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Based on a joint work with van de Leur, Posthuma and
Shadrin:

“Higher genera Catalan numbers and Hirota equations for
extended nonlinear Schrédinger hierarchy”,

published in the LMP Dubrovin Memorial issue.



My motivation for this work goes back to my first paper with
Boris...



The Extended Toda hierarchy
The Lax representation of the Toda hierarchy
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where for 2 = 1, [ > 0 we have the classical flows with
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admits an extension by a second infinite sequence of
commuting flows for i = 2, [ > 0 with
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Notice that here the spatial variable x coincides with gZ.
[C-Dubrovin-Zhang]



log L

We define a logarithm of the difference operator L via dressing
operators and find that

log L = Z wi A
k€Z

where the coefficients wy are uniquely differential polynomials
in

A = Clu, v, e vk, ug; k = 0][[€]]o.

[C-Dubrovin-Zhang]



Toda ConjeCtur c [Eguchi-Yang, Getzler, Zhang, Okounkov-Pandharipande]

The Gromov-Witten potential of CP! is a tau function of the
Extended Toda hierarchy.

...via Virasoro constraints [Givental, Dubrovin-Zhang]

...via Givental total descendent potential and Hirota equations
[Milanov]



Extended NLS

If we choose as spatial variable X the variable ¢; we obtain a
hierarchy with Lax formulation given in terms of
pseudodifferential operators
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where here the operator log £ is defined indirectly by change of
variables in the operator log L.
[C-Dubrovin-Zhang]



Aim

Our aim is to prove that the topological partition function
associated to a d = —1 two-dimensional Frobenius manifold is
the string tau-function of the extended NLS hierarchy:.

We follow the approach used by Givental, Milanov, Tseng in a
number of cases (simple singularities, orbifold CP! GW theory)
to show that the total descendent potential satisfies Hirota
equations, and then derive Lax formulations.

Our general philosophy is to avoid superpotential / singularity
theory arguments to focus on the structures intrinsically
existing on the Dubrovin-Frobenius manifold.

This is the first step of a work in progress to generalize these
claims to rationally constrained KP hierarchies, cf.
Liu-Zhang-Zhou conjecture.



From Frobenius to Hirota and Lax

2D Frobenius manifold d = —1
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The Dubrovin-Frobenius manifold

We consider the d = —1 Frobenius manifold M = C x C* with
potential in flat coordinates t!, t* given by

F(#,£2) = (12 + (1) log

with the standard antidiagonal flat metric 7,3 = d,+5 3 and the
unit and Euler vector fields

e = Oy, E = t18t1 —+ 2t28t2.
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[Dubrovin]



The deformed flat connection and the S matrix

The deformed flatness equations for a matrix valued function Y
on M x C take the form ~—

oY U oy
Sy U i) O e

In our case u = 1/2 0 LU = ' 2
P=\o -1/2) 212 1)
Te.

The normal form of the solution near z = oo is

= C,Y,

Y(t, z2) = S(t,z)z‘“z‘é, S = ZSkZ

Dy 0 2
with R = ( 0 0
choice of the constant v in (S1)1.2 = 9 + log t* (calibration).

——

) . The matrix S is uniquely determined by the

) S



The deformed flat connection and the R matrix

In the normahzed canonical frame the (z part of the) deformed
flatness equat1on takes the form
8? U -~ z </
e =V + )Y,

and there exists a unique formal solution of this equation of the

form ] o
Y (t,2) = R(t, z)eY/?,

where R =3, ., Rx2", Ry = 1.

In our case we find
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Ancestor and descendent potentials
ka V T—fr

The total ancestor potential is

A({ds, 42 }ax0) = ‘I’%H TKW {Q }a>0),

=1 l’(auh"ﬂ&‘ﬂ Wy ','fh

where ¥ changes the variables from Q! (normalized canonical

\

frame) to qa (flat frame). —

\

The total descendent potential
D=C$1A
Vl—t

where log C(t!, %) = — & log t2.
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D has zero derivatives with respect to the point of M.

[Givental]



Symplectic loop space and quantization (1)

Given (V, (,)) with basis {¢;} we set up a formal loop space

\

V((z)) wi symplectic structure given by a residue ——

7 U, 9) = Res.(f(—2),0(2))d=

on which we have Darboux coordinates ¢, p; x, k > 0.

As explained by Givental two days ago we consider
quantization of linear and quadratic Hamiltonians on the loop

space, with the usual quantization rules. Wey! quant
— 9
Linear Hamiltonian: f — f .3
A , °7
. e S=e’—»S=¢’
Quadratic Hamiltonians: . ap — 9 ?
R=e¢"—R=¢€" 9

[Givental]



Symplectic loop space and quantization (2)

The linear Hamiltonian hs{-) = €2(f, -) associated with a
constant vector field f =3, I'(—z2)' € V is quantized as

f= (he) = -e— 1+1 7ty 9 11_(”1),,; .
= ) = 32 |0 G U i)

The quadratic Hamiltonian A, (f) = %Q(gf, f) associated with

an infinitesimal symplectic vector field of the form f — mf
wherem =3, myz~“ orm = Yo, myz* with m, € End(V) is
quantized as S £

) ~L ~ .
K‘ For M = exp(m) we define M = exp(m). [Givental]



Period vectors

/
The period vectors [ éf) %xe uniquely defined on (M x C) \ A, as

holomorphic multivalded solutions of the Fuchsian system, —

explicitly
U021 Ly
=N = i+

with asymptotic conditions at the A\ ~ u* =1 ,

-
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and such that the analytic continuation of I g) along a small
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path ~; surrounding v’ is equal to —1I éf) o
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For a = aje1 + asey € C? we denot ICS, )\— all(l) + azI_é_Q.

[Dubrovin]




Monodromy of period vectors (1)

Let 7 = m (C \ {u}, u?}) be the fundamental group of the
pointed A-plane with base point Ao.

The flat pencil of metric of M induces on C? a degenerate metric

1/1 1
G__§(1 1)'

Let us denote by@the reflection alon w.r.t. GG, and define
2

the group homomorphism 7= — GL(C?) by sending the loop ;
to the reflection ~;.

For each v € m we have V*Ic(f) = @
/(\ [Dubrovin]
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Monodromy of period vectors (2)

Explicitly the monodromy action is given by

v1€1 = —eq, Yyi€2 = ez — 2eq,

Yo€e1 = €1 — 2e2, Yo€2 = —e€3.




Vertex operators

Given a € C? a vertex operator I'® is constructed by
quantization of the linear Hamiltonian defined by the period

vectors
t, A z) = A)(—2)!
=Y/

where the quantization procedure gives

@JZ@.




Hirota equations and monodromy

Before proceeding let’s have a look at the expected form of the
ancestor Hirota equations for example as they appear in the
case of Gelfand-Dickey hierarchy, or A,, singularity.  [Givental]

We have a multivalued one-forrr@ over the A\-plane given

by
(%ca(t, A Q I‘_"’) A® Ad.

The first requirement is that this one-form is single-valued.

[ —

Because the period vectors and consequently the vertex
operators and the functions ¢, are covariant under the action of
7, this follows if O is an orbit of the reflection group over C”.

—

In such case we can say that ancestor Hirota equations are
satisfied if wg;, is entire.



Infinite orbits...

In our case the non-trivial orbits are infinite, therefore it is not
possible to average over an orbit to get a single-valued wgy.

We can choose however a partial orbit O’ = {a™,a~ }, with
at = aje; + ages and yia* = aT.

In such case the monodromy of w’;.. over a “large circle” v, is
nontrivial. [




...and Bakalov operator

—

However if we define the operator

(—£-1)
N = exp ( Z L ( ) 82)
(

5,0)#(2,0) (Io_l))z 0qq

then we can prove that if b* € Z and 2(¢Z — 33) € Z then

Pro—

DL

is a single-valued function of .

More explicitly the expression above is

NN (ca+1““+ R +¢,-T% ® I““_) (A®A)dA



Ancestor Hirota equation

Let b2 = 1. Then the ancestor potential A satisfies the ancestor
Hirota quadratic equation _ A
A 7476 Thw

NN (%CQI‘“@I‘G) AR Ad).
atO’

Y

To prove this fact we need to show that this expression has no
poles at A = u?, i = 1,2. We can prove using BCH formula that

@@ % u? Weze’b 2p ui)d e

. . . % .
and this implies that the polar part of the ancestor Hirota
equation at A ~ u’ is proportional to Hirota fofKa'V which is
satisfied by TKW - g

———




Periods at A ~ o0

For any a € C?, the asymptotic behaviour of f, for |A\| ~ oo,

arg A\ # m/2 is given by / S
fa(t; A, 2) ~ S(2; 2) fa,00(A; 2)

where r Taoo
Y/

fero(02) = 30 (““"g“ D) G

=/ 2

fes 00(A; 2) 1= feq.00(A, 2) + Zaf\ﬂ (78 ) (—2),

leZ

and for a = (a1,a2) € C?let fo.00 = @1fe; 00 + A2fes 00

The equivalent Ig) ~ S (= 1)F Sk I o AT actually convergent
and can be used to give an alternative deﬁmtlon of periods.
[Milanov]



Descendent Hirota equation (1)

The descendent Hirota equation, which should be understood
as a formal series near A\ ~ oo, is obtained by substituting the

period vectors [ { wit@deﬁned by the expansion of f, o

Noo ® No (Z cgorgo®rgoa) D ® D dA.

acQ’

-

In this case only the single-valuedness near co, namely the
covariance under the action of a big circle, is necessary:.

The descendent Hirota equation is verified if it is regular at
A ~ 0o, namely if it is polynomial in A.




Descendent Hirota equation (2)

To prove that the total descendent potential D = C'S—1.A4
satisfies the descendent Hirota equation we show that the S
conjugation of the descendent Hirota equation is proportional
to the A ~ oo expansion of the ancestor Hirota equation which
variishes as proved before.

This essentially follows from the following result that we can
prove using BCH.

For a € C? we have

with ¢(t) = @192 (1og 12 4 ¢).




Descendent Hirota equation (3)

For any value of the calibration parameter v the total
descendent potential D satisfies the following equations:

0 = Resy_, A”—ld)\[
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for any k € Z and for any n> 0.

)
)
A ke % exp (£ Y ps0 3 (?_?11)1( —q)+ Lt o [)(g (a7 — @7)) %
)
)]z

— q7)) X

qO q%zke



Lax, again (1)

From the explicit form of the Hirota equation proceeding as for
a rational reduction of KP is quite straightforward as long as
we do not consider the “logarithmic” times g;.

As Hirota equations look like extended Toda Hirota can
proceed as in this case by exchanging ¢ and ¢3 and deriving a
Lax formulation with space variable z = ¢3.

We can the apply the procedure in our original work with
Dubrovin and Zhang to obtain a Lax formulation in the natural
space variable X = q¢{.




Lax, again (2)
We rewrite the descendent Hirota equation in terms of

pseudodifferential operator form (using the so-called
fundamental lemma):

=

edx )t 1 -1 edx )" 2 2
[P(CI, €dx ) exp (1 Z ((f—l—)l; (g2 —C.Ze)_g Z ( (Z! ) [J(g)(fle —C]e)) X

€

>0 >1
(Eax) 2_a2\o —(k—1)€e0y o n+k—1p - O+ )* —
xXexp Z /) (qg QE) z |€ (6 ) (Q7 € X) —
¢>1 ¢ — B
. \¢
= ™" Resy |Q(g)e? P(g, ) exp (4 ~G3)D, ) e (DD yn k=1
©>1 T =

forn > 0and k € Z.

We then proceed to obtain Sato and Lax for extended NLS.

Notice that here we don’t have two different dressing operators
like in ETH to define the logarithm.



..and where is Catalan?

The generalized Catalan number!C,, . . enumerates genus g
graphs with n > 1 ordered vertices of indices ki, ..., ky,
connected by edges, with a fixed cyclic order of half-edges
attached to each vertex, and with one distinguished half-edge
at each vertex.

Assume 1 = 0 and fix the point of expansion for D to be
(', %) = (0, 1). Using CEO topological recursion we prove that

0000292
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See also [Dunin-Barkowski-et-al, Andersen-et-al]

'also studied under the names of strictly monotone Hurwitz numbers,
enumerations of ribbon graphs, (rooted) maps on surfaces, Grothendieck’s
dessins d’enfants for strict Belyi functions, lattice points in the moduli spaces
of curves, etc...



