Matrix generalization of the PII hierarchy: Lax pair and solutions in terms of Fredholm determinants

Sofia Tarricone

LAREMA, Université d'Angers / Concordia University, Montreal
Integrable systems around the world SISSA, 14-16 September 2020

Plan

(9) Introduction

- Around the Airy kernel
- Generalizations and motivations
(2) Our setting and result
(3) Proof of result
- Property of the Fredholm determinants
- The isomonodromic Lax pair for the matrix PII hierarchy

Outline

(9) Introduction

- Around the Airy kernel
- Generalizations and motivations

2) Our setting and result
(3) Proof of result

- Property of the Fredholm determinants
- The isomonodromic Lax pair for the matrix PII hierarchy

The Airy kernel

Here $\operatorname{Ai}(x)$ is the Airy function.

Definition

Consider the Airy convolution operator \mathcal{A} acting on any $f \in L^{2}\left(\mathbb{R}_{+}\right)$as

$$
(\mathcal{A} f)(x):=\int_{\mathbb{R}_{+}} A i(x+y) f(y) d y .
$$

The Airy kernel can be obtained as the square of the Airy convolution operator

$$
K_{A i}(x, y):=\mathcal{A}^{2}(x, y)=\int_{\mathbb{R}_{+}} A i(x+z) A i(y+z) d z
$$

The Fredholm determinant $F(s):=\operatorname{det}\left(I d-K_{A i} X_{[s, \infty)}\right)$ is connected to Painlevé trascendents.

Tracy-Widom results about the Airy kernel

(1999, C.A. Tracy - H. Widom) The Fredholm determinant $F(s)$ and the Hastings-McLeod solution of the Painlevé II equation are related through the formula

$$
\frac{d^{2}}{d s^{2}} \log F(s)=-q^{2}(s)
$$

where $q(s)$ solves the equation

$$
q^{\prime \prime}(s)=2 q^{3}+s q
$$

with boundary condition $q(s) \sim A i(s)$ at $s \rightarrow+\infty$.

Outline

(9) Introduction

- Around the Airy kernel
- Generalizations and motivations
(2) Our setting and result
(3) Proof of result
- Property of the Fredholm determinants
- The isomonodromic Lax pair for the matrix PII hierarchy

Generalization: higher order Airy kernels

Consider the Fredholm determinant $F_{2 n+1}(s):=\operatorname{det}\left(I d-K_{2 n+1} \chi_{[s, \infty)}\right)$, where the kernel operator $K_{2 n+1}$ is defined as before

$$
K_{2 n+1}(x, y):=\mathcal{A}_{2 n+1}^{2}(x, y)=\int_{\mathbb{R}_{+}} A i_{2 n+1}(x+z) A i_{2 n+1}(y+z) d z
$$

Here $A i_{2 n+1}$ is the n-th Airy function.

- (2018, P. Le Doussal - S.N. Majumdar - G. Schehr) proved their connection with statistichal mechanic model.
- (2019, M. Cafasso - T. Claeys - M. Girotti) showed that

$$
\frac{d^{2}}{d s^{2}} \log F_{2 n+1}(s)=-q^{2}\left((-1)^{n+1} s\right)
$$

with $q(s)$ now solving the n-th equation of the PII hierarchy.

Matrix valued n-th Airy convolution operators

Consider the n-th matrix Airy convolution operator acting on $\vec{f} \in L^{2}\left(\mathbb{R}_{+}, \mathbb{C}^{r}\right)$ as

$$
\left(\mathcal{A}_{2 n+1} \vec{f}\right)(x):=\int_{\mathbb{R}_{+}} \mathbf{A i}_{2 n+1}(x+y ; \vec{s}) \vec{f}(y) d y,
$$

where now $\mathbf{A i}_{2 n+1}(x)$ is the n-th matrix Airy function defined as

$$
\mathbf{A i}_{2 n+1}(x):=\left\{c_{j k} A i_{2 n+1}\left(x+s_{j}+s_{k}\right)\right\}_{j, k=1}^{r},
$$

with $C:=\left(c_{j k}\right)_{j, k=1}^{r}=C^{\dagger}$ and $s_{k} \in \mathbb{R}$ for any k.
Remark Provided that C has eigenvalues inside $[-1,1]$, the kernel operator obtained as the square of the matrix n-th Airy convolution operator $\mathcal{A}_{2 n+1}^{2}$ defines a determinantal point process on $\{1, \ldots, r\} \times \mathbb{R}$.

Result

Theorem (S.T.)
The Fredholm determinants $F_{2 n+1}(\vec{s}):=\operatorname{det}\left(I d-\mathcal{A}_{2 n+1}^{2}\right)$ satisfies

$$
-\frac{\mathrm{d}^{2}}{\mathrm{dS} \mathrm{~S}^{2}} \log F_{2 n+1}(\vec{s})=\operatorname{Tr}\left(Q^{2}(\vec{s})\right)
$$

where the matrix Q solves the n-th member of a certain matrix Painlevé II hierarchy.

Here the differential operator $\frac{d}{d S}$ is defined as

$$
\frac{\mathrm{d}}{\mathrm{dS}}:=\sum_{k=1}^{r} \frac{\partial}{\partial s_{k}} .
$$

Matrix Lenard operators

The matrix Lenard operators are constructed through the following recursion
$\left\{\begin{array}{l}\mathcal{L}_{0}=\frac{1}{2} I_{r} \\ \frac{d}{d S} \mathcal{L}_{n}=\left(\frac{d^{3}}{d S^{3}}+[Q, \cdot]_{+} \frac{d}{d S}+\frac{d}{d S}[Q, \cdot]_{+}+[Q, \cdot] \frac{d}{d S}\right.\end{array}\right.$

- I_{r} is the identity matrix of dimension r;
- $[Q, \cdot]$ and $[Q, \cdot]_{+}$are the standard matrix commutator and anticommutator;
- $\frac{d^{d S}}{}{ }^{-1}$ is the formal integration.

Examples
(1) $\mathcal{L}_{1}[Q]=Q$
(2) $\mathcal{L}_{2}[Q]=Q_{2 S}+3 Q^{2}$
(3) $\mathcal{L}_{3}[Q]=Q_{4 S}+5\left[Q, Q_{2 S}\right]_{+}+5 Q_{S}^{2}+10 Q^{3}$

The matrix PII hierarchy

The matrix PII hierarchy related to the Fredholm determinants $F_{2 n+1}(\vec{s})$ is obtained as

$$
\mathrm{PII}_{\mathrm{NC}}^{(n)}:\left(\frac{\mathrm{d}}{\mathrm{dS}}+[Q, \cdot]_{+}\right) \mathcal{L}_{n}\left[\frac{\mathrm{~d}}{\mathrm{~d} S} Q-Q^{2}\right]=(-1)^{n+1} 4^{n}[S, Q]_{+},
$$

with $S:=\operatorname{diag}\left(s_{1}, \ldots, s_{r}\right)$.
Examples (here ${ }^{\prime}=\frac{d}{d S}$)

- For $n=1$ the $2 n d$ order equation: $Q^{\prime \prime}=2 Q^{3}+4[S, Q]_{+}$. See also (2011, M. Bertola - M. Cafasso).
- For $n=2$ the 4th order equation:
$Q^{\prime \prime \prime \prime}=6 Q^{5}+4\left[Q^{2}, Q^{\prime \prime}\right]_{+}+2 Q Q^{\prime \prime} Q+2\left[\left(Q^{\prime}\right)^{2}, Q\right]_{+}+6 Q^{\prime} Q Q^{\prime}-4^{2}[S, Q]_{+}$.
See also (2016, P.R. Gordoa - A. Pickering - Z.N. Zhu) for another matrix PII hierarchy.

Sketch of the proof

$F_{2 n+1}(\vec{s})=\operatorname{det}\left(l d-\mathcal{M}_{n}\right)$
with \mathcal{M}_{n} an integrable kernel
operator acting on $L^{2}\left(\gamma_{+}, \mathbb{C}^{r}\right)$ with matrix-valued kernel.

\downarrow

R-H problems for block matrices $\equiv(\lambda)$

$\equiv \exp \left(\theta \otimes \sigma_{3}\right)$ solves

Sketch of the proof

$$
F_{2 n+1}(\vec{s})=\operatorname{det}\left(I d-\mathcal{M}_{n}\right)
$$

with \mathcal{M}_{n} an integrable kernel operator acting on $L^{2}\left(\gamma_{+}, \mathbb{C}^{r}\right)$ with matrix-valued kernel.

\downarrow
R-H problems for block matrices $\equiv(\lambda)$ with jump $J(\lambda, \vec{s})$ for $\lambda \in \gamma_{ \pm}$.

Sketch of the proof

$$
F_{2 n+1}(\vec{s})=\operatorname{det}\left(I d-\mathcal{M}_{n}\right)
$$

with \mathcal{M}_{n} an integrable kernel operator acting on $L^{2}\left(\gamma_{+}, \mathbb{C}^{r}\right)$ with matrix-valued kernel.

\downarrow
R-H problems for block matrices $\Xi(\lambda)$ with jump $J(\lambda, \vec{s})$ for $\lambda \in \gamma_{ \pm}$.

$$
\psi:=\equiv \exp \left(\theta \otimes \sigma_{3}\right) \text { solves }
$$

Sketch of the proof

$$
F_{2 n+1}(\vec{s})=\operatorname{det}\left(I d-\mathcal{M}_{n}\right)
$$

with \mathcal{M}_{n} an integrable kernel operator acting on $L^{2}\left(\gamma_{+}, \mathbb{C}^{r}\right)$ with matrix-valued kernel.

\downarrow
R-H problems for block matrices $\equiv(\lambda)$ with jump $J(\lambda, \vec{s})$ for $\lambda \in \gamma_{ \pm}$.

$$
\psi:=\equiv \exp \left(\theta \otimes \sigma_{3}\right) \text { solves }
$$

$$
\left\{\begin{array}{l}
\partial_{\lambda} \Psi=M^{(n)} \Psi \\
\frac{d}{d S} \Psi=L \Psi
\end{array}\right.
$$

$$
\begin{aligned}
& \hline \frac{\mathrm{d}}{\mathrm{dS}} \log F_{2 n+1}(\vec{s})=-2 i \operatorname{Tr}\left(\alpha_{1}\right) \\
& \text { with } \alpha_{1}:=\lim _{|\lambda| \rightarrow \infty} \lambda\left(I_{r}-\Xi_{1,1}\right) .
\end{aligned}
$$

Outline

(1) Introduction

- Around the Airy kernel
- Generalizations and motivations
(2) Our setting and result
(3) Proof of result
- Property of the Fredholm determinants
- The isomonodromic Lax pair for the matrix PII hierarchy

R-H problem

Fix $n \geq 1$. Find analytic block matrix valued function
$\equiv(\lambda): \mathbb{C} \backslash\left(\gamma_{+} \cup \gamma_{-}\right) \rightarrow G L(2 r, \mathbb{C})$ satisfying the jump condition

$$
\Xi_{+}(\lambda)=\equiv_{-}(\lambda) \underbrace{\left(\begin{array}{c|c}
I_{r} & -r(\lambda) \chi_{\gamma_{+}}(\lambda) \\
\hline-r(-\lambda) \chi_{\gamma_{-}}(\lambda) & I_{r}
\end{array}\right)}_{:=J(\lambda, \overrightarrow{\mathbf{s}})}, \lambda \in \gamma_{ \pm}
$$

where

$$
r(\lambda):=\exp (\theta(\lambda, \vec{s})) C \exp (\theta(\lambda, \vec{s}))
$$

and $\theta(\lambda, \vec{s}):=\frac{i(-1)^{n+1} \lambda^{2 n+1}}{2(2 n+1)} I_{r}+i \lambda S$.
And the asymptotic condition for $|\lambda| \rightarrow \infty$

$$
\equiv(\lambda) \longrightarrow I_{2 r}+\sum_{j \geq 1} \frac{\overline{\bar{\Xi}}_{j}}{\lambda^{j}} ; \quad \text { with } \bar{\Xi}_{1}=\alpha_{1} \otimes \sigma_{3}+\beta_{1} \otimes \sigma_{2}
$$

Here σ_{j} are the Pauli's matrices.

Proof of the formula for of $\frac{d}{d S} \log F_{2 n+1}$

(1) It is known that $F_{2 n+1}=\operatorname{det}\left(I d-\mathcal{M}_{n}\right)$. This last Fredholm determinant can be interpreted as a Tau function associated to the space of deformation of the R-H problem for \equiv (see
(2010, M. Bertola)). This means that

$$
\frac{\mathrm{d}}{\mathrm{dS}} \log F_{2 n+1}(\vec{s})=\int_{\gamma_{ \pm}} \operatorname{Tr}\left(\left(\bar{\Xi}_{-}\right)^{-1} \partial_{\lambda}\left(\bar{\Xi}_{-}\right) \frac{\mathrm{d}}{\mathrm{dS}} J J^{-1}\right) \frac{d \lambda}{2 \pi i}
$$

(2) Due to the special form of the deformed jump matrix

$$
J(\lambda, \vec{s})=\exp \left(\theta(\lambda, \vec{s}) \otimes \sigma_{3}\right) J_{0} \exp \left(-\theta(\lambda, \vec{s}) \otimes \sigma_{3}\right)
$$

the integral above can be explicitely computed as the formal
(8) Direct computation of that finally implies

Proof of the formula for of $\frac{d}{d S} \log F_{2 n+1}$

(1) It is known that $F_{2 n+1}=\operatorname{det}\left(I d-\mathcal{M}_{n}\right)$. This last Fredholm determinant can be interpreted as a Tau function associated to the space of deformation of the R-H problem for \equiv (see (2010, M. Bertola)). This means that

$$
\frac{\mathrm{d}}{\mathrm{dS}} \log F_{2 n+1}(\vec{s})=\int_{\gamma_{ \pm}} \operatorname{Tr}\left(\left(\Xi_{-}\right)^{-1} \partial_{\lambda}\left(\Xi_{-}\right) \frac{\mathrm{d}}{\mathrm{dS}} J J^{-1}\right) \frac{d \lambda}{2 \pi i}
$$

(2) Due to the special form of the deformed jump matrix

$$
J(\lambda, \vec{s})=\exp \left(\theta(\lambda, \vec{s}) \otimes \sigma_{3}\right) J_{0} \exp \left(-\theta(\lambda, \vec{s}) \otimes \sigma_{3}\right)
$$

the integral above can be explicitely computed as the formal residue at ∞ of the function $\operatorname{Tr}\left(\Xi^{-1} \partial_{\lambda} \equiv i \lambda I_{r} \otimes \sigma_{3}\right)$.

Proof of the formula for of $\frac{d}{d S} \log F_{2 n+1}$

(1) It is known that $F_{2 n+1}=\operatorname{det}\left(I d-\mathcal{M}_{n}\right)$. This last Fredholm determinant can be interpreted as a Tau function associated to the space of deformation of the R-H problem for \equiv (see
(2010, M. Bertola)). This means that

$$
\frac{\mathrm{d}}{\mathrm{dS}} \log F_{2 n+1}(\vec{s})=\int_{\gamma_{ \pm}} \operatorname{Tr}\left(\left(\Xi_{-}\right)^{-1} \partial_{\lambda}\left(\Xi_{-}\right) \frac{\mathrm{d}}{\mathrm{dS}} J J^{-1}\right) \frac{d \lambda}{2 \pi i}
$$

(2) Due to the special form of the deformed jump matrix

$$
J(\lambda, \vec{s})=\exp \left(\theta(\lambda, \vec{s}) \otimes \sigma_{3}\right) J_{0} \exp \left(-\theta(\lambda, \vec{s}) \otimes \sigma_{3}\right)
$$

the integral above can be explicitely computed as the formal residue at ∞ of the function $\operatorname{Tr}\left(\Xi^{-1} \partial_{\lambda} \equiv i \lambda I_{r} \otimes \sigma_{3}\right)$.
(3) Direct computation of that finally implies

$$
\frac{\mathrm{d}}{\mathrm{dS}} \log F_{2 n+1}=-2 i \operatorname{Tr}\left(\alpha_{1}\right)
$$

Outline

(1) Introduction

- Around the Airy kernel
- Generalizations and motivations
(2) Our setting and result
(3) Proof of result
- Property of the Fredholm determinants
- The isomonodromic Lax pair for the matrix PII hierarchy

Conctruction of Ψ

Theorem

The R-H problem admits solution 三 if and only if the matrix C has eigenvalues in the interval $[-1,1]$.

In this case we can take the function
$\Psi(\lambda, \vec{s}):=\equiv(\lambda, \vec{s}) \exp \left(\theta(\lambda, \vec{s}) \otimes \sigma_{3}\right)$.
For $\lambda \in \gamma_{+} \cup \gamma_{-}$, it has a constant jump condition

$$
\Psi_{+}(\lambda)=\Psi_{-}(\lambda) J_{0}
$$

and for $|\lambda| \rightarrow \infty$ it has the asymptotic condition

$$
\Psi(\lambda) \rightarrow\left(l_{2 r}+\sum_{j \geq 1} \frac{\overline{\bar{j}}_{j}}{\lambda^{j}}\right) \exp \left(\theta(\lambda, \vec{s}) \otimes \sigma_{3}\right)
$$

Block Matrix Lax pair for the matrix PII hierarchy

Proposition

There exist $L^{(n)}=L$ and $M^{(n)}$ polynomial matrices in λ of degree respectively 1 and $2 n$, such that ψ solves the system

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{dS}} \Psi(\lambda, \vec{s})=L(\lambda, \vec{s}) \Psi(\lambda, \vec{s}) \\
\partial_{\lambda} \Psi(\lambda, \vec{s})=M^{(n)}(\lambda, \vec{s}) \Psi(\lambda, \vec{s})
\end{array}\right.
$$

where

$$
\begin{aligned}
& L(\lambda, \vec{s})=\left(\begin{array}{c|c}
i \lambda I_{r} & Q(\vec{s}) \\
\hline Q(\vec{s}) & -i \lambda I_{r}
\end{array}\right) \text { with } Q(\vec{s})=2 \beta_{1}(\vec{s}) \\
& M^{(n)}(\lambda, \vec{s})=\sum_{k=0}^{2 n} \lambda^{2 n-k} M_{2 n-k}(\vec{s}, Q(\vec{s})),
\end{aligned}
$$

with $M_{2 n-k}$ block matrices of dimension $2 r$.

The zero curvature equation

Proposition

For each fixed n, the zero curvature equation
$\partial_{\lambda} L-\frac{d}{d S} M^{(n)}+\left[L, M^{(n)}\right]=0_{2 r}$ is equivalent to the n-th member of the matrix Pll hierarchy.
((he zero curvature equation \Longleftrightarrow system of differential equations for the blocks composing the coefficients $M_{2 n-k}$ of the matrix $M^{(n)}$
(2) the blocks of all these coefficients $M_{2 n-k}$ can be written with
formulas involving the matrix Lenard operators $\mathcal{L}_{j}\left(\frac{d}{d S} Q-Q^{2}\right)$ for
$j=1, \ldots, n$.
(8) Finally there is only one last condition required from the zero curvature equation, that reads as

The zero curvature equation

Proposition

For each fixed n, the zero curvature equation $\partial_{\lambda} L-\frac{d}{d S} M^{(n)}+\left[L, M^{(n)}\right]=0_{2 r}$ is equivalent to the n-th member of the matrix Pll hierarchy.
(1) the zero curvature equation \Longleftrightarrow system of differential equations for the blocks composing the coefficients $M_{2 n-k}$ of the matrix $M^{(n)}$;
(3) Finally there is only one last condition required from the zero curvature equation, that reads as

The zero curvature equation

Proposition

For each fixed n, the zero curvature equation $\partial_{\lambda} L-\frac{d}{d S} M^{(n)}+\left[L, M^{(n)}\right]=0_{2 r}$ is equivalent to the n-th member of the matrix PII hierarchy.
(1) the zero curvature equation \Longleftrightarrow system of differential equations for the blocks composing the coefficients $M_{2 n-k}$ of the matrix $M^{(n)}$;
(2) the blocks of all these coefficients $M_{2 n-k}$ can be written with formulas involving the matrix Lenard operators $\mathcal{L}_{j}\left(\frac{d}{d S} Q-Q^{2}\right)$ for $j=1, \ldots, n$.
(C) Finally there is only one last condition required from the zero curvature equation, that reads as

The zero curvature equation

Proposition

For each fixed n, the zero curvature equation
$\partial_{\lambda} L-\frac{d}{d S} M^{(n)}+\left[L, M^{(n)}\right]=0_{2 r}$ is equivalent to the n-th member of the matrix PII hierarchy.
(1) the zero curvature equation \Longleftrightarrow system of differential equations for the blocks composing the coefficients $M_{2 n-k}$ of the matrix $M^{(n)}$;
(2) the blocks of all these coefficients $M_{2 n-k}$ can be written with formulas involving the matrix Lenard operators $\mathcal{L}_{j}\left(\frac{d}{d S} Q-Q^{2}\right)$ for $j=1, \ldots, n$.
(3) Finally there is only one last condition required from the zero curvature equation, that reads as

$$
\left(\frac{\mathrm{d}}{\mathrm{dS}}+[Q, \cdot]_{+}\right) \mathcal{L}_{n}\left[\frac{\mathrm{~d}}{\mathrm{dS}} Q-Q^{2}\right]=(-1)^{n+1} 4^{n}[S, Q]_{+}
$$

Conclusion

For any fixed $n \geq 1$, here is what we proved:

- The matrix Q defined as $Q:=2 \beta_{1}=-i \lim _{|\lambda| \rightarrow \infty} \lambda \Xi_{12}$, solves the n-th member of the matrix PII hierarchy.
- the logarithmic derivative of the Fredholm determinant $F_{2 n+1}(\vec{s})$ is given by

$$
-\frac{\mathrm{d}}{\mathrm{dS}} \log F_{2 n+1}=2 i \operatorname{Tr}\left(\alpha_{1}\right)
$$

By looking at the coefficient of λ^{-1} in the expansion at ∞ of the function $L:=\frac{d}{d S} \Psi \Psi^{-1}$ we obtain that

$$
\frac{\mathrm{d}}{\mathrm{dS}} \alpha_{1}=-2 i \beta_{1}^{2}, \text { for any fixed } n
$$

The matrix Q solution of $\mathrm{PII}_{\mathrm{NC}}^{(n)}$, is related to the Fredholm determinant $F_{2 n+1}$ through

$$
-\frac{\mathrm{d}^{2}}{\mathrm{dS}^{2}} \log F_{2 n+1}(\vec{s})=\operatorname{Tr}\left(Q^{2}(\vec{s})\right)
$$

Thank you everybody!!!

