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The Airy kernel

Here Ai(x) is the Airy function.
Definition

Consider the Airy convolution operator .4 acting on any f € L?(R,) as

(AN(x) = L Ai(x + y)f(y)dy.

The Airy kernel can be obtained as the square of the Airy convolution
operator

Ka(x,y) = A2(x,y) = [ Ai(x+ 2)Ai(y + 2)dz
Ry

The Fredholm determinant F(s) := det(/d — Kajx[s,~)) IS connected to
Painlevé trascendents.
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Tracy-Widom results about the Airy kernel

(1999, C.A. Tracy - H. Widom) The Fredholm determinant F(s) and the
Hastings-McLeod solution of the Painlevé Il equation are related
through the formula

2

5108 F(9) = —¢%(s)

where q(s) solves the equation

q'(s) =24 +sq

with boundary condition q(s) ~ Ai(s) at s — +oc.

S.Tarricone NC PII hierarchy Int. systems around the world 5/21



Outline

@ Introduction

@ Generalizations and motivations

=] = = E na
S.Tarricone NC PII hierarchy



Generalization: higher order Airy kernels

Consider the Fredholm determinant Fan,1(S) := det(/d — Kan1X[s,00))
where the kernel operator Kz, 1 is defined as before

Kenis(6.9) = Ay (6.Y) = [ Al (x+ 2) Az (v + 2)oz.
+

Here Aizn. 1 is the n-th Airy function.

@ (2018, P. Le Doussal - S.N. Majumdar - G. Schehr) proved their
connection with statistichal mechanic model.

@ (2019, M. Cafasso - T. Claeys - M. Girotti) showed that

2
d2

with g(s) now solving the n-th equation of the PII hierarchy.

log Fan+1(s) = —g*((—1)""'s)
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Matrix valued n-th Airy convolution operators

Consider the n-th matrix Airy convolution operator acting on
fel?R,.,C"as

(Aonssf) () = [ Bania(x+y: )T,

where now Aiz,.1(X) is the n-th matrix Airy function defined as
Aizy1(X) = {CiAiani1(X + 8+ Sk)};k:1 ,

with C == (ck)/x_y = C' and s € R for any k.

Remark Provided that C has eigenvalues inside [—1, 1], the kernel
operator obtained as the square of the matrix n-th Airy convolution
operator A3, , defines a determinantal point process on
{1,...,r} xR.
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Result

Theorem (S.T.)
The Fredholm determinants Fy,.1(S) := det(ld — A3, ,) satisfies

2
_ dd? log F2n+1 (§) = Tr(oz(g))a

where the matrix Q solves the n-th member of a certain matrix
Painlevé Il hierarchy.

Here the differential operator % is defined as

d 0
as = 2 o5y
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Matrix Lenard operators

The matrix Lenard operators are constructed through the following
recursion

'CO—er
—1
Slo=(E+1Q 1, &+ 4101, +[0.18 71 1) Loy, n>1

@ I is the identity matrix of dimension r;

@ [Q,]and [Q, -], are the standard matrix commutator and
anticommutator;

° % is the formal integration.
EXAMPLES

Q £Q =Q

Q £:[Q] = Qs +3Q?

Q £3[Q] = Qus +5[Q, Qog] . +5Q5 + 10Q°
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The matrix PIl hierarchy

The matrix PII hierarchy related to the Fredholm determinants Fo,, ,1(S)
is obtained as

P (10 ) L[ o=@ = Cyraisal..

with S = diag(sy, ..., sr).

EXAMPLES (here ' = &)

@ For n= 1 the 2nd order equation: Q" = 2Q° + 4[S, Ql,..
See also (2011, M. Bertola - M. Cafasso).

@ For n = 2 the 4th order equation:

1111

Q" =6Q°+4 [02, o”] _+200'Q+2 [(Q’)Z, o} r6Q0Q -#[s,al,.

See also (2016, P.R. Gordoa - A. Pickering - Z.N. Zhu) for another
matrix Pll hierarchy.
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Sketch of the proof

Fon1(8) = det (Id — Mp) K
with M, an integrable kernel =

operator acting on L?(v.,C") with
matrix-valued kernel.
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R-H problem

Fix n > 1. Find analytic block matrix valued function
=(A) : C\ (v4+ U~-) — GL(2r,C) satisfying the jump condition

_ _ l | —r(\)xs. ()
= (A)==_(\ / 4 Tt , A E
A e o ooy N I A A
=J(\,5)
where
r(A) == exp(8(), 8))Cexp(A(A, 8))
and 6(\, 8) = AT+ xS,

And the asymptotic condition for || — oo
= S with =
:()\)—>/2r+2ﬁ, with =y = a1 ® 03 + (1 ® 02.
j>1
Here o; are the Pauli’s matrices.



Proof of the formula for of - log Fop. 1
@ ltis known that Fo,, 1 = det (Id — Mj,). This last Fredholm
determinant can be interpreted as a Tau function associated to the

space of deformation of the R-H problem for = (see
(2010, M. Bertola)). This means that

L log Fon1(3) = /%Tr<<5> 0\ (2) gg I ):?,
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Proof of the formula for of - log Fop. 1
@ ltis known that Fo,, 1 = det (Id — Mj,). This last Fredholm
determinant can be interpreted as a Tau function associated to the

space of deformation of the R-H problem for = (see
(2010, M. Bertola)). This means that

L log Fon1(3) = /HTr<(E> 0\ (2) gg I ):?,

@ Due to the special form of the deformed jump matrix
J(\, 8) = exp (A(A, 5) ® 03) Jo exp (—0(A, §) ® 03)

the integral above can be explicitely computed as the formal
residue at oo of the function Tr (Z~10,Zi\; ® 03).
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Proof of the formula for of - log Fop. 1
@ ltis known that Fo,, 1 = det (Id — Mj,). This last Fredholm
determinant can be interpreted as a Tau function associated to the

space of deformation of the R-H problem for = (see
(2010, M. Bertola)). This means that

L log Fani(8) = /Jr(( o E) o );’j,

@ Due to the special form of the deformed jump matrix
J(\, 8) = exp (A(A, 5) ® 03) Jo exp (—0(A, §) ® 03)

the integral above can be explicitely computed as the formal
residue at oo of the function Tr (=~10,Zi\; ® 03).
© Direct computation of that finally implies

d
ds
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Conctruction of ¥

Theorem

The R-H problem admits solution = if and only if the matrix C has
eigenvalues in the interval [-1,1].

In this case we can take the function
V(A 8) == Z(\, 8)exp (B(\, §) ® 03).
For A € v4 U~_, it has a constant jump condition

Vi (A) =V_(A)do
and for |\| — o it has the asymptotic condition

V() — (IZ,' + Z i) exp (6(\,8) ® o3) .

j>1
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Block Matrix Lax pair for the matrix Pl hierarchy

Proposition

There exist L(" = L and M") polynomial matrices in \ of degree
respectively 1 and 2n, such that V solves the system

L WA, 8) =LA SV (A, S)
AW\, 8) = MDA, S (A, §)

where

(i Q) s e }
L)\ §) = g(g) ?:'(AS/), with Q(3) = 264(3)

2n

MO, 8) = S 2y, (5, Q()),
k=0

with Mo, block matrices of dimension 2r.
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The zero curvature equation

Proposition

For each fixed n, the zero curvature equation

ML — LM + [L, M| = 0, is equivalent to the n-th member of the
matrix Pl hierarchy.
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The zero curvature equation

Proposition

For each fixed n, the zero curvature equation

ML — LM + [L, M| = 0, is equivalent to the n-th member of the
matrix Pl hierarchy.

@ the zero curvature equation <= system of differential equations
for the blocks composing the coefficients Ma,,_ of the matrix M("):

@ the blocks of all these coefficients My,,_x can be written with
formulas involving the matrix Lenard operators £;(:£ Q — Q?) for
j=1,...,n

© Finally there is only one last condition required from the zero
curvature equation, that reads as

(d“s +Q, -1+) Ln [dds Q- o"‘] =(-1)""4"[s. Q] .
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Conclusion
For any fixed n > 1, here is what we proved:
@ The matrix Q defined as Q := 241 = —ilim|;_,oc A=12, SoOlves the
n-th member of the matrix Pll hierarchy.
@ the logarithmic derivative of the Fredholm determinant Fo,,, 1(S) is
given by

d
— g log Fant1 = 2iTr(a).

By looking at the coefficient of A~ in the expansion at oo of the
function L := & wWw~" we obtain that

d . .
M= —2ip2, for any fixed n.
1

The matrix Q solution of PIII(\I'Q, is related to the Fredholm determinant

Fon11 through
2

 dS?
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log Fani1(8) = Tr(Q3(3)).



Thank you everybody!!!
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