Long-time asymptotics for the good Boussinesq equation via a Riemann-Hilbert approach

Christophe Charlier

Integrable systems and applications, SISSA, September 14-16, 2020

Joint work with J. Lenells (KTH) and D. Wang (Beijing).

The good Boussinesq equation

The mathematician Boussinesq derived (back in 1872) the following equation for shallow water waves propagating in a rectangular channel

$$
u_{t t}-u_{x x}-\left(u^{2}\right)_{x x}-u_{x x x x}=0
$$

The good Boussinesq equation takes the form

$$
u_{t t}+\left(u^{2}\right)_{x x}+u_{x x x x}=0
$$

The initial data are $u_{0}(x)=u(x, 0)$ and $u_{1}(x)=u_{t}(x, 0)$. They are assumed to be sufficiently smooth with rapid decay at $x= \pm \infty$.

The good Boussinesq equation

The mathematician Boussinesq derived (back in 1872) the following equation for shallow water waves propagating in a rectangular channel

$$
u_{t t}-u_{x x}-\left(u^{2}\right)_{x x}-u_{x x x x}=0
$$

The good Boussinesq equation takes the form

$$
u_{t t}+\left(u^{2}\right)_{x x}+u_{x x x x}=0
$$

The initial data are $u_{0}(x)=u(x, 0)$ and $u_{1}(x)=u_{t}(x, 0)$.
They are assumed to be sufficiently smooth with rapid decay at $x= \pm \infty$.
Earlier works on long-time asymptotics: Linares \& Scialom (1995), Liu (1997), Farah (2008), Wang (2009). Functional analytic approaches.

Scattering and inverse scattering method via a Riemann-Hilbert (RH) approach

Scattering and inverse scattering method via a Riemann-Hilbert (RH) approach

Deift \& Zhou (1993): long-time asymptotics for the mKdV equation

Scattering and inverse scattering method via a Riemann-Hilbert (RH) approach

Deift \& Zhou (1993): long-time asymptotics for the mKdV equation Deift, Tomei \& Trubowitz (1982): An inverse scattering for the Boussinesq equation was outlined.

Scattering and inverse scattering method via a Riemann-Hilbert (RH) approach

At his 60th birthday conference in 2005, P. Deift presented a list of sixteen open problems, among which he pointed out that "The long-time behavior of the solutions of the Boussinesq equation with general initial data is a very interesting problem with many challenges."

Direct scattering

The good Boussinesq equation

$$
u_{t t}+\left(u^{2}\right)_{x x}+u_{x x x x}=0
$$

is equivalent to the compatibility condition

$$
M_{x t}(x, t, z)=M_{t x}(x, t, z), \quad \text { where } z \in \mathbb{C} \text { is a new parameter }
$$

and M is a 3×3 matrix that satisfies the following Lax pair (Zakharov, 1974):

$$
\left\{\begin{array}{l}
M_{x}-[\mathcal{L}, M]=\mathrm{U} M \\
M_{t}-[\mathcal{Z}, M]=\mathrm{V} M
\end{array}\right.
$$

$\mathcal{L}=\operatorname{diag}\left(l_{1}, l_{2}, I_{3}\right), \quad \mathcal{Z}=\operatorname{diag}\left(z_{1}, z_{2}, z_{3}\right), \quad \lim _{x \rightarrow \pm \infty} U=0, \quad \lim _{x \rightarrow \pm \infty} V=0$.

Direct scattering

Fix $t=0$ and consider the x-part of the Lax pair:

$$
M_{x}-[\mathcal{L}, M]=\mathrm{U} M
$$

where

$$
\begin{aligned}
& \mathcal{L}(z)=\left(\begin{array}{ccc}
I_{1}(z) & 0 & 0 \\
0 & I_{2}(z) & 0 \\
0 & 0 & I_{3}(z)
\end{array}\right)=\left(\begin{array}{ccc}
\omega z & 0 & 0 \\
0 & \omega^{2} z & 0 \\
0 & 0 & z
\end{array}\right), \quad \omega=e^{\frac{2 \pi i}{3}}, \\
& U(x, 0, z)=-\frac{2 u(x, 0)}{3 z}\left(\begin{array}{ccc}
\omega^{2} & \omega & 1 \\
\omega^{2} & \omega & 1 \\
\omega^{2} & \omega & 1
\end{array}\right)-\frac{v(x, 0)+u_{x}(x, 0)}{3 z^{2}}\left(\begin{array}{ccc}
\omega & \omega^{2} & 1 \\
\omega & \omega^{2} & 1 \\
\omega & \omega^{2} & 1
\end{array}\right)
\end{aligned}
$$

What is M for $t=0 ?$

Direct scattering

Consider the solutions to the following linear Volterra integral equations

$$
\begin{aligned}
& X(x, z)=I-\int_{x}^{\infty} e^{\left(x-x^{\prime}\right) \mathcal{L}(z)}(U X)\left(x^{\prime}, z\right) e^{-\left(x-x^{\prime}\right) \mathcal{L}(z)} d x^{\prime} \\
& Y(x, z)=I+\int_{-\infty}^{x} e^{\left(x-x^{\prime}\right) \mathcal{L}(z)}(U Y)\left(x^{\prime}, z\right) e^{-\left(x-x^{\prime}\right) \mathcal{L}(z)} d x^{\prime}
\end{aligned}
$$

X and Y satisfy the x-part of the Lax pair.

Direct scattering

Consider the solutions to the following linear Volterra integral equations

$$
\begin{aligned}
& X(x, z)=I-\int_{x}^{\infty} e^{\left(x-x^{\prime}\right) \mathcal{L}(z)}(U X)\left(x^{\prime}, z\right) e^{-\left(x-x^{\prime}\right) \mathcal{L}(z)} d x^{\prime} \\
& Y(x, z)=I+\int_{-\infty}^{x} e^{\left(x-x^{\prime}\right) \mathcal{L}(z)}(U Y)\left(x^{\prime}, z\right) e^{-\left(x-x^{\prime}\right) \mathcal{L}(z)} d x^{\prime}
\end{aligned}
$$

X and Y satisfy the x-part of the Lax pair.
The columns of X and Y do not exist for every value of z !
The integrand is of the form

$$
\left(\begin{array}{ccc}
\star & \star e^{\left(x-x^{\prime}\right)\left(l_{1}(z)-l_{2}(z)\right)} & \star e^{\left(x-x^{\prime}\right)\left(l_{1}(z)-l_{3}(z)\right)} \\
\star e^{\left(x-x^{\prime}\right)\left(l_{2}(z)-l_{1}(z)\right)} & \star & \star e^{\left(x-x^{\prime}\right)\left(l_{2}(z)-l_{3}(z)\right)} \\
\star e^{\left(x-x^{\prime}\right)\left(l_{3}(z)-l_{1}(z)\right)} & \star e^{\left(x-x^{\prime}\right)\left(l_{3}(z)-l_{2}(z)\right)} & \star
\end{array}\right)
$$

Direct scattering

The columns of X and Y do not exist for every value of $z!$

Direct scattering

Let $X_{j}\left(\right.$ resp. $\left.Y_{j}\right)$ be the j-th column of $X($ resp. $Y) j=1,2,3$.
Here are the domains of definition for X_{j}, Y_{j} :

A typical situation when the Lax pair is of size 2×2

Let X_{j} (resp. Y_{j}) be the j-th column of X (resp. $\left.Y\right) j=1,2$.
An example of domains of definition for X_{j}, Y_{j} :

A typical situation when the Lax pair is of size 2×2

Let $X_{j}\left(\right.$ resp. $\left.Y_{j}\right)$ be the j-th column of $X($ resp. $Y) j=1,2$.
An example of domains of definition for X_{j}, Y_{j} :

Here we can define M as

$$
M=[X 1 ; Y 2]
$$

$$
M=[Y 1 ; X 2]
$$

A typical situation when the Lax pair is of size 2×2

Let $X_{j}\left(\right.$ resp. $\left.Y_{j}\right)$ be the j-th column of $X($ resp. $Y) j=1,2$.
An example of domains of definition for X_{j}, Y_{j} :

Here we can define M as

$$
M=\left[X_{1} ; Y_{2}\right]
$$

$$
M=[Y 1 ; X 2]
$$

(In fact this is not as simple as that, because we want det $M(x, t, k)=1 \ldots$)

Direct scattering

Let $X_{j}\left(\right.$ resp. $\left.Y_{j}\right)$ be the j-th column of $X($ resp. $Y) j=1,2,3$.
Here are the domains of definition for X_{j}, Y_{j} :

Direct scattering

Conclusions: For each $z \in \mathbb{C}$, we only have two columns at our disposal \Rightarrow This is not enough to construct a 3×3 solution M to the x-part of the Lax pair.

Direct scattering

Conclusions: For each $z \in \mathbb{C}$, we only have two columns at our disposal \Rightarrow This is not enough to construct a 3×3 solution M to the x-part of the Lax pair.

This situation differs from many well-known PDEs such as KdV , mKdV, Schrödinger, etc. We will use an idea from Lenells (2012).

Direct scattering

Conclusions: For each $z \in \mathbb{C}$, we only have two columns at our disposal \Rightarrow This is not enough to construct a 3×3 solution M to the x-part of the Lax pair.

This situation differs from many well-known PDEs such as KdV , mKdV, Schrödinger, etc. We will use an idea from Lenells (2012).

Assume M satisfies

$$
M_{x}-[\mathcal{L}, M]=U M
$$

and consider $M^{A}=\left(M^{-1}\right)^{T}$. It satisfies the following x-part:

$$
\left(M^{A}\right)_{x}+\left[\mathcal{L}, M^{A}\right]=-U^{T} M^{A} .
$$

Direct scattering

Conclusions: For each $z \in \mathbb{C}$, we only have two columns at our disposal \Rightarrow This is not enough to construct a 3×3 solution M to the x-part of the Lax pair.

This situation differs from many well-known PDEs such as KdV, mKdV, Schrödinger, etc. We will use an idea from Lenells (2012).

Assume M satisfies

$$
M_{x}-[\mathcal{L}, M]=U M
$$

and consider $M^{A}=\left(M^{-1}\right)^{T}$. It satisfies the following x-part:

$$
\left(M^{A}\right)_{x}+\left[\mathcal{L}, M^{A}\right]=-U^{T} M^{A}
$$

We consider the associated Volterra equations:

$$
\begin{aligned}
& X^{A}(x, z)=I+\int_{x}^{\infty} e^{-\left(x-x^{\prime}\right) \mathcal{L}(z)}\left(U^{T} X^{A}\right)\left(x^{\prime}, z\right) e^{\left(x-x^{\prime}\right) \mathcal{L}(z)} d x^{\prime} \\
& Y^{A}(x, z)=I-\int_{-\infty}^{x} e^{-\left(x-x^{\prime}\right) \mathcal{L}(z)}\left(U^{T} Y^{A}\right)\left(x^{\prime}, z\right) e^{\left(x-x^{\prime}\right) \mathcal{L}(z)} d x^{\prime}
\end{aligned}
$$

Direct scattering

Summary of the ingredients to build $M: X, Y, X^{A}, Y^{A}$. How to construct M ? It is still not obvious.

Direct scattering

Summary of the ingredients to build $M: X, Y, X^{A}, Y^{A}$.
How to construct M ? It is still not obvious.
The solution to

$$
M_{x}-[\mathcal{L}, M]=U M
$$

can also be analyzed via a Fredholm integral equation:

$$
M(x, z)=I+\int_{\gamma} e^{\left(x-x^{\prime}\right) \mathcal{L}(z)}(U M)\left(x^{\prime}, z\right) e^{-\left(x-x^{\prime}\right) \mathcal{L}(z)} d x^{\prime}
$$

where the contours $\gamma=\gamma_{i j}(x, z), i, j=1,2,3$, are defined by

$$
\gamma_{i j}(x, z)= \begin{cases}(-\infty, x), & \operatorname{Re}_{i}(z)<\operatorname{Re} l_{j}(z) \\ (+\infty, x), & \operatorname{Re} l_{i}(z) \geq \operatorname{Re} l_{j}(z)\end{cases}
$$

Direct scattering

Advantage of the Fredholm equation:

- All the columns of M exist simultaneously
\Rightarrow It gives directly an expression for the solution to the x-part of the Lax pair.

Direct scattering

Advantage of the Fredholm equation:

- All the columns of M exist simultaneously \Rightarrow It gives directly an expression for the solution to the x-part of the Lax pair.

Disadvantage of the Fredholm equation:

- It is considerably harder to analyze than the Volterra equations.

The solution does not exist for $z \in \mathcal{Z}$, where \mathcal{Z} is the zero set of the associated Fredholm determinant (the kernel is not scalar but 3×3 matrix-valued).

Direct scattering

We try to analyze a solution of $M_{x}-[\mathcal{L}, M]=U M$.
Summary of the different pieces of the puzzle:

Direct scattering

We try to analyze a solution of $M_{x}-[\mathcal{L}, M]=U M$.
Summary of the different pieces of the puzzle:
X, Y, X^{A} and Y^{A} are easy to analyze, but it is not clear how to construct the solution to the x-part from them.

Direct scattering

We try to analyze a solution of $M_{x}-[\mathcal{L}, M]=U M$.
Summary of the different pieces of the puzzle:
X, Y, X^{A} and Y^{A} are easy to analyze, but it is not clear how to construct the solution to the x-part from them.
M, defined as a Fredholm equation, is the solution to the x-part, but then it is not clear how to handle \mathcal{Z}.

Direct scattering

We try to analyze a solution of $M_{x}-[\mathcal{L}, M]=U M$.
Summary of the different pieces of the puzzle:
X, Y, X^{A} and Y^{A} are easy to analyze, but it is not clear how to construct the solution to the x-part from them.
M, defined as a Fredholm equation, is the solution to the x-part, but then it is not clear how to handle \mathcal{Z}.

The good news is that it is possible to relate M with X, Y, X^{A}, Y^{A}

$$
M=\left(\begin{array}{lll}
X_{11} & \frac{Y_{31}^{A} X_{23}^{A}-Y_{21}^{A} X_{33}^{A}}{s_{11}} & \frac{Y_{13}}{s_{33}^{A}} \\
X_{21} & \frac{Y_{11}^{A} X_{33}^{A}-Y_{31}^{A} X_{13}^{A}}{s_{11}} & \frac{Y_{23}}{s_{33}^{A}} \\
X_{31} & \frac{Y_{21}^{A} X_{13}^{A}-Y_{11}^{A} X_{23}^{A}}{s_{11}} & \frac{Y_{33}}{s_{33}^{A}}
\end{array}\right), \quad z \in D_{1}
$$

where s is given by $s(z)=I-\int_{\mathbb{R}} e^{-x \mathcal{L}(z)}(U X)(x, z) e^{x \mathcal{L}(z)} d x$.

Direct scattering

It is possible to relate $M(x, 0, z)$ with X, Y, X^{A}, Y^{A}
This allows to show that $\mathcal{Z}=\emptyset$.

We can transfer other properties of X, Y, X^{A}, Y^{A} to $M(x, 0, z)$.

The evolution in time $M(x, 0, z) \rightarrow M(x, t, z)$ is simpler to analyze.

Properties of M

(a) $M(x, t, \cdot): \mathbb{C} \backslash \Gamma \rightarrow \mathbb{C}^{3 \times 3}$ is analytic, where $\Gamma=\mathbb{R} \cup \omega \mathbb{R} \cup \omega^{2} \mathbb{R}$.
(b) For each $z \in \Gamma \backslash\{0\}$, the following limits exist

$$
M_{ \pm}(x, t, z):=\lim _{\epsilon \rightarrow 0_{+}} M(x, t, z \pm \epsilon \mathfrak{n}),
$$

where \mathfrak{n} goes in the normal direction to Γ at z (viewed as a complex number). The functions $z \mapsto M_{ \pm}(x, t, z)$ are continuous and satisfy the jump

$$
M_{+}(x, t, z)=M_{-}(x, t, z) v(x, t, z),
$$

where the 3×3 function v is smooth and $v(x, t, z) \rightarrow \mid$ as $|z| \rightarrow+\infty$, $z \in \Gamma$.
(c) $M(x, t, z)=I+\mathcal{O}\left(z^{-1}\right)$ as $z \rightarrow \infty$.

Properties of M

- M satisfies the following asymptotics

$$
M(x, t, z)=I+M^{(1)}(x, t) z^{-1}+\mathcal{O}\left(z^{-2}\right), \quad \text { as } z \rightarrow \infty
$$

- The solution u for the good Boussinesq equation can be recovered from M :

$$
u(x, t)=-\frac{3}{2} \frac{d}{d x} M_{33}^{(1)}(x, t) .
$$

RH problem for M

r_{1} and r_{2}

r_{1} and r_{2} are given explicitly in terms of the initial data u_{0}, u_{1}. For example,

$$
r_{1}(z)=\frac{(s(z))_{12}}{(s(z))_{11}}, \quad s(z)=I-\int_{\mathbb{R}} e^{-x \mathcal{L}(z)}(U X)(x, z) e^{x \mathcal{L}(z)} d x
$$

Properties of M

M has a $\frac{1}{z^{2}}$ blow up at the origin. But this is not a double pole.

Properties of M

M has a $\frac{1}{z^{2}}$ blow up at the origin. But this is not a double pole.
As $z \rightarrow 0, z \in D_{1}$, we have

$$
\begin{aligned}
& M(x, t, z)=\frac{\alpha(x, t)}{z^{2}}\left(\begin{array}{lll}
\omega & 0 & 0 \\
\omega & 0 & 0 \\
\omega & 0 & 0
\end{array}\right)+\frac{\beta(x, t)}{z}\left(\begin{array}{lll}
\omega^{2} & 0 & 0 \\
\omega^{2} & 0 & 0 \\
\omega^{2} & 0 & 0
\end{array}\right), \\
& +\frac{\gamma(x, t)}{z}\left(\begin{array}{ccc}
\omega^{2} & 0 & 0 \\
1 & 0 & 0 \\
\omega & 0 & 0
\end{array}\right)+\frac{\delta(x, t)}{z}\left(\begin{array}{lll}
0 & 1-\omega & 0 \\
0 & 1-\omega & 0 \\
0 & 1-\omega & 0
\end{array}\right)+\left(\begin{array}{lll}
\star & \star & \epsilon(x, t) \\
\star & \star & \epsilon(x, t) \\
\star & \star & \epsilon(x, t)
\end{array}\right)
\end{aligned}
$$

$$
+\ldots
$$

RH problems for M and n

- The $\frac{1}{z^{2}}$ blow up of M at $z=0$ is not very convenient for an asymptotic analysis.

RH problems for M and n

- The $\frac{1}{z^{2}}$ blow up of M at $z=0$ is not very convenient for an asymptotic analysis. We follow an idea of Deift, Venakides \& Zhou (1994).

RH problems for M and n

- The $\frac{1}{z^{2}}$ blow up of M at $z=0$ is not very convenient for an asymptotic analysis. We follow an idea of Deift, Venakides \& Zhou (1994).
- An important observation is that

$$
n(x, t, z)=\left(\begin{array}{lll}
\omega & \omega^{2} & 1
\end{array}\right) M(x, t, z), \quad \omega=e^{\frac{2 \pi i}{3}}
$$

is bounded at $z=0$!

RH problems for M and n

- The $\frac{1}{z^{2}}$ blow up of M at $z=0$ is not very convenient for an asymptotic analysis. We follow an idea of Deift, Venakides \& Zhou (1994).
- An important observation is that

$$
n(x, t, z)=\left(\begin{array}{lll}
\omega & \omega^{2} & 1
\end{array}\right) M(x, t, z), \quad \omega=e^{\frac{2 \pi i}{3}}
$$

is bounded at $z=0$!

- If the solution to the RH problem for n is unique, then solution u can be recovered from n via

$$
u(x, t)=-\frac{3}{2} \frac{\partial}{\partial x} \lim _{z \rightarrow \infty} z\left(n_{3}(x, t, z)-1\right)
$$

RH problems for M and n

- The $\frac{1}{z^{2}}$ blow up of M at $z=0$ is not very convenient for an asymptotic analysis. We follow an idea of Deift, Venakides \& Zhou (1994).
- An important observation is that

$$
n(x, t, z)=\left(\begin{array}{lll}
\omega & \omega^{2} & 1
\end{array}\right) M(x, t, z), \quad \omega=e^{\frac{2 \pi i}{3}}
$$

is bounded at $z=0$!

- If the solution to the RH problem for n is unique, then solution u can be recovered from n via

$$
u(x, t)=-\frac{3}{2} \frac{\partial}{\partial x} \lim _{z \rightarrow \infty} z\left(n_{3}(x, t, z)-1\right)
$$

- Unfortunately, we have not been able to establish uniqueness of the solution of the RH problem for n.

RH problems for M and n

- The $\frac{1}{z^{2}}$ blow up of M at $z=0$ is not very convenient for an asymptotic analysis. We follow an idea of Deift, Venakides \& Zhou (1994).
- An important observation is that

$$
n(x, t, z)=\left(\begin{array}{lll}
\omega & \omega^{2} & 1
\end{array}\right) M(x, t, z), \quad \omega=e^{\frac{2 \pi i}{3}}
$$

is bounded at $z=0$!

- If the solution to the RH problem for n is unique, then solution u can be recovered from n via

$$
u(x, t)=-\frac{3}{2} \frac{\partial}{\partial x} \lim _{z \rightarrow \infty} z\left(n_{3}(x, t, z)-1\right)
$$

- Unfortunately, we have not been able to establish uniqueness of the solution of the RH problem for n.
- The RH problem for n is of size 1×3. This is also not convenient.

$3 \times 3 \mathrm{RH}$ problem for m

We define a $3 \times 3 \mathrm{RH}$ problem for m as follows:

- Same jumps as the RH problem for M
- Same behavior at $\infty: m(x, t, z)=I+\mathcal{O}\left(z^{-1}\right)$.
- But it is bounded at 0 .

$3 \times 3 \mathrm{RH}$ problem for m

We define a $3 \times 3 \mathrm{RH}$ problem for m as follows:

- Same jumps as the RH problem for M
- Same behavior at $\infty: m(x, t, z)=I+\mathcal{O}\left(z^{-1}\right)$.
- But it is bounded at 0 .

We have been able to establish that
existence and uniqueness of $m \Rightarrow$ existence and uniqueness of n.

3×3 RH problem for m

We define a $3 \times 3 \mathrm{RH}$ problem for m as follows:

- Same jumps as the RH problem for M
- Same behavior at $\infty: m(x, t, z)=I+\mathcal{O}\left(z^{-1}\right)$.
- But it is bounded at 0 .

We have been able to establish that
existence and uniqueness of $m \Rightarrow$ existence and uniqueness of n.
On the other hand,
existence of $u \Rightarrow$ existence and uniqueness of M.

3×3 RH problem for m

We define a $3 \times 3 \mathrm{RH}$ problem for m as follows:

- Same jumps as the RH problem for M
- Same behavior at $\infty: m(x, t, z)=I+\mathcal{O}\left(z^{-1}\right)$.
- But it is bounded at 0 .

We have been able to establish that
existence and uniqueness of $m \Rightarrow$ existence and uniqueness of n.
On the other hand,

$$
\text { existence of } u \Rightarrow \text { existence and uniqueness of } M \text {. }
$$

Therefore, if m and u exist, the solutions to the above RH problems are related by

$$
n=\left(\begin{array}{lll}
\omega & \omega^{2} & 1
\end{array}\right) m(x, t, z)=\left(\begin{array}{lll}
\omega & \omega^{2} & 1
\end{array}\right) M(x, t, z)
$$

3×3 RH problem for m

We define a $3 \times 3 \mathrm{RH}$ problem for m as follows:

- Same jumps as the RH problem for M
- Same behavior at $\infty: m(x, t, z)=I+\mathcal{O}\left(z^{-1}\right)$.
- But it is bounded at 0 .

We have been able to establish that
existence and uniqueness of $m \Rightarrow$ existence and uniqueness of n.
On the other hand,

$$
\text { existence of } u \Rightarrow \text { existence and uniqueness of } M \text {. }
$$

Therefore, if m and u exist, the solutions to the above RH problems are related by

$$
n=\left(\begin{array}{lll}
\omega & \omega^{2} & 1
\end{array}\right) m(x, t, z)=\left(\begin{array}{lll}
\omega & \omega^{2} & 1
\end{array}\right) M(x, t, z)
$$

Existence of m will be guaranteed for large t from the steepest descent analysis. So we only need to assume existence of u_{u} for $t \in(0, T]$.

Steepest descent of m

Scalar additive RH problems

Seek for a complex-valued function such that
(a) $f: \mathbb{C} \backslash \mathbb{R}$ is analytic
(b) For each $x \in \mathbb{R}$, the following limits exist

$$
f_{ \pm}(x):=\lim _{\epsilon \rightarrow 0_{+}} f(x \pm i \epsilon)
$$

The functions $x \mapsto f_{ \pm}(x)$ are continuous and satisfy the jump

$$
f_{+}(x)=f_{-}(x)+v(x)
$$

where v is smooth enough and $v(x) \rightarrow 0$ as $|x| \rightarrow+\infty$.
(c) $f(z)=\mathcal{O}\left(z^{-1}\right)$ as $z \rightarrow \infty$.

Solution ?

Scalar additive RH problems

Seek for a complex-valued function such that
(a) $f: \mathbb{C} \backslash \mathbb{R}$ is analytic
(b) For each $x \in \mathbb{R}$, the following limits exist

$$
f_{ \pm}(x):=\lim _{\epsilon \rightarrow 0_{+}} f(x \pm i \epsilon)
$$

The functions $x \mapsto f_{ \pm}(x)$ are continuous and satisfy the jump

$$
f_{+}(x)=f_{-}(x)+v(x),
$$

where v is smooth enough and $v(x) \rightarrow 0$ as $|x| \rightarrow+\infty$.
(c) $f(z)=\mathcal{O}\left(z^{-1}\right)$ as $z \rightarrow \infty$.

Solution ? Well-known Plemelj formula gives

$$
f(z)=\int_{\mathbb{R}} \frac{v(x)}{x-z} \frac{d x}{2 \pi i}
$$

Steepest descent method

Asymptotics for $\int_{\mathbb{R}} f(z) e^{-i t z^{2}} d z$ as $t \rightarrow+\infty$:

Under suitable conditions on f, we have

$$
\int_{\mathbb{R}} f(z) e^{-i t z^{2}} d z=\int_{\gamma} f(z) e^{-i t z^{2}} d z \approx \frac{\sqrt{\pi} f(0)}{\sqrt{t}} e^{-\frac{\pi i}{4}}+\ldots \quad \text { as } t \rightarrow \infty .
$$

The Deift-Zhou steepest descent method generalizes the classical steepest descent method for matrix RH problems.

Steepest descent of m

- The steepest descent is a method developed by Deift and Zhou (1993)
- In our case, we will apply several invertible transformation $m \mapsto m^{(1)} \mapsto m^{(2)} \mapsto m^{(3)} \mapsto \hat{m}$.
- Goal: obtain an RH problem for \hat{m} such that its jumps are "close" to I.
- Such a RH problem is called "small norms" RH problem, and satisfies

$$
\hat{m}(x, t, z)=I+o(1), \quad \text { as } t \rightarrow+\infty
$$

uniformly for z in the complex plane.

- We start by computing the saddle point of the phase function

$$
\frac{d}{d z}(i \sqrt{3} z(x-z t))=0, \quad \Leftrightarrow \quad z=z_{0}:=\frac{x}{2 t}
$$

RH problem for m

RH problem for m

Preparation to the steepest descent

The jumps are not analytic, so we cannot deform the contour at the moment. We use an idea from Deift and Zhou:

$$
\begin{array}{ll}
r_{2}(z)=r_{2, a}(x, t, z)+r_{2, r}(x, t, z), & z \in(-\infty, 0], \\
r_{1}(z)=r_{1, a}(x, t, z)+r_{1, r}(x, t, z), & z \in\left[0, z_{0}\right], \\
\hat{r}_{1}(z)=\hat{r}_{1, a}(x, t, z)+\hat{r}_{1, r}(x, t, z), & z \in\left[z_{0}, \infty\right),
\end{array}
$$

where

$$
\hat{r}_{1}(z)=\frac{r_{1}(z)}{1-\left|r_{1}(z)\right|^{2}}
$$

Preparation to the steepest descent

The jumps are not analytic, so we cannot deform the contour at the moment. We use an idea from Deift and Zhou:

$$
\begin{array}{ll}
r_{2}(z)=r_{2, a}(x, t, z)+r_{2, r}(x, t, z), & z \in(-\infty, 0], \\
r_{1}(z)=r_{1, a}(x, t, z)+r_{1, r}(x, t, z), & z \in\left[0, z_{0}\right], \\
\hat{r}_{1}(z)=\hat{r}_{1, a}(x, t, z)+\hat{r}_{1, r}(x, t, z), & \\
z \in\left[z_{0}, \infty\right),
\end{array}
$$

where

$$
\hat{r}_{1}(z)=\frac{r_{1}(z)}{1-\left|r_{1}(z)\right|^{2}}
$$

Many estimates are needed. In particular, the $\frac{\partial}{\partial x}$ causes serious technicalities.

First transformation : $m \rightarrow m^{(1)}$

The jump matrix v_{4} can be factorized as

$$
\begin{gathered}
v_{4}=v_{4, a}^{U} v_{4, r} v_{4, a}^{L} . \\
v_{4, a}^{U}=\left(\begin{array}{ccc}
1 & -r_{2, a}^{*}(z) e^{-i \sqrt{3} z(t z-x)} \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad v_{4, a}^{L}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
r_{2, a}(z) e^{i \sqrt{3} z(t z-x)} & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
v_{4, a}^{U}=I+\text { small, } \\
v_{4, a}^{L}=I+\text { small, } \\
v_{4, r}=I+\text { small, } \quad \text { as } t \rightarrow+\infty, z \text { above } \Gamma_{4}, \\
\text { as } t \rightarrow+\infty, z \text { below } \Gamma_{4}, \\
v_{4},
\end{gathered}
$$

There are similar factorizations for v_{2} and v_{6}.

RH problem for $m^{(1)}$

Second and third transformations: $m^{(1)} \mapsto m^{(2)} \mapsto m^{(3)}$

- Is that possible to apply similar factorization for $v_{1}^{(1)}$ as we did for v_{2} ?

Second and third transformations: $m^{(1)} \mapsto m^{(2)} \mapsto m^{(3)}$

- Is that possible to apply similar factorization for $v_{1}^{(1)}$ as we did for v_{2} ?
- Yes, for $z \in\left(0, z_{0}\right)$.

Second and third transformations: $m^{(1)} \mapsto m^{(2)} \mapsto m^{(3)}$

- Is that possible to apply similar factorization for $v_{1}^{(1)}$ as we did for v_{2} ?
- Yes, for $z \in\left(0, z_{0}\right)$.
- No, for $\left(z_{0},+\infty\right) \Rightarrow$ here we need a new factorization.

Second and third transformations: $m^{(1)} \mapsto m^{(2)} \mapsto m^{(3)}$

- Is that possible to apply similar factorization for $v_{1}^{(1)}$ as we did for v_{2} ?
- Yes, for $z \in\left(0, z_{0}\right)$.
- No, for $\left(z_{0},+\infty\right) \Rightarrow$ here we need a new factorization.
- We apply a transformation on $m^{(1)}$:

$$
m^{(2)}=m^{(1)} \Delta .
$$

The jumps for $m^{(2)}$ involve $\hat{r}_{1}(z)=\frac{r_{1}(z)}{1-\left|r_{1}(z)\right|^{2}}$.

Second and third transformations: $m^{(1)} \mapsto m^{(2)} \mapsto m^{(3)}$

- Is that possible to apply similar factorization for $v_{1}^{(1)}$ as we did for v_{2} ?
- Yes, for $z \in\left(0, z_{0}\right)$.
- No, for $\left(z_{0},+\infty\right) \Rightarrow$ here we need a new factorization.
- We apply a transformation on $m^{(1)}$:

$$
m^{(2)}=m^{(1)} \Delta
$$

The jumps for $m^{(2)}$ involve $\hat{r}_{1}(z)=\frac{r_{1}(z)}{1-\left|r_{1}(z)\right|^{2}}$.

- We consider the sector $t \rightarrow+\infty$ and simultaneously $x \rightarrow+\infty$ such that $z_{0}=\frac{x}{2 t} \in[a, b]$ where $b>a>0$ are fixed, and we assume that a is sufficiently large such that $\left|r_{1}(z)\right|<1$ for all $z \geq z_{0}$.

Second and third transformations: $m^{(1)} \mapsto m^{(2)} \mapsto m^{(3)}$

- Is that possible to apply similar factorization for $v_{1}^{(1)}$ as we did for v_{2} ?
- Yes, for $z \in\left(0, z_{0}\right)$.
- No, for $\left(z_{0},+\infty\right) \Rightarrow$ here we need a new factorization.
- We apply a transformation on $m^{(1)}$:

$$
m^{(2)}=m^{(1)} \Delta
$$

The jumps for $m^{(2)}$ involve $\hat{r}_{1}(z)=\frac{r_{1}(z)}{1-\left|r_{1}(z)\right|^{2}}$.

- We consider the sector $t \rightarrow+\infty$ and simultaneously $x \rightarrow+\infty$ such that $z_{0}=\frac{x}{2 t} \in[a, b]$ where $b>a>0$ are fixed, and we assume that a is sufficiently large such that $\left|r_{1}(z)\right|<1$ for all $z \geq z_{0}$.
- Now, there are good factorizations for $v_{1}^{(2)}$ also on $\left(z_{0},+\infty\right)$ and we can open lenses on both $\left(0, z_{0}\right)$ and $\left(z_{0},+\infty\right)$ as in the first transformation; this is the $m^{(2)} \mapsto m^{(3)}$ transformation.

RH problem for $m^{(3)}$

RH problem for \hat{m}

Long-time asymptotics for the good Boussinesq

Theorem (C-Lenells-Wang 2020)

Assume that

- The initial data are smooth with rapid decay,
- $\left|r_{1}(z)\right|<1$ for all $z \geq z_{0}=\frac{x}{2 t}$,
- there exists a solution $u: \mathbb{R} \times[0,+\infty)$ to the good Boussinesq equation.

Then, as $t \rightarrow+\infty$, we have

$$
\begin{aligned}
u(x, t) & =-\frac{3^{5 / 4} z_{0} \sqrt{\nu}}{\sqrt{2 t}} \sin \left(\frac{19 \pi}{12}+\nu \ln \left(6 \sqrt{3} t z_{0}^{2}\right)-\sqrt{3} z_{0}^{2} t-\arg q\right. \\
& \left.-\arg \Gamma(i \nu)-\frac{1}{\pi} \int_{z_{0}}^{\infty} \ln \frac{\left|s-z_{0}\right|}{\left|s-e^{\frac{2 \pi i}{3}} z_{0}\right|} d \ln \left(1-\left|r_{1}(s)\right|^{2}\right)\right)+O\left(t^{-1} \ln t\right),
\end{aligned}
$$

where $\nu\left(z_{0}\right)=-\frac{1}{2 \pi} \ln \left(1-\left|r_{1}\left(z_{0}\right)\right|^{2}\right)$ and $q=r_{1}\left(z_{0}\right)$.

Thank you for your attention

