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The good Boussinesq equation

The mathematician Boussinesq derived (back in 1872) the following
equation for shallow water waves propagating in a rectangular channel

Ut — Uxx — (U2)Xx — Upox = 0.
The good Boussinesq equation takes the form
Ugt + (u2)xx + Upxx = 0.

The initial data are up(x) = u(x,0) and u1(x) = u¢(x,0).
They are assumed to be sufficiently smooth with rapid decay at x = +oo.
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The good Boussinesq equation

The mathematician Boussinesq derived (back in 1872) the following
equation for shallow water waves propagating in a rectangular channel

Ut — Uxx — (U2)Xx — Upox = 0.
The good Boussinesq equation takes the form
Ugt + (u2)xx + Upxx = 0.

The initial data are up(x) = u(x,0) and u1(x) = u¢(x,0).
They are assumed to be sufficiently smooth with rapid decay at x = +oo.

Earlier works on long-time asymptotics: Linares & Scialom (1995), Liu
(1997), Farah (2008), Wang (2009). Functional analytic approaches.
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Deift & Zhou (1993): long-time asymptotics for the mKdV equation

Deift, Tomei & Trubowitz (1982): An inverse scattering for the Boussinesq
equation was outlined.
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Scattering and inverse scattering method via a

Riemann-Hilbert (RH) approach

Inverse scattering
via a RH problem

u(z,t) 5(z,t)
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Direct scattering

u(x,0), u(x, 0) - 5(z,0)

At his 60th birthday conference in 2005, P. Deift presented a list of sixteen
open problems, among which he pointed out that “The long-time behavior
of the solutions of the Boussinesq equation with general initial data is a very
interesting problem with many challenges.”
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Direct scattering

The good Boussinesq equation
gt + (U7 )0 + Usoooc = 0.
is equivalent to the compatibility condition
Myt (x, t,z) = My(x,t,z), where z € C is a new parameter

and M is a 3 X 3 matrix that satisfies the following Lax pair (Zakharov,
1974):

My —[£, M] = UM,
M, — [Z, M] = VM.

L =diag(h, h,k), Z =diag(z1,z,z), Xﬂ}rﬂrgoo U=0, lim V=0.

x—+o00
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Direct scattering

Fix t = 0 and consider the x-part of the Lax pair:

M, — [C, M] = UM.

where
h(z) O 0 wz 0 O ,
L(z)=] 0 h(z) 0 |=|0 w2z 0|, w=e3,
0 0 Kh(2) 0o 0 =z

W ow 1 w o w? 1

U(x,0,z) = _2u(x,0) w? w1 v(x,0) + tx(x,0) w w? 1

3z 2 322 2

w w 1 w w1

What is M fort =07
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Direct scattering

Consider the solutions to the foIIowing linear Volterra integral equations

Y(x,z) = /+/ x=NE@ (YY) (X, 2)e” T DEE) gy

X and Y satisfy the x-part of the Lax pair.
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Direct scattering

Consider the solutions to the foIIowing linear Volterra integral equations

Y(x,z) = /+/ x=NE@ (YY) (X, 2)e” T DEE) gy

X and Y satisfy the x-part of the Lax pair.
The columns of X and Y do not exist for every value of z !

The integrand is of the form

. 4 N h(D)—h(2) 4 olx—x)(h(2)~h(2))
* e(x—x')(lz(z)—ll(z)) * * e(x—x’)(lg(z)—l3(z))
B -h(2) o olx—x)(1(2)~h(2)) .
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Direct scattering

The columns of X and Y do not exist for every value of z !
D

D3 D1={ZZR€/1<R€/2<R€/3}

Dy Deg
Ds
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Direct scattering

Let X; (resp. Y;) be the j-th column of X (resp. Y) j=1,2,3.

Here are the domains of definition for X, Y;:

X1 Y2
X3 Y3

X2 Y1
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A typical situation when the Lax pair is of size 2 x 2

Let X; (resp. Y;) be the j-th column of X (resp. Y) j=1,2.
An example of domains of definition for Xj, Y;:

X1 Y2

X2 Yl
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A typical situation when the Lax pair is of size 2 x 2

Let X; (resp. Y;) be the j-th column of X (resp. Y) j=1,2.
An example of domains of definition for Xj, Y;:

X1 Y2
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Here we can define M as

M = [X1; Y2

M =[Y1; X2
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A typical situation when the Lax pair is of size 2 x 2

Let X; (resp. Y;) be the j-th column of X (resp. Y) j=1,2.

An example of domains of definition for Xj, Y;:

X1 Y2

X2 Yl

Here we can define M as

M = [X1; Y2

M =[Y1; X2

(In fact this is not as simple as that, because we want det M(x, t, k) = 1...)
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Direct scattering

Let X; (resp. Y;) be the j-th column of X (resp. Y) j=1,2,3.

Here are the domains of definition for X, Y;:

X1 Y2
X3 Y3

X2 Y1
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Direct scattering

Conclusions: For each z € C, we only have two columns at our disposal
= This is not enough to construct a 3 x 3 solution M to the x-part of the Lax pair.

Christophe Charlier (KTH) Asymptotics for the Boussinesq equation



Direct scattering

Conclusions: For each z € C, we only have two columns at our disposal
= This is not enough to construct a 3 x 3 solution M to the x-part of the Lax pair.

This situation differs from many well-known PDEs such as KdV, mKdV,
Schrédinger, etc. We will use an idea from Lenells (2012).
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= This is not enough to construct a 3 x 3 solution M to the x-part of the Lax pair.

This situation differs from many well-known PDEs such as KdV, mKdV,
Schrédinger, etc. We will use an idea from Lenells (2012).

Assume M satisfies
M, —[L,M] = UM,
and consider M4 = (M~1)T . It satisfies the following x-part:

(M), + £, M] = —UT MA,
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Direct scattering

Conclusions: For each z € C, we only have two columns at our disposal
= This is not enough to construct a 3 x 3 solution M to the x-part of the Lax pair.

This situation differs from many well-known PDEs such as KdV, mKdV,
Schrédinger, etc. We will use an idea from Lenells (2012).

Assume M satisfies
M, —[L,M] = UM,
and consider M4 = (M~1)T . It satisfies the following x-part:
(MA) +[£,M"] = —UT M~

We consider the associated Volterra equations:

XA(x,z) = I+/ e_(X_X/)ﬂ(Z)(UTXA)(X’,Z)e(X_X/)ﬂ(Z)dx’,

X

YA(X,Z) — /- / ef(xfx/)[:(z)(UTyA)(Xl’z)e(xfxl)[:(z)dx/.
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Direct scattering

Summary of the ingredients to build M: X, Y, XA YA,

How to construct M ? It is still not obvious.
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Direct scattering

Summary of the ingredients to build M: X, Y, XA YA,
How to construct M 7 It is still not obvious.
The solution to

M, —[£,M] =UM

can also be analyzed via a Fredholm integral equation:

/\/I(X, z) =+ / e(X_X,)’C(Z)(UM)(X/,Z)e_(x_xl)ﬁ(z)dxl’
y
where the contours v = v;i(x, z), i,j = 1,2, 3, are defined by
(—o0, x), Re /i(z) < Relj(z),
(+00,x),  Reli(z) > Reli(z),

’)/,'J'(X,Z) = {
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Direct scattering

Advantage of the Fredholm equation:

@ All the columns of M exist simultaneously
= It gives directly an expression for the solution to the x-part of the Lax pair.
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Direct scattering

Advantage of the Fredholm equation:

@ All the columns of M exist simultaneously
= It gives directly an expression for the solution to the x-part of the Lax pair.

Disadvantage of the Fredholm equation:

@ It is considerably harder to analyze than the Volterra equations.

The solution does not exist for z € Z, where Z is the zero set of the
associated Fredholm determinant (the kernel is not scalar but 3 x 3
matrix-valued).

Christophe Charlier (KTH) Asymptotics for the Boussinesq equation 14 /37



Direct scattering

We try to analyze a solution of My — [£, M] = UM.

Summary of the different pieces of the puzzle:
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Direct scattering

We try to analyze a solution of My — [£, M] = UM.
Summary of the different pieces of the puzzle:

X, Y, XA and Y4 are easy to analyze, but it is not clear how to construct
the solution to the x-part from them.
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Direct scattering

We try to analyze a solution of My — [£, M] = UM.
Summary of the different pieces of the puzzle:

X, Y, XA and Y4 are easy to analyze, but it is not clear how to construct
the solution to the x-part from them.

M, defined as a Fredholm equation, is the solution to the x-part, but then it
is not clear how to handle Z.
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Direct scattering

We try to analyze a solution of My — [£, M] = UM.
Summary of the different pieces of the puzzle:

X, Y, XA and Y4 are easy to analyze, but it is not clear how to construct
the solution to the x-part from them.

M, defined as a Fredholm equation, is the solution to the x-part, but then it
is not clear how to handle Z.

The good news is that it is possible to relate M with X, Y, XA, YA
X11 YAXS-YAXS v

yAxA_YAxA
M= | Xo; 1 33511 3173 \;%33 , ze D
A XA _ VA YA
X31 YaXis—Yh X Ya
3 s11 4

where s is given by s(z) = | — [ e ¥ (UX)(x, z)e*~(?)dx.
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Direct scattering

It is possible to relate M(x,0, z) with X, Y, X4, YA
This allows to show that Z = .
We can transfer other properties of X, Y, XA, Y# to M(x,0, z).

The evolution in time M(x,0,z) — M(x, t, z) is simpler to analyze.
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Properties of M

(a) M(x,t,-): C\T — C3*3 is analytic, where I = R U wR U w?R.
(b) For each z € '\ {0}, the following limits exist

My(x,t,z) .= lim M(x,t,z £ en),

e—04

where n goes in the normal direction to I' at z (viewed as a complex
number). The functions z — My(x, t,z) are continuous and satisfy
the jump

Mi(x,t,z) = M_(x,t,z)v(x, t, z),

where the 3 x 3 function v is smooth and v(x, t,z) — [ as |z| — +o0,
zel.

(c) M(x,t,z) =1+ 0O(z71) as z — 0.
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Properties of M

e M satisfies the following asymptotics
M(x,t,z) = I+ MO (x, )z~ + O(z7?), as z — 0o,

e The solution u for the good Boussinesq equation can be recovered
from M:
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RH problem for M

vz = ... vy = ...
1— |r2(z)|2 _r;(z)efi\/gz(x—zt) 0 . 1 _rl(z)eff\/iz(xfzt) 0
vy = r(z)e 3z(x—zt) 1 0 v = rl*(z)e' 3z(x—zt) 1 |r1(z)‘2 0
0 0 L 1 g 0
>
Ve = ... Ve = ...
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rn and r

r1 and rp are given explicitly in terms of the initial data ug, u;. For example,

r(z) =

(s(2))12

— s(z)=1— [ e *£(2) x, z)e @) g,
o s =1 [N et

0.00 0.25 0.50 0.75 1.00
-
-1.00 -0.75 -0.50 -0.25 0.00
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Properties of M

M has a 2—12 blow up at the origin. But this is not a double pole.
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Properties of M

M has a % blow up at the origin. But this is not a double pole.

As z — 0, z € Dy, we have

w 0 0 w? 00
M(x,t,z):M w0 o|+ 2D 2 o o,
z z 2
w 0 0 ws 0 0
w? 0 0 0 1-w O * % €(x,t)
PICILON RPN I CILON TS N DAV
z w 00 z 0 1-w O * * €(x,t)
+ ..
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RH problems for M and n

e The % blow up of M at z = 0 is not very convenient for an asymptotic

analysis.
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RH problems for M and n

e The % blow up of M at z = 0 is not very convenient for an asymptotic

analysis. We follow an idea of Deift, Venakides & Zhou (1994).
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RH problems for M and n

e The % blow up of M at z = 0 is not very convenient for an asymptotic

analysis. We follow an idea of Deift, Venakides & Zhou (1994).

e An important observation is that
n(x,t,z) = (w w? 1) M(x, t, z), w=e3,

is bounded at z =0 !
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RH problems for M and n

e The % blow up of M at z = 0 is not very convenient for an asymptotic
anaIyS|s We follow an idea of Deift, Venakides & Zhou (1994).

e An important observation is that
n(x,t,z) = (w w? 1) M(x, t, z), w=e¢e3

is bounded at z =0 !

e If the solution to the RH problem for n is unique, then solution u can
be recovered from n via

u(x,t) = —288 lim_ z(n3(x, t,z) — 1).

Christophe Charlier (KTH) Asymptotics for the Boussinesq equation



RH problems for M and n

e The % blow up of M at z = 0 is not very convenient for an asymptotic
anaIyS|s We follow an idea of Deift, Venakides & Zhou (1994).

e An important observation is that
n(x,t,z) = (w w? 1) M(x, t, z), w=e¢e3

is bounded at z =0 !

e If the solution to the RH problem for n is unique, then solution u can
be recovered from n via

u(x,t) = —288 lim_ z(n3(x, t,z) — 1).

e Unfortunately, we have not been able to establish uniqueness of the
solution of the RH problem for n.
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RH problems for M and n

e The % blow up of M at z = 0 is not very convenient for an asymptotic
anaIyS|s We follow an idea of Deift, Venakides & Zhou (1994).

e An important observation is that
n(x,t,z) = (w w? 1) M(x, t, z), w=e3,

is bounded at z =0 !

e If the solution to the RH problem for n is unique, then solution u can
be recovered from n via

u(x,t) = —288 lim_ z(n3(x, t,z) — 1).

e Unfortunately, we have not been able to establish uniqueness of the
solution of the RH problem for n.

e The RH problem for n is of size 1 x 3. This is also not convenient.

Christophe Charlier (KTH) Asymptotics for the Boussinesq equation



3 x 3 RH problem for m

We define a 3 x 3 RH problem for m as follows:
@ Same jumps as the RH problem for M
@ Same behavior at co: m(x,t,z) =1+ O(z71).
@ But it is bounded at 0.
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3 x 3 RH problem for m

We define a 3 x 3 RH problem for m as follows:
@ Same jumps as the RH problem for M
@ Same behavior at co: m(x,t,z) =1+ O(z71).
@ But it is bounded at 0.

We have been able to establish that

existence and uniqueness of m = existence and uniqueness of n.
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3 x 3 RH problem for m

We define a 3 x 3 RH problem for m as follows:
@ Same jumps as the RH problem for M
@ Same behavior at co: m(x,t,z) =1+ O(z71).
@ But it is bounded at 0.

We have been able to establish that

existence and uniqueness of m = existence and uniqueness of n.

On the other hand,

existence of u = existence and uniqueness of M.
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3 x 3 RH problem for m

We define a 3 x 3 RH problem for m as follows:
@ Same jumps as the RH problem for M
@ Same behavior at co: m(x,t,z) =1+ O(z71).
@ But it is bounded at 0.

We have been able to establish that

existence and uniqueness of m = existence and uniqueness of n.

On the other hand,
existence of u = existence and uniqueness of M.

Therefore, if m and u exist, the solutions to the above RH problems are
related by

n= (w w? 1) m(x,t,z) = (w w? 1) M(x,t, z).

Christophe Charlier (KTH) Asymptotics for the Boussinesq equation 23 /37



3 x 3 RH problem for m

We define a 3 x 3 RH problem for m as follows:
@ Same jumps as the RH problem for M
@ Same behavior at co: m(x,t,z) =1+ O(z71).
@ But it is bounded at 0.

We have been able to establish that

existence and uniqueness of m = existence and uniqueness of n.
On the other hand,
existence of u = existence and uniqueness of M.

Therefore, if m and u exist, the solutions to the above RH problems are
related by
n= (w w? 1) m(x,t,z) = (w w? 1) M(x,t, z).

Existence of m will be guaranteed for large t from the steepest descent
analysis. So we only need to assume existence of u for t € (0, T].

Christophe Charlier (KTH) Asymptotics for the Boussinesq equation 23 /37



Steepest descent of m

vz = ... vy = ...
1— |r2(z)|2 _r;(z)efi\/gz(x—zt) 0 1 _rl(z)eff\/iz(xfzt) 0
vy = rz(z)ei 3z(x—zt) 1 0 v = rl*(z)ei 3z(x—zt) 1 |r1(z)‘2 0
0 0 L 1 g 0 1
>
Ve = ... Ve = ...
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Scalar additive RH problems

Seek for a complex-valued function such that
(a) f:C\Ris analytic
(b) For each x € R, the following limits exist

fi(x):= EI_i}r(r;+ f(x % ie).

The functions x — f1(x) are continuous and satisfy the jump
FL(x) = £ (x) + v(x),

where v is smooth enough and v(x) — 0 as |x| — 4o0.
(c) f(z) = O(z71) as z — oo.

Solution ?
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Scalar additive RH problems

Seek for a complex-valued function such that
(a) f:C\Ris analytic
(b) For each x € R, the following limits exist

fi(x):= EI_i}r(r;+ f(x % ie).

The functions x — f1(x) are continuous and satisfy the jump
Fr(x) = £-(x) + v(x),
where v is smooth enough and v(x) — 0 as |x| — 4o0.
(c) f(z) = O(z71) as z — oo.
Solution 7 Well-known Plemelj formula gives

f(z) = /]R vx) dx

X —z2mi

Christophe Charlier (KTH) Asymptotics for the Boussinesq equation



Steepest descent method

Asymptotics for [, f(z)e " dz as t — +oo:

R °

Y %
Under suitable conditions on f, we have

Af(z)e—ffzzdz:l F(2)e ¥ dz ~ f\/fE(O) i

The Deift—Zhou steepest descent method generalizes the classical steepest descent
method for matrix RH problems.
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Steepest descent of m

The steepest descent is a method developed by Deift and Zhou (1993)

e In our case, we will apply several invertible transformation
mi— mM — m@ - mB — m.

Goal: obtain an RH problem for m such that its jumps are “close" to /.

Such a RH problem is called “small norms" RH problem, and satisfies
m(x, t,z) =1+ o(1), as t — 400

uniformly for z in the complex plane.

e We start by computing the saddle point of the phase function
i(i\[l%z(x—zt)) =0 o zZ=12z = i.
dz ’ 2t
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RH problem for m

vz = ... vy = ...
1— |r2(z)|2 _r;(z)efi\/gz(x—zt) 0 . 1 _rl(z)eff\/iz(xfzt) 0
vy = r(z)e 3z(x—zt) 1 0 v = rl*(z)e' 3z(x—zt) 1 |r1(z)‘2 0
0 0 L 1 g 0
>
Ve = ... Ve = ...
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RH problem for m

vz = ... vy = ...
1— |r2(z)|2 _r;(z)efi\/gz(x—zt) 0 . 1 _rl(z)eff\/iz(xfzt) 0
vy = rz(z)ei 3z(x—zt) 1 0 = rl*(z)e’ 3z(x—zt) 1 |r1(z)\2 0
0 0 L 1 0

0
—d >

Vs = ... Ve = ...
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Preparation to the steepest descent

The jumps are not analytic, so we cannot deform the contour at the
moment. We use an idea from Deift and Zhou:

rn(z) = na(x,t,z) + n(x,t,z),

z € (—00,0],
r(z) = na(x, t,z) + n (x,t, z), z € [0, zo],
?1(2) = /'\’1,3(X> t,Z)—i—?’Lr(X, t,Z), V4SS [ZO>OO)a

where

sy (@)
0= nr
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Preparation to the steepest descent

The jumps are not analytic, so we cannot deform the contour at the
moment. We use an idea from Deift and Zhou:

rn(z) = ma(x,t,z) + rn(x,t, z), z € (—0,0],
r(z) = na(x, t,z) + n (x,t, z), z € [0, zo],
P(z) = ha(x, t,z) + P (x, t, 2), z € [zg,00),

where

he) = ;)

T h P

Many estimates are needed. In particular, the a% causes serious
technicalities.
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First transformation : m — m()

The jump matrix v4 can be factorized as

U L
V4 = Vg aV4,rVy 5-

1 _rga(z)e—i\/gz(tz—x) 0 1 00
vfa =10 ’ 1 0], Vi‘,a = rgya(z)e"\/gz(tz’x) 1 0],
0 0 1 0 0 1
vfa = [ 4 small, as t — 400, z above [y,
v[ﬁa = [ + small, as t — 400, z below 4,
va,r = I+ small, as t — +oo, z €Iy.

There are similar factorizations for v» and vg.
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RH problem for m(%)

v§1) — vo,r = I3 + small
v4,r = I3 + small v;l) =...
- ——>
20
v;l) — . ve,r = I3 + small
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Second and third transformations: m(!) — m() — mG)

(1)

e |s that possible to apply similar factorization for vy’ as we did for v» 7
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Second and third transformations: m(!) — m() — mG)

(1)

e |s that possible to apply similar factorization for vy’ as we did for v» 7
e Yes, for z € (0, zp).
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Second and third transformations: m(!) — m() — mG)

(1)

e |s that possible to apply similar factorization for vy’ as we did for v» 7
e Yes, for z € (0, zp).

e No, for (29, +00) = here we need a new factorization.
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Second and third transformations: m(!) — m() — mG)

(1)

Is that possible to apply similar factorization for v;’ as we did for vo ?
Yes, for z € (0, zp).

No, for (zp, +00) = here we need a new factorization.

We apply a transformation on m(®).

m? = mWA.

The jumps for m(®) involve #1(z) = %
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Second and third transformations: m(!) — m() — mG)

(1)

e |s that possible to apply similar factorization for vy’ as we did for v» 7
e Yes, for z € (0, zp).
e No, for (29, +00) = here we need a new factorization.

e We apply a transformation on m():
m® = m(WA.

r(z)

The jumps for m(®) involve #1(z) = I-In@)P

e We consider the sector t — 400 and simultaneously x — 400 such
that zg = 5% € [a, b] where b > a > 0 are fixed, and we assume that a
is sufficiently large such that |ri(z)| < 1 for all z > z.
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Second and third transformations: m(!) — m() — mG)

(1)

e |s that possible to apply similar factorization for vy’ as we did for v» 7
e Yes, for z € (0, zp).
e No, for (29, +00) = here we need a new factorization.

e We apply a transformation on m():
m® = m(WA.

r(z)

The jumps for m(®) involve #1(z) = I-In@)P

e We consider the sector t — 400 and simultaneously x — 400 such
that zg = 5% € [a, b] where b > a > 0 are fixed, and we assume that a
is sufficiently large such that |ri(z)| < 1 for all z > z.

e Now, there are good factorizations for V1(2) also on (zg, +00) and we

can open lenses on both (0, zp) and (zp, +00) as in the first
transformation: this is the m®) — m(®) transformation.
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RH problem for m®)

- - -
« - Ll
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RH problem for m

: “"8'




Long-time asymptotics for the good Boussinesq

Theorem (C-Lenells-Wang 2020)

Assume that
e The initial data are smooth with rapid decay,
o n(z)| <1forallz>z = 5,

e there exists a solution u : R x [0, +00) to the good Boussinesq
equation.

Then, as t — +00, we have

35/4
u(x, t) = \/22%[ ( ot vIn(6V3tz3) — V323t — argq

— argl(iv) — 71T/°° S =2l g - |r1(s)|2)> +O(t nt),

o |s—e3 z

where v(z0) = —5= In(1 — |r1(20)|?) and q = r(z0).

v
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Thank you for your attention

Christophe Charlier (KTH)



