (=
length?) scale (3 varies).



e This procedure (re)constructs perturbatively the geometry in a ball around
®em as a function of the parameter 8 according to

0
B gik(B) = =2 Rix(8) — 2V, Vi f — % (Ritmn R™™) + O(a?)
% (8) = AF(B) — IVF(B)P +O(a).
S W)
/\

“\CC@(t)) ) X t = s, A

== Ric(g(B +60))




e Aslong as we are in the weak coupling regime, a lRm(g(ﬁ))ll/2 << 1, we
have the connection with Ricci flow in the DeTurck version:

2 9ab(8) = —2Ra(B) — 2Va Vs . 2B =2k f
Jar(B=10) = ga, 0B <8< Ty f(B=0)= fo.

Rigorous AQFT approach possible (M.C., C. Dappiaggi, N. Drago, P. Rinaldi,
CMP vol. 374, p. 241-276, (2020) arXiv:1809.07652)

(M.g( B))
However, a full-fledged analysis of these (weakly) parabolic PDEs requires a
change of pespective in the role of the dilaton coupling f.



e We need to impose the Perelman Coupling: wviz. we need to conjugate
the dilaton f rescaling to the S—evolving Riemannian measure dp (), by

replacing f — f, with

5 - B
95" "Ddpgg) = 0, = / e 1P dpigg) = const.
M

2 9ab(8) = —2Ra(8) — 2V Vi f, [ L f(n) = Ay f(n) — R(n) f(n),

gab(ﬁ — 0) — Yab,

In this case we have monotonicity
of Perelman’s F'[g|-energy along
the flow (i.e. we have an

entropic functional at work

Flg] = inf /M R (g) dw

and the flow is gradient w.r.t.
the F(g, f)-energy




... This change of perspective is not confined to the math analysis of the one-loop
contribution (Ricci flow) ...

e ... but also to the higher order terms such as a (R, Ri™™), i.e. if we
consider the two-loop contribution to the RG flow

9 . a
86 ik

(S,g(B))

For instance, in a recent work with Christine Guenther (Scaling and Entropy for
the RG-2 Flow, CMP vol. 378, p. 369-399, (2020) arXiv:1805.09773 math.DG)
we prove that



If we require that the two—loop RG flow gives rise to a scale invariant flow
we need to relate the coupling a to Perelman’s version of the dilaton field

according to (a)"? = [, e_ﬂﬁ)dug(ﬁ).

Only in this case there is an entropy functional (extending Perelman’s
Flgl-energy) which is monotonic along the flow

The flow is not a gradient flow with respect to this entropy.

The natural 2-loop gradient flow (w.r.t. a natural geometric entropy) is
a fourth-order geometric flow extending Ricci flow in a form suggested by
the supersymmetric version of NLSM

)
N




This QFT perspective on the Wasserstein geometry of Ricci curvature comes
indeed to full circle ... since quasi-Einstein metrics originated from theoreti-
cal physics (D. Friedan, 1980), precisely in the analysis of the Renormalization
Group for (Dilatonic) NLoM, showing that the Wasserstein geometry of Ricci
provides a guiding principle in a mathematically rigorous analysis of the renor-
malization group flow in quantum geometry.
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