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The good Boussinesq equation

The mathematician Boussinesq derived (back in 1872) the following
equation for shallow water waves propagating in a rectangular channel

utt − uxx − (u2)xx − uxxxx = 0.

The good Boussinesq equation takes the form

utt + (u2)xx + uxxxx = 0.

The initial data are u0(x) = u(x , 0) and u1(x) = ut(x , 0).
They are assumed to be sufficiently smooth with rapid decay at x = ±∞.

Earlier works on long-time asymptotics: Linares & Scialom (1995), Liu
(1997), Farah (2008), Wang (2009). Functional analytic approaches.

Christophe Charlier (KTH) Asymptotics for the Boussinesq equation 2 / 37



The good Boussinesq equation

The mathematician Boussinesq derived (back in 1872) the following
equation for shallow water waves propagating in a rectangular channel

utt − uxx − (u2)xx − uxxxx = 0.

The good Boussinesq equation takes the form

utt + (u2)xx + uxxxx = 0.

The initial data are u0(x) = u(x , 0) and u1(x) = ut(x , 0).
They are assumed to be sufficiently smooth with rapid decay at x = ±∞.

Earlier works on long-time asymptotics: Linares & Scialom (1995), Liu
(1997), Farah (2008), Wang (2009). Functional analytic approaches.

Christophe Charlier (KTH) Asymptotics for the Boussinesq equation 2 / 37



Scattering and inverse scattering method via a
Riemann-Hilbert (RH) approach

u(x , 0), ut(x , 0) S(z , 0)

u(x , t) S(z , t)

good
Boussinesq

Direct scattering

Time evolution of
scattering data

Inverse scattering
via a RH problem

Deift & Zhou (1993): long-time asymptotics for the mKdV equation

Deift, Tomei & Trubowitz (1982): An inverse scattering for the Boussinesq
equation was outlined.
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Scattering and inverse scattering method via a
Riemann-Hilbert (RH) approach

u(x , 0), ut(x , 0) S(z , 0)

u(z , t) S(z , t)

good
Boussinesq

Direct scattering

Time evolution of
scattering data

Inverse scattering
via a RH problem

At his 60th birthday conference in 2005, P. Deift presented a list of sixteen
open problems, among which he pointed out that “The long-time behavior
of the solutions of the Boussinesq equation with general initial data is a very
interesting problem with many challenges.”
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Direct scattering

The good Boussinesq equation

utt + (u2)xx + uxxxx = 0.

is equivalent to the compatibility condition

Mxt(x , t, z) = Mtx (x , t, z), where z ∈ C is a new parameter

and M is a 3× 3 matrix that satisfies the following Lax pair (Zakharov,
1974): {

Mx − [L,M] = UM,

Mt − [Z,M] = VM.

L = diag(l1, l2, l3), Z = diag(z1, z2, z3), lim
x→±∞

U = 0, lim
x→±∞

V = 0.
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Direct scattering

Fix t = 0 and consider the x -part of the Lax pair:

Mx − [L,M] = UM.

where

L(z) =

l1(z) 0 0
0 l2(z) 0
0 0 l3(z)

 =

ωz 0 0
0 ω2z 0
0 0 z

 , ω = e
2πi
3 ,

U(x , 0, z) = −2u(x , 0)
3z

ω2 ω 1
ω2 ω 1
ω2 ω 1

− v(x , 0) + ux (x , 0)
3z2

ω ω2 1
ω ω2 1
ω ω2 1


What is M for t = 0 ?

Christophe Charlier (KTH) Asymptotics for the Boussinesq equation 6 / 37



Direct scattering

Consider the solutions to the following linear Volterra integral equations

X (x , z) = I −
∫ ∞

x
e(x−x ′)L(z)(UX )(x ′, z)e−(x−x ′)L(z)dx ′,

Y (x , z) = I +
∫ x

−∞
e(x−x ′)L(z)(UY )(x ′, z)e−(x−x ′)L(z)dx ′.

X and Y satisfy the x -part of the Lax pair.

The columns of X and Y do not exist for every value of z !

The integrand is of the form ? ? e(x−x ′)(l1(z)−l2(z)) ? e(x−x ′)(l1(z)−l3(z))

? e(x−x ′)(l2(z)−l1(z)) ? ? e(x−x ′)(l2(z)−l3(z))

? e(x−x ′)(l3(z)−l1(z)) ? e(x−x ′)(l3(z)−l2(z)) ?
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Direct scattering

The columns of X and Y do not exist for every value of z !

D1 = {z : Re l1 < Re l2 < Re l3}

D2

D3

D4

D5

D6
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Direct scattering

Let Xj (resp. Yj) be the j-th column of X (resp. Y ) j = 1, 2, 3.

Here are the domains of definition for Xj , Yj :

X1

X3

X2

Y3

Y2

Y1
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A typical situation when the Lax pair is of size 2× 2

Let Xj (resp. Yj) be the j-th column of X (resp. Y ) j = 1, 2.

An example of domains of definition for Xj , Yj :

X1

X2

Y2

Y1

Here we can define M as

M = [X1; Y 2]

M = [Y 1; X2]

(In fact this is not as simple as that, because we want det M(x , t, k) = 1...)
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Direct scattering
Conclusions: For each z ∈ C, we only have two columns at our disposal
⇒ This is not enough to construct a 3× 3 solution M to the x -part of the Lax pair.

This situation differs from many well-known PDEs such as KdV, mKdV,
Schrödinger, etc. We will use an idea from Lenells (2012).

Assume M satisfies

Mx − [L,M] = UM,

and consider MA = (M−1)T . It satisfies the following x -part:

(MA)x + [L,MA] = −UT MA.

We consider the associated Volterra equations:

XA(x , z) = I +
∫ ∞

x
e−(x−x ′)L(z)(UT XA)(x ′, z)e(x−x ′)L(z)dx ′,

Y A(x , z) = I −
∫ x

−∞
e−(x−x ′)L(z)(UT Y A)(x ′, z)e(x−x ′)L(z)dx ′.
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Direct scattering

Summary of the ingredients to build M: X , Y , XA, Y A.

How to construct M ? It is still not obvious.

The solution to

Mx − [L,M] = UM

can also be analyzed via a Fredholm integral equation:

M(x , z) = I +
∫
γ

e(x−x ′)L(z)(UM)(x ′, z)e−(x−x ′)L(z)dx ′,

where the contours γ = γij(x , z), i , j = 1, 2, 3, are defined by

γij(x , z) =
{

(−∞, x), Re li (z) < Re lj(z),
(+∞, x), Re li (z) ≥ Re lj(z),

.
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Direct scattering

Advantage of the Fredholm equation:
All the columns of M exist simultaneously
⇒ It gives directly an expression for the solution to the x -part of the Lax pair.

Disadvantage of the Fredholm equation:
It is considerably harder to analyze than the Volterra equations.

The solution does not exist for z ∈ Z, where Z is the zero set of the
associated Fredholm determinant (the kernel is not scalar but 3× 3
matrix-valued).

Christophe Charlier (KTH) Asymptotics for the Boussinesq equation 14 / 37



Direct scattering

Advantage of the Fredholm equation:
All the columns of M exist simultaneously
⇒ It gives directly an expression for the solution to the x -part of the Lax pair.

Disadvantage of the Fredholm equation:
It is considerably harder to analyze than the Volterra equations.

The solution does not exist for z ∈ Z, where Z is the zero set of the
associated Fredholm determinant (the kernel is not scalar but 3× 3
matrix-valued).

Christophe Charlier (KTH) Asymptotics for the Boussinesq equation 14 / 37



Direct scattering
We try to analyze a solution of Mx − [L,M] = UM.

Summary of the different pieces of the puzzle:

X , Y , XA and Y A are easy to analyze, but it is not clear how to construct
the solution to the x -part from them.

M, defined as a Fredholm equation, is the solution to the x -part, but then it
is not clear how to handle Z.

The good news is that it is possible to relate M with X , Y , XA, Y A

M =


X11

Y A
31XA

23−Y A
21XA

33
s11

Y13
sA
33

X21
Y A
11XA

33−Y A
31XA

13
s11

Y23
sA
33

X31
Y A
21XA

13−Y A
11XA

23
s11

Y33
sA
33

 , z ∈ D1

where s is given by s(z) = I −
∫
R e−xL(z)(UX )(x , z)exL(z)dx .
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Direct scattering

It is possible to relate M(x , 0, z) with X , Y , XA, Y A

This allows to show that Z = ∅.

We can transfer other properties of X , Y , XA, Y A to M(x , 0, z).

The evolution in time M(x , 0, z)→ M(x , t, z) is simpler to analyze.
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Properties of M

(a) M(x , t, ·) : C \ Γ→ C3×3 is analytic, where Γ = R ∪ ωR ∪ ω2R.
(b) For each z ∈ Γ \ {0}, the following limits exist

M±(x , t, z) := lim
ε→0+

M(x , t, z ± εn),

where n goes in the normal direction to Γ at z (viewed as a complex
number). The functions z 7→ M±(x , t, z) are continuous and satisfy
the jump

M+(x , t, z) = M−(x , t, z)v(x , t, z),

where the 3× 3 function v is smooth and v(x , t, z)→ I as |z | → +∞,
z ∈ Γ.

(c) M(x , t, z) = I +O(z−1) as z →∞.
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Properties of M

• M satisfies the following asymptotics

M(x , t, z) = I + M(1)(x , t)z−1 +O(z−2), as z →∞,

• The solution u for the good Boussinesq equation can be recovered
from M:

u(x , t) = −3
2

d
dx M(1)

33 (x , t).
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RH problem for M

v1 =

(
1 −r1(z)e−i

√
3z(x−zt) 0

r∗1 (z)ei
√

3z(x−zt) 1− |r1(z)|2 0
0 0 1

)
v4 =

(
1− |r2(z)|2 −r∗2 (z)e−i

√
3z(x−zt) 0

r2(z)ei
√

3z(x−zt) 1 0
0 0 1

)

v2 = ...v3 = ...

v5 = ... v6 = ...
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r1 and r2
r1 and r2 are given explicitly in terms of the initial data u0, u1. For example,

r1(z) = (s(z))12
(s(z))11

, s(z) = I −
∫
R

e−xL(z)(UX )(x , z)exL(z)dx .
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Properties of M

M has a 1
z2 blow up at the origin. But this is not a double pole.

As z → 0, z ∈ D1, we have

M(x , t, z) = α(x , t)
z2

ω 0 0
ω 0 0
ω 0 0

+ β(x , t)
z

ω2 0 0
ω2 0 0
ω2 0 0

 ,
+ γ(x , t)

z

ω2 0 0
1 0 0
ω 0 0

+ δ(x , t)
z

0 1− ω 0
0 1− ω 0
0 1− ω 0

+

? ? ε(x , t)
? ? ε(x , t)
? ? ε(x , t)


+ ...
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RH problems for M and n

• The 1
z2 blow up of M at z = 0 is not very convenient for an asymptotic

analysis.

We follow an idea of Deift, Venakides & Zhou (1994).
• An important observation is that

n(x , t, z) =
(
ω ω2 1

)
M(x , t, z), ω = e

2πi
3 ,

is bounded at z = 0 !
• If the solution to the RH problem for n is unique, then solution u can
be recovered from n via

u(x , t) = −3
2
∂

∂x lim
z→∞

z(n3(x , t, z)− 1).

• Unfortunately, we have not been able to establish uniqueness of the
solution of the RH problem for n.

• The RH problem for n is of size 1× 3. This is also not convenient.
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3× 3 RH problem for m
We define a 3× 3 RH problem for m as follows:

Same jumps as the RH problem for M
Same behavior at ∞: m(x , t, z) = I +O(z−1).
But it is bounded at 0.

We have been able to establish that

existence and uniqueness of m⇒ existence and uniqueness of n.

On the other hand,

existence of u ⇒ existence and uniqueness of M.

Therefore, if m and u exist, the solutions to the above RH problems are
related by

n =
(
ω ω2 1

)
m(x , t, z) =

(
ω ω2 1

)
M(x , t, z).

Existence of m will be guaranteed for large t from the steepest descent
analysis. So we only need to assume existence of u for t ∈ (0,T ].
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Steepest descent of m

v1 =

(
1 −r1(z)e−i

√
3z(x−zt) 0

r∗1 (z)ei
√

3z(x−zt) 1− |r1(z)|2 0
0 0 1

)
v4 =

(
1− |r2(z)|2 −r∗2 (z)e−i

√
3z(x−zt) 0

r2(z)ei
√

3z(x−zt) 1 0
0 0 1

)

v2 = ...v3 = ...

v5 = ... v6 = ...
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Scalar additive RH problems
Seek for a complex-valued function such that
(a) f : C \ R is analytic
(b) For each x ∈ R, the following limits exist

f±(x) := lim
ε→0+

f (x ± iε).

The functions x 7→ f±(x) are continuous and satisfy the jump

f+(x) = f−(x) + v(x),

where v is smooth enough and v(x)→ 0 as |x | → +∞.
(c) f (z) = O(z−1) as z →∞.
Solution ?

Well-known Plemelj formula gives

f (z) =
∫
R

v(x)
x − z

dx
2πi .
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Steepest descent method

Asymptotics for
∫
R f (z)e−itz2dz as t → +∞:

R

γ

Under suitable conditions on f , we have∫
R

f (z)e−itz2
dz =

∫
γ

f (z)e−itz2
dz ≈

√
πf (0)√

t
e−πi

4 + ... as t →∞.

The Deift–Zhou steepest descent method generalizes the classical steepest descent
method for matrix RH problems.
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Steepest descent of m

• The steepest descent is a method developed by Deift and Zhou (1993)
• In our case, we will apply several invertible transformation

m 7→ m(1) 7→ m(2) 7→ m(3) 7→ m̂.
• Goal: obtain an RH problem for m̂ such that its jumps are “close" to I.
• Such a RH problem is called “small norms" RH problem, and satisfies

m̂(x , t, z) = I + o(1), as t → +∞

uniformly for z in the complex plane.
• We start by computing the saddle point of the phase function

d
dz
(
i
√
3z(x − zt)

)
= 0, ⇔ z = z0 := x

2t .
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RH problem for m

v1 =

(
1 −r1(z)e−i

√
3z(x−zt) 0

r∗1 (z)ei
√

3z(x−zt) 1− |r1(z)|2 0
0 0 1

)
v4 =

(
1− |r2(z)|2 −r∗2 (z)e−i

√
3z(x−zt) 0

r2(z)ei
√

3z(x−zt) 1 0
0 0 1

)

v2 = ...v3 = ...

v5 = ... v6 = ...
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RH problem for m

v1 =

(
1 −r1(z)e−i

√
3z(x−zt) 0

r∗1 (z)ei
√

3z(x−zt) 1− |r1(z)|2 0
0 0 1

)
v4 =

(
1− |r2(z)|2 −r∗2 (z)e−i

√
3z(x−zt) 0

r2(z)ei
√

3z(x−zt) 1 0
0 0 1

)

v2 = ...v3 = ...

v5 = ... v6 = ...

z0
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Preparation to the steepest descent

The jumps are not analytic, so we cannot deform the contour at the
moment. We use an idea from Deift and Zhou:

r2(z) = r2,a(x , t, z) + r2,r (x , t, z), z ∈ (−∞, 0],
r1(z) = r1,a(x , t, z) + r1,r (x , t, z), z ∈ [0, z0],
r̂1(z) = r̂1,a(x , t, z) + r̂1,r (x , t, z), z ∈ [z0,∞),

where

r̂1(z) = r1(z)
1− |r1(z)|2 .

Many estimates are needed. In particular, the ∂
∂x causes serious

technicalities.
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First transformation : m→ m(1)

The jump matrix v4 can be factorized as

v4 = vU
4,av4,r vL

4,a.

vU
4,a =

1 −r∗2,a(z)e−i
√
3z(tz−x) 0

0 1 0
0 0 1

 , vL
4,a =

 1 0 0
r2,a(z)e i

√
3z(tz−x) 1 0

0 0 1

 ,

vU
4,a = I + small, as t → +∞, z above Γ4,

vL
4,a = I + small, as t → +∞, z below Γ4,

v4,r = I + small, as t → +∞, z ∈ Γ4.

There are similar factorizations for v2 and v6.
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RH problem for m(1)

v (1)
1 = ...v4,r = I3 + small

v2,r = I3 + smallv (1)
3 = ...

v (1)
5 = ... v6,r = I3 + small

z0
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Second and third transformations: m(1) 7→ m(2) 7→ m(3)

• Is that possible to apply similar factorization for v (1)
1 as we did for v2 ?

• Yes, for z ∈ (0, z0).
• No, for (z0,+∞) ⇒ here we need a new factorization.
• We apply a transformation on m(1):

m(2) = m(1)∆.

The jumps for m(2) involve r̂1(z) = r1(z)
1−|r1(z)|2 .

• We consider the sector t → +∞ and simultaneously x → +∞ such
that z0 = x

2t ∈ [a, b] where b > a > 0 are fixed, and we assume that a
is sufficiently large such that |r1(z)| < 1 for all z ≥ z0.

• Now, there are good factorizations for v (2)
1 also on (z0,+∞) and we

can open lenses on both (0, z0) and (z0,+∞) as in the first
transformation; this is the m(2) 7→ m(3) transformation.
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RH problem for m(3)
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RH problem for m̂
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Long-time asymptotics for the good Boussinesq

Theorem (C-Lenells-Wang 2020)
Assume that
• The initial data are smooth with rapid decay,
• |r1(z)| < 1 for all z ≥ z0 = x

2t ,
• there exists a solution u : R× [0,+∞) to the good Boussinesq

equation.
Then, as t → +∞, we have

u(x , t) =− 35/4z0
√
ν√

2t
sin
(19π

12 + ν ln(6
√
3tz20 )−

√
3z20 t − argq

− argΓ(iν)− 1
π

∫ ∞
z0

ln |s − z0|
|s − e 2πi

3 z0|
d ln(1− |r1(s)|2)

)
+ O(t−1 ln t),

where ν(z0) = − 1
2π ln(1− |r1(z0)|2) and q = r1(z0).
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Thank you for your attention
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