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Stochastic growth of an interface
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How to model such growth ?

Kardar-Parisi-Zhang equation
Consider a height field h(x , t) obeying

∂th(x , t) = ∂2
x h(x , t) + (∂xh(x , t))2 +

√
2 ξ(x , t) ,

where ξ(x , t) is a standard white noise.
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Geometries of interest

Full-space
x ∈ R
I Flat

h(x , t = 0) = 0
I Droplet (wedge)

h(x , t = 0) = −w |x |+ log(w
2 ),

with a slope w � 1
I Brownian

h(x , t = 0) = B(x)− w |x |

Half-space
x ∈ R+

with the b.c. ∂xh(x , t) |x=0= A,
∀t > 0.
It corresponds to the presence of a wall
at the origin.
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Exact solutions to the KPZ equation at all times

1. Full-space
Droplet Sasamoto, Spohn ; Calabrese, Le Doussal, Rosso ;

Dotsenko ; Amir, Corwin, Quastel (’10)
Flat Calabrese, Le Doussal (’11)
Brownian Imamura, Sasamoto (’12),

Borodin, Corwin, Ferrari, Veto (’14)

2. Half-space
Droplet

A =∞ Gueudré, Le Doussal (’12)
A = 0 Borodin, Bufetov, Corwin (’15)
A = − 1

2 Barraquand, Borodin, Corwin, Wheeler (’17)
A > − 1

2 Krajenbrink, Le Doussal (’19)
A ∈ R De Nardis, Krajenbrink, Le Doussal, Thiery (’20)

Brownian
A =∞ Krajenbrink, Le Doussal (’19)
A > − 1

2 Barraquand, Krajenbrink, Le Doussal (’20)
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Exact solution to the KPZ equation with droplet data

Recall that the droplet data is h(x , 0) = −w |x |+ log(w/2), with w � 1. We
will be interested in H(t) = h(0, t) + t

12 , then

Result (Exact solution for droplet data)

EKPZ

[
exp

(
−zeH(t)

)]
= Det[I − σz,tKAi]L2(R) .

where EKPZ ≡ average over the KPZ white noise. KAi is the Airy kernel,
KAi(u, u

′) =
∫∞
0 dr Ai(r + u)Ai(r + u′), and the weight σz,t is the Fermi

factor
σz,t(u) =

z

z + e−t1/3u

At large time (take z = e−st1/3
), the cumulative distribution of

H(t) = h(0, t) + t
12 converges to the Tracy-Widom distribution for β = 2.

lim
t→+∞

P
(H(t)

t1/3 6 s
)

= F2(s) = Det[I − KAi,s]
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Two surprising connections for the droplet initial data

I Homogeneous case: consider

d2

ds2 log Det[I − KAi,s] = −q(s)2

then you get the Painlevé II equation (Tracy-Widom)

q′′(s) = 2q(s)3 + sq(s)

I Inhomogeneous case: consider

d2

ds2 log Det[I − σKAi,s] = −
∫
R

dt qt(s)2σ′(t)

then you get the integro-differential Painlevé II equation
(Amir-Corwin-Quastel)

q′′t (s) = qt(s)
(
s + t + 2

∫
R

dt′ qt′(s)2σ′(t′)
)

Also some recent connections to the Kadomtsev–Petviashvili equation
(Quastel, Remenik in maths, Le Doussal in physics)
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Half-line problem: an intriguing symmetry

Take for initial data a Brownian motion with drift

h(x , t = 0) = B(x)− (B +
1
2

)x

and boundary condition
∂xh(x , t) |x=0= A

Then there is a remarkable symmetry between the parameters A and B.

Result (A↔ B symmetry)
We have the equality in distribution

hB
A (x = 0, t) = hA

B(x = 0, t), for any t > 0

Is the symmetry between initial and boundary condition specific to KPZ or is it
more general in integrable non-linear systems ?
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Phase diagram for the half-space KPZ problem

Consider the droplet initial data h(x , t = 0) = B(x)− (B + 1
2 )x , B � 1 with

boundary condition ∂xh(x , t) |x=0= A.

I For A > − 1
2 , the KPZ height has Tracy-Widom GSE fluctuations.

lim
t→∞

h(0, t) + t
12

t1/3 = χ4

I For A = − 1
2 , the KPZ height has Tracy-Widom GOE fluctuations.

lim
t→∞

h(0, t) + t
12

t1/3 = χ1

I For A < − 1
2 , the KPZ height has Gaussian fluctuations.

lim
t→∞

h(0, t) + t( 1
12 − (A + 1

2 )2)

t1/2
√
|2A + 1|

= N (0, 1)

This resembles the Baik-Ben Arous-Péché phase transition for the largest
eigenvalue of a rank-one spiked GSE matrix.
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Some open problems around exact solutions to KPZ

I Is the generating function of the KPZ height determinantal for any initial
condition in full-space ?

I Is the determinantal structure related to particular points in space ( e.g.
x = 0)

I What are the boundary conditions in half-space yielding a determinantal
structure ?

I Is there a more general relation between random matrix theory and the
exact solutions to the KPZ equation ?
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From KPZ to Fredholm
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Homogeneous Fredholm determinants

Take Det[I −Ks ]L2(R+), with Ks of the form of the square of a Hankel operator

Ks(x , y) =

∫ ∞
0

dr A(x + r + s)A(y + r + s)

for some function A, it is related to various problems:

I Linear statistics of Ginibre, Elliptic, Gaussian random matrix spectra,
I Full-counting statistics and entropy of free fermions,
I Multi-critical fermions at the edge of interacting systems,
I Exact solutions of the Kardar-Parisi-Zhang equation,
I The Zakharov-Shabat system,
I The theory of solitons and τ -functions,
I Riemann-Hilbert and inverse scattering methods,
I Determinantal point processes,
I The Painlevé II hierarchy.
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Attempt to a generalization

Let s ∈ R and a smooth function A : R→ R exponentially decreasing towards
+∞ such that we define an operator As with kernel

As(x , y) = A(x + y + s).

We construct an operator Ks with kernel

Ks(x , y) =

∫ ∞
0

dr A(x + r + s)A(y + r + s)

(or equivalently Ks = A2
s ) and assume that Ks is bounded by above by the

identity so that its resolvent is well defined.

We are interested in two objects:
I Det[I − Ks ]L2(R+)

I Det[I − σKs ]L2(R) with σ a smooth increasing function with asymptotics

lim
t→−∞

σ(t) = 0, lim
t→+∞

σ(t) ∈ (0, 1], exponentially fast.
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A quasi-universal hierarchy (I)

Define two operators As with kernel As(x , y) = A(x + y + s) and Ks = A2
s ,

define |δ〉 (resp. 〈δ|) the right (resp. left) projector to 0.

Definition (Conjugated variables)
Let p ∈ N, we define the quantities

qp(s) = 〈δ|A(p)
s

I

I − Ks
|δ〉

up(s) = 〈δ|A(p)
s

I

I − Ks
As |δ〉

In integral representation

qp(s) =

∫
R+

dy A(p)(y + s)(I − Ks )
−1(y , 0)

up(s) =

∫
R2
+

dydz A(p)(y + s)(I − Ks )
−1(y , z)A(z + s)

The relation between the first functions and the Fredholm determinant is{
d
ds log Det[I − Ks ] = u0(s)
d2

ds2 log Det[I − Ks ] = −q0(s)2
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A quasi-universal hierarchy (II)

The variables {qp, up} verify a universal hierarchy of equations.

Result (Hierarchy)
Let p ∈ N, we have {

q′p = qp+1 − q0up,

u′p = −q0qp.

This hierarchy is equivalent to the Zakharov-Shabat system, it is independent
of the function A. The reflection coefficient of the related Riemann-Hilbert
problem is the Fourier transform of the function A.

Result (Conservation laws)
Let n ∈ N, the following quadratic quantity is constant

u2n+1 +
1
2

2n∑
k=0

(−1)k+1[uku2n−k − qkq2n−k ] = 0

Both results were known in the context of multi-critical fermions by Le
Doussal, Majumdar and Schehr for general n.
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A quasi-universal hierarchy (III)

The hierarchy of equations raises the index on {qp}{
q′p = qp+1 − q0up,

u′p = −q0qp.

so that the equations do not close. The only non-universal feature is the
closure relation for some n

qn = f (q0, . . . , qn−1; u0, . . . , un−1) ⇒ all the physics is here.

this is where the explicit expression of A plays a role.

Viewing the hierarchy of differential equations as a member of the Lax pair
for the considered system, this closure relation should correspond to a second
member of the pair.
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Inhomogeneous Fredholm determinants

Why also study Det[I − σKs ]L2(R) ?
I Finite-time solutions to the KPZ equation;
I Linear (multiplicative) statistics of determinantal / fermionic point

processes.

To find back the homogeneous case, consider σ to be the projector onto R+.

We are still interested in the operator with kernel

Ks(x , y) =

∫ ∞
0

dr A(x + r + s)A(y + r + s)

and we lift the operator As to L2(R)→ L2(R+) and denote its adjoint Aᵀ
s . By

Sylvester’s identity, we have

Det[I − σAsA
ᵀ
s ]L2(R) = Det[I − Aᵀ

s σAs ]L2(R+)

.
We will be interested in the operator

K2 = Aᵀ
s σAs
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A quasi-universal integro-differential hierarchy (I)

Consider the operator K2 = Aᵀ
s σAs ,

Definition (Conjugated variables)
Let p ∈ N, we define the quantities

qp = A(p)
s

I

I − K2
|δ〉

up = A(p)
s

I

I − K2
Aᵀ

s

In integral representationqp(t) =
∫
R+

dy A(p)(t + s + y)(I − K2)
−1(y , 0)

up(t, t
′) =

∫∫
R2
+

dy dz A(p)(t + s + y)(I − K2)
−1(y , z)A(z + t′ + s)

In the homogeneous case {qp, up} were scalar functions of the parameter s,
and now
I qp adopts a vector-like structure;
I up adopts a matrix-like structure.
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A quasi-universal integro-differential hierarchy (II)

The relation between the first functions and the Fredholm determinant is{
∂s log Det(I − K2) = Tr(σ′u0)

∂2
s log Det(I − K2) = −(qᵀ

0 σ
′q0)

with the canonical inner product (aᵀσ′b) =
∫
R dv a(v)σ′(v)b(v). The variables

{qp, up} verify a universal hierarchy of equations.

Result (Hierarchy)
Let p ∈ N, we have {

q′p = qp+1 − upσ
′q0,

u′p = −qpqᵀ
0 .

where ′ = ∂s

I The equation for qp becomes integral due to the presence of σ′;
I The derivative of up is a rank-one operator.
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A quasi-universal integro-differential hierarchy (III)

Result (Conservation laws)
For all n in N, the following quadratic quantities are invariant

u2n+1 + uᵀ
2n+1 +

2n∑
k=0

(−1)k+1[u2n−kσ
′uᵀ

k − q2n−kq
ᵀ
k ] = 0

and

u2n − uᵀ
2n +

2n−1∑
k=0

(−1)k+1[u2n−1−kσ
′uᵀ

k − q2n−1−kq
ᵀ
k ] = 0

The conservation law for even u2n did not exist in the homogeneous case (when
σ is the projector to R+, it yields 0 = 0).
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From Fredholm to Painlevé
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Painlevé II hierarchy

The Painlevé II hierarchy is a sequence of ordinary non-linear differential
equations obtained recursively upon the action of the Lenard operators. The
first equations of the hierarchy read

q′′ = sq + 2q3

q′′′′ = sq + 10q(q′)2 + 10q2q′′ − 6q5

The n-th member of the hierarchy can be solved upon a particular choice of
asymptotic condition (Le Doussal, Majumdar, Schehr in physics, Cafasso,
Claeys, Girotti in maths).

Let A ≡ Ai2n+1 be a higher-order Airy function A(2n)(x) = xA(x). The solution
of the n-th member of the hierarchy is

q(s) = 〈δ| As

I − Ks
|δ〉 , q(s) ∼

s→+∞
A(s)

There is a one-to-one correspondence between the PII hierarchy and the
Fredholm determinant of the higher-order Airy functions. How about the
inhomogeneous determinants ?
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Closure relation for the Painlevé II hierarchy

Starting from the function A(2n)(x) = xA(x) and the kernel

K2(x , y) =

∫
R

dr σ(r)A(x + r + s)A(y + r + s).

along with the 2n-th variable of the hierarchy q2n(t) = A
(2n)
s

I
I−K2

|δ〉 we obtain
the closure relation

Result (Closure relation for the higher-order Airy function)

q2n = (s + X )q0 −
n−1∑
`=0

(
uᵀ

2n−1−2`σ
′q2` − uᵀ

2n−2−2`σ
′q2`+1

)
where X is the left multiplication, ∀t ∈ R, (Xq0)(t) = t q0(t).

Playing with the hierarchy of equations, the conservation laws and the closure
relation allows to obtain closed integro-differential equations on q0 akin to the
Painlevé II hierarchy.
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First member of the integro-differential Painlevé II hierarchy

Let s ∈ R, consider the Airy function solution of A
′′

(x) = xA(x) (or A ≡ Ai)
and the Fredholm determinant with the kernel

K2(x , y) =

∫
R

dr σ(r)A(x + r + s)A(y + r + s).

Consider q0(t) = As
I

I−K2
|δ〉,

Result (First member of the integro-differential PII)
the function q0 verifies the integro-differential extension of the Painlevé II
equation (Amir-Corwin-Quastel)

q′′0 = (s + t)q0 + 2q0(qᵀ
0σ
′q0)

subject q0(t) ∼ Ai(s + t) as s → +∞ for fixed t ∈ R and ′ = ∂s .

When σ is the projector onto R+ this equation reduces to the standard
Painlevé II equation.
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Second member of the integro-differential Painlevé II hierarchy

Let s ∈ R, consider the higher-order Airy function solution of A(4)(x) = xA(x)
(or A ≡ Ai5) and the Fredholm determinant with the kernel

K2(x , y) =

∫
R

dr σ(r)A(x + r + s)A(y + r + s).

Define q0(t) = As
I

I−K2
|δ〉, then

Result (Second member of the integro-differential PII)
the function q0 verifies the integro-differential extension of the second equa-
tion of the Painlevé II hierarchy

q′′′′0 = (s + t)q0 + 8q′0(qᵀ
0σ
′q′0) + 6q0(qᵀ

0σ
′q′′0 )

− 6q0(qᵀ
0σ
′q0)2 + 2q0((q′0)ᵀσ′q′0) + 4q′′0 (qᵀ

0σ
′q0)

subject q0(t) ∼ Ai5(s + t) as s → +∞ for fixed t ∈ R and ′ = ∂s .

When σ is the projector onto R+ this equation reduces to the second member
of the PII hierarchy.
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Second member of the integro-differential Painlevé II hierarchy

Procedure.

1. Differentiate q0 four times;

2. Replace the value of q4 by the closure relation;

3. Use the conservation law for u3 + uᵀ
3 ;

4. Use the conservation law for u2 − uᵀ
2 ;

5. Replace q2 by q′1 + u1σ
′q0;

6. Use the symmetry of the inner-product (vᵀu1v) = 1
2 (vᵀ[u1 + uᵀ

1 ]v)
and the conservation law for u1 + uᵀ

1 ;

7. Replace q1 by q′0 + u0σ
′q0;

8. Use that u0 = uᵀ
0 ;

9. Use the symmetry of the various inner-products (vᵀw) = (wᵀv).
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Direct outlooks and extensions of this work

I Extension of the Zakharov-Shabat system to an operator-valued one by
considering Det[I − σKs ];

I Extension from a symmetric to a Hermitian operator Ks = As Ās ;
I Extension to operators of type Ks = AsBs for two Hankel operators As , Bs ;
I Extension of the Beals-Coifman class of reflection coefficient ensuring

unique solvability of RHP related to Zakharov-Shabat;
I Extension of the whole Painlevé II hierarchy to the integro-differential

counterpart and definition of the related Lenard operators.

Thank you very much for listening!
Any questions ?
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