Fredholm determinants, exact solutions to the Kardar-Parisi-Zhang equation and integro-differential Painlevé equations

Alexandre Krajenbrink

SISSA \& INFN, Trieste

September 16, 2020

Outline

1. A short tale around Kardar, Parisi and Zhang.

2. Fredholm determinants, integrable systems and integro-differential hierarchies.

3. Towards an integro-differential Painlevé II hierarchy.

Stochastic growth of an interface

Time
Time

How to model such growth ?

Kardar-Parisi-Zhang equation

Consider a height field $h(x, t)$ obeying

$$
\partial_{t} h(x, t)=\partial_{x}^{2} h(x, t)+\left(\partial_{x} h(x, t)\right)^{2}+\sqrt{2} \xi(x, t),
$$

where $\xi(x, t)$ is a standard white noise.

PHYSICAL REVIEW LETTERS

Dynamic Scaling of Growing Interfaces

Mehran Kardar
Physics Department, Harvard University, Cambridge, Massachusetts 02138

Giorgio Parisi

Physics Department, University of Rome, I-00173 Rome, Italy
and
Yi-Cheng Zhang
Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (Received 12 November 1985)

Geometries of interest

Full-space

$x \in \mathbb{R}$

- Flat
$h(x, t=0)=0$
- Droplet (wedge)
$h(x, t=0)=-w|x|+\log \left(\frac{w}{2}\right)$,
with a slope $w \gg 1$
- Brownian

$$
h(x, t=0)=\mathcal{B}(x)-w|x|
$$

Half-space

$x \in \mathbb{R}_{+}$
with the b.c. $\left.\partial_{x} h(x, t)\right|_{x=0}=A$, $\forall t>0$.
It corresponds to the presence of a wall at the origin.

Exact solutions to the KPZ equation at all times

1. Full-space

Droplet Sasamoto, Spohn ; Calabrese, Le Doussal, Rosso ;
Dotsenko ; Amir, Corwin, Quastel ('10)
Flat Calabrese, Le Doussal ('11)
Brownian Imamura, Sasamoto ('12),
Borodin, Corwin, Ferrari, Veto ('14)
2. Half-space

Droplet

$$
\begin{array}{ll}
A=\infty & \text { Gueudré, Le Doussal ('12) } \\
A=0 & \text { Borodin, Bufetov, Corwin ('15) } \\
A=-\frac{1}{2} & \text { Barraquand, Borodin, Corwin, Wheeler ('17) } \\
A \geqslant-\frac{1}{2} & \text { Krajenbrink, Le Doussal ('19) } \\
A \in \mathbb{R} & \text { De Nardis, Krajenbrink, Le Doussal, Thiery ('20) }
\end{array}
$$

Brownian
$A=\infty \quad$ Krajenbrink, Le Doussal ('19)
$A \geqslant-\frac{1}{2} \quad$ Barraquand, Krajenbrink, Le Doussal ('20)

Exact solution to the KPZ equation with droplet data

Recall that the droplet data is $h(x, 0)=-w|x|+\log (w / 2)$, with $w \gg 1$. We will be interested in $H(t)=h(0, t)+\frac{t}{12}$, then

Result (Exact solution for droplet data)

$$
\mathbb{E}_{\mathrm{KPZ}}\left[\exp \left(-z e^{H(t)}\right)\right]=\operatorname{Det}\left[I-\sigma_{z, t} K_{\mathrm{Ai}}\right]_{\mathbb{L}^{2}(\mathbb{R})}
$$

where $\mathbb{E}_{\mathrm{KPZ}} \equiv$ average over the $K P Z$ white noise. K_{Ai} is the Airy kernel, $K_{\mathrm{Ai}}\left(u, u^{\prime}\right)=\int_{0}^{\infty} \mathrm{d} r \operatorname{Ai}(r+u) \operatorname{Ai}\left(r+u^{\prime}\right)$, and the weight $\sigma_{z, t}$ is the Fermi factor

$$
\sigma_{z, t}(u)=\frac{z}{z+e^{-t^{1 / 3} u}}
$$

At large time (take $z=e^{-s t^{1 / 3}}$), the cumulative distribution of $H(t)=h(0, t)+\frac{t}{12}$ converges to the Tracy-Widom distribution for $\beta=2$.

$$
\lim _{t \rightarrow+\infty} \mathbb{P}\left(\frac{H(t)}{t^{1 / 3}} \leqslant s\right)=F_{2}(s)=\operatorname{Det}\left[I-K_{\mathrm{Ai}, \mathrm{~s}}\right]
$$

Two surprising connections for the droplet initial data

- Homogeneous case: consider

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} s^{2}} \log \operatorname{Det}\left[I-K_{\mathrm{Ai}, \mathrm{~s}}\right]=-q(s)^{2}
$$

then you get the Painlevé II equation (Tracy-Widom)

$$
q^{\prime \prime}(s)=2 q(s)^{3}+s q(s)
$$

- Inhomogeneous case: consider

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} s^{2}} \log \operatorname{Det}\left[I-\sigma K_{\mathrm{Ai}, \mathrm{~s}}\right]=-\int_{\mathbb{R}} \mathrm{d} t q_{t}(s)^{2} \sigma^{\prime}(t)
$$

then you get the integro-differential Painlevé II equation (Amir-Corwin-Quastel)

$$
q_{t}^{\prime \prime}(s)=q_{t}(s)\left(s+t+2 \int_{\mathbb{R}} \mathrm{d} t^{\prime} q_{t^{\prime}}(s)^{2} \sigma^{\prime}\left(t^{\prime}\right)\right)
$$

Also some recent connections to the Kadomtsev-Petviashvili equation (Quastel, Remenik in maths, Le Doussal in physics)

Half-line problem: an intriguing symmetry

Take for initial data a Brownian motion with drift

$$
h(x, t=0)=\mathcal{B}(x)-\left(B+\frac{1}{2}\right) x
$$

and boundary condition

$$
\left.\partial_{x} h(x, t)\right|_{x=0}=A
$$

Then there is a remarkable symmetry between the parameters A and B.

Result ($A \leftrightarrow B$ symmetry)

We have the equality in distribution

$$
h_{A}^{B}(x=0, t)=h_{B}^{A}(x=0, t), \text { for any } t>0
$$

Is the symmetry between initial and boundary condition specific to KPZ or is it more general in integrable non-linear systems ?

Phase diagram for the half-space KPZ problem

Consider the droplet initial data $h(x, t=0)=\mathcal{B}(x)-\left(B+\frac{1}{2}\right) x, B \gg 1$ with boundary condition $\left.\partial_{x} h(x, t)\right|_{x=0}=A$.

- For $A>-\frac{1}{2}$, the KPZ height has Tracy-Widom GSE fluctuations.

$$
\lim _{t \rightarrow \infty} \frac{h(0, t)+\frac{t}{12}}{t^{1 / 3}}=\chi_{4}
$$

- For $A=-\frac{1}{2}$, the KPZ height has Tracy-Widom GOE fluctuations.

$$
\lim _{t \rightarrow \infty} \frac{h(0, t)+\frac{t}{12}}{t^{1 / 3}}=\chi_{1}
$$

- For $A<-\frac{1}{2}$, the KPZ height has Gaussian fluctuations.

$$
\lim _{t \rightarrow \infty} \frac{h(0, t)+t\left(\frac{1}{12}-\left(A+\frac{1}{2}\right)^{2}\right)}{t^{1 / 2} \sqrt{|2 A+1|}}=\mathcal{N}(0,1)
$$

This resembles the Baik-Ben Arous-Péché phase transition for the largest eigenvalue of a rank-one spiked GSE matrix.

Some open problems around exact solutions to KPZ

- Is the generating function of the KPZ height determinantal for any initial condition in full-space?
- Is the determinantal structure related to particular points in space (e.g. $x=0$)
- What are the boundary conditions in half-space yielding a determinantal structure?
- Is there a more general relation between random matrix theory and the exact solutions to the KPZ equation ?

From KPZ to Fredholm

Homogeneous Fredholm determinants

Take $\operatorname{Det}\left[I-K_{s}\right]_{\mathbb{L}^{2}\left(\mathbb{R}_{+}\right)}$, with K_{s} of the form of the square of a Hankel operator

$$
K_{s}(x, y)=\int_{0}^{\infty} \mathrm{d} r A(x+r+s) A(y+r+s)
$$

for some function A, it is related to various problems:

- Linear statistics of Ginibre, Elliptic, Gaussian random matrix spectra,
- Full-counting statistics and entropy of free fermions,
- Multi-critical fermions at the edge of interacting systems,
- Exact solutions of the Kardar-Parisi-Zhang equation,
- The Zakharov-Shabat system,
- The theory of solitons and τ-functions,
- Riemann-Hilbert and inverse scattering methods,
- Determinantal point processes,
- The Painlevé II hierarchy.

Attempt to a generalization

Let $s \in \mathbb{R}$ and a smooth function $A: \mathbb{R} \rightarrow \mathbb{R}$ exponentially decreasing towards $+\infty$ such that we define an operator A_{s} with kernel

$$
A_{s}(x, y)=A(x+y+s)
$$

We construct an operator K_{s} with kernel

$$
K_{s}(x, y)=\int_{0}^{\infty} \mathrm{d} r A(x+r+s) A(y+r+s)
$$

(or equivalently $K_{s}=A_{s}^{2}$) and assume that K_{s} is bounded by above by the identity so that its resolvent is well defined.

We are interested in two objects:

- $\operatorname{Det}\left[I-K_{s}\right]_{\mathbb{L}^{2}\left(\mathbb{R}_{+}\right)}$
- $\operatorname{Det}\left[I-\sigma K_{s}\right]_{L^{2}(\mathbb{R})}$ with σ a smooth increasing function with asymptotics

$$
\lim _{t \rightarrow-\infty} \sigma(t)=0, \quad \lim _{t \rightarrow+\infty} \sigma(t) \in(0,1], \quad \text { exponentially fast. }
$$

A quasi-universal hierarchy (I)

Define two operators A_{s} with kernel $A_{s}(x, y)=A(x+y+s)$ and $K_{s}=A_{s}^{2}$, define $|\delta\rangle$ (resp. $\langle\delta|$) the right (resp. left) projector to 0 .

Definition (Conjugated variables)

Let $p \in \mathbb{N}$, we define the quantities

$$
\begin{aligned}
& q_{p}(s)=\langle\delta| A_{s}^{(p)} \frac{1}{1-K_{s}}|\delta\rangle \\
& u_{p}(s)=\langle\delta| A_{s}^{(p)} \frac{I}{1-K_{s}} A_{s}|\delta\rangle
\end{aligned}
$$

In integral representation

$$
\begin{aligned}
& q_{p}(s)=\int_{\mathbb{R}_{+}} \mathrm{d} y A^{(p)}(y+s)\left(I-K_{s}\right)^{-1}(y, 0) \\
& u_{p}(s)=\int_{\mathbb{R}_{+}^{2}} \mathrm{~d} y \mathrm{~d} z A^{(p)}(y+s)\left(I-K_{s}\right)^{-\mathbf{1}}(y, z) A(z+s)
\end{aligned}
$$

The relation between the first functions and the Fredholm determinant is

$$
\begin{cases}\frac{\mathrm{d}}{\mathrm{ds}} \log \operatorname{Det}\left[I-K_{s}\right] & =u_{0}(s) \\ \frac{\mathrm{d}^{2}}{\mathrm{~d} s^{2}} \log \operatorname{Det}\left[I-K_{s}\right] & =-q_{0}(s)^{2}\end{cases}
$$

A quasi-universal hierarchy (II)

The variables $\left\{q_{p}, u_{p}\right\}$ verify a universal hierarchy of equations.

Result (Hierarchy)

Let $p \in \mathbb{N}$, we have

$$
\left\{\begin{array}{l}
q_{p}^{\prime}=q_{p+1}-q_{0} u_{p} \\
u_{p}^{\prime}=-q_{0} q_{p}
\end{array}\right.
$$

This hierarchy is equivalent to the Zakharov-Shabat system, it is independent of the function A. The reflection coefficient of the related Riemann-Hilbert problem is the Fourier transform of the function A.

Result (Conservation laws)

Let $n \in \mathbb{N}$, the following quadratic quantity is constant

$$
u_{2 n+1}+\frac{1}{2} \sum_{k=0}^{2 n}(-1)^{k+1}\left[u_{k} u_{2 n-k}-q_{k} q_{2 n-k}\right]=0
$$

Both results were known in the context of multi-critical fermions by Le Doussal, Majumdar and Schehr for general n.

A quasi-universal hierarchy (III)

The hierarchy of equations raises the index on $\left\{q_{p}\right\}$

$$
\left\{\begin{array}{l}
q_{p}^{\prime}=q_{p+1}-q_{0} u_{p} \\
u_{p}^{\prime}=-q_{0} q_{p}
\end{array}\right.
$$

so that the equations do not close. The only non-universal feature is the closure relation for some n

$$
q_{n}=f\left(q_{0}, \ldots, q_{n-1} ; u_{0}, \ldots, u_{n-1}\right) \Rightarrow \text { all the physics is here. }
$$

this is where the explicit expression of A plays a role.

Viewing the hierarchy of differential equations as a member of the Lax pair for the considered system, this closure relation should correspond to a second member of the pair.

Inhomogeneous Fredholm determinants

Why also study $\operatorname{Det}\left[I-\sigma K_{s}\right]_{\mathbb{L}^{2}(\mathbb{R})}$?

- Finite-time solutions to the KPZ equation;
- Linear (multiplicative) statistics of determinantal / fermionic point processes.

To find back the homogeneous case, consider σ to be the projector onto \mathbb{R}_{+}.
We are still interested in the operator with kernel

$$
K_{s}(x, y)=\int_{0}^{\infty} \mathrm{d} r A(x+r+s) A(y+r+s)
$$

and we lift the operator A_{s} to $\mathbb{L}^{2}(\mathbb{R}) \rightarrow \mathbb{L}^{2}\left(\mathbb{R}_{+}\right)$and denote its adjoint A_{s}^{\top}. By Sylvester's identity, we have

$$
\operatorname{Det}\left[I-\sigma A_{s} A_{s}^{\top}\right]_{\mathbb{L}^{2}(\mathbb{R})}=\operatorname{Det}\left[I-A_{s}^{\top} \sigma A_{s}\right]_{\mathbb{L}^{2}\left(\mathbb{R}_{+}\right)}
$$

We will be interested in the operator

$$
K_{2}=A_{s}^{\top} \sigma A_{s}
$$

A quasi-universal integro-differential hierarchy (I)

Consider the operator $K_{2}=A_{s}^{\top} \sigma A_{s}$,

Definition (Conjugated variables)

Let $p \in \mathbb{N}$, we define the quantities

$$
\begin{aligned}
q_{p} & =A_{s}^{(p)} \frac{I}{I-K_{2}}|\delta\rangle \\
u_{p} & =A_{s}^{(p)} \frac{I}{I-K_{2}} A_{s}^{\top}
\end{aligned}
$$

In integral representation

$$
\begin{cases}q_{p}(t) & =\int_{\mathbb{R}_{+}} \mathrm{d} y A^{(p)}(t+s+y)\left(I-K_{\mathbf{2}}\right)^{-\mathbf{1}}(y, 0) \\ u_{p}\left(t, t^{\prime}\right) & =\iint_{\mathbb{R}_{+}^{2}} \mathrm{~d} y \mathrm{~d} z A^{(p)}(t+s+y)\left(I-K_{\mathbf{2}}\right)^{-\mathbf{1}}(y, z) A\left(z+t^{\prime}+s\right)\end{cases}
$$

In the homogeneous case $\left\{q_{p}, u_{p}\right\}$ were scalar functions of the parameter s, and now

- q_{p} adopts a vector-like structure;
- u_{p} adopts a matrix-like structure.

A quasi-universal integro-differential hierarchy (II)

The relation between the first functions and the Fredholm determinant is

$$
\left\{\begin{array}{l}
\partial_{s} \log \operatorname{Det}\left(I-K_{2}\right)=\operatorname{Tr}\left(\sigma^{\prime} u_{0}\right) \\
\partial_{s}^{2} \log \operatorname{Det}\left(I-K_{2}\right)=-\left(q_{0}^{\top} \sigma^{\prime} q_{0}\right)
\end{array}\right.
$$

with the canonical inner product $\left(a^{\top} \sigma^{\prime} b\right)=\int_{\mathbb{R}} \mathrm{d} v a(v) \sigma^{\prime}(v) b(v)$. The variables $\left\{q_{p}, u_{p}\right\}$ verify a universal hierarchy of equations.

Result (Hierarchy)

Let $p \in \mathbb{N}$, we have

$$
\left\{\begin{array}{l}
q_{p}^{\prime}=q_{p+1}-u_{p} \sigma^{\prime} q_{0} \\
u_{p}^{\prime}=-q_{p} q_{0}^{\top}
\end{array}\right.
$$

where $^{\prime}=\partial_{s}$

- The equation for q_{p} becomes integral due to the presence of σ^{\prime};
- The derivative of u_{p} is a rank-one operator.

A quasi-universal integro-differential hierarchy (III)

Result (Conservation laws)

For all n in \mathbb{N}, the following quadratic quantities are invariant

$$
u_{2 n+1}+u_{2 n+1}^{\top}+\sum_{k=0}^{2 n}(-1)^{k+1}\left[u_{2 n-k} \sigma^{\prime} u_{k}^{\top}-q_{2 n-k} q_{k}^{\top}\right]=0
$$

and

$$
u_{2 n}-u_{2 n}^{\top}+\sum_{k=0}^{2 n-1}(-1)^{k+1}\left[u_{2 n-1-k} \sigma^{\prime} u_{k}^{\top}-q_{2 n-1-k} q_{k}^{\top}\right]=0
$$

The conservation law for even $u_{2 n}$ did not exist in the homogeneous case (when σ is the projector to \mathbb{R}_{+}, it yields $0=0$).

From Fredholm to Painlevé

Painlevé II hierarchy

The Painlevé II hierarchy is a sequence of ordinary non-linear differential equations obtained recursively upon the action of the Lenard operators. The first equations of the hierarchy read

$$
\begin{aligned}
& q^{\prime \prime}=s q+2 q^{3} \\
& q^{\prime \prime \prime \prime}=s q+10 q\left(q^{\prime}\right)^{2}+10 q^{2} q^{\prime \prime}-6 q^{5}
\end{aligned}
$$

The n-th member of the hierarchy can be solved upon a particular choice of asymptotic condition (Le Doussal, Majumdar, Schehr in physics, Cafasso, Claeys, Girotti in maths).

Let $A \equiv \mathrm{Ai}_{2 n+1}$ be a higher-order Airy function $A^{(2 n)}(x)=x A(x)$. The solution of the n-th member of the hierarchy is

$$
q(s)=\langle\delta| \frac{A_{s}}{1-K_{s}}|\delta\rangle, \quad q(s) \underset{s \rightarrow+\infty}{\sim} A(s)
$$

There is a one-to-one correspondence between the PII hierarchy and the Fredholm determinant of the higher-order Airy functions. How about the inhomogeneous determinants?

Closure relation for the Painlevé II hierarchy

Starting from the function $A^{(2 n)}(x)=x A(x)$ and the kernel

$$
K_{2}(x, y)=\int_{\mathbb{R}} \mathrm{d} r \sigma(r) A(x+r+s) A(y+r+s)
$$

along with the $2 n$-th variable of the hierarchy $q_{2 n}(t)=A_{s}^{(2 n)} \frac{1}{1-K_{2}}|\delta\rangle$ we obtain the closure relation

Result (Closure relation for the higher-order Airy function)

$$
q_{2 n}=(s+X) q_{0}-\sum_{\ell=0}^{n-1}\left(u_{2 n-1-2 \ell}^{\top} \sigma^{\prime} q_{2 \ell}-u_{2 n-2-2 \ell}^{\top} \sigma^{\prime} q_{2 \ell+1}\right)
$$

where X is the left multiplication, $\forall t \in \mathbb{R},\left(X q_{0}\right)(t)=t q_{0}(t)$.
Playing with the hierarchy of equations, the conservation laws and the closure relation allows to obtain closed integro-differential equations on q_{0} akin to the Painlevé II hierarchy.

First member of the integro-differential Painlevé II hierarchy

Let $s \in \mathbb{R}$, consider the Airy function solution of $A^{\prime \prime}(x)=x A(x)$ (or $A \equiv \mathrm{Ai}$) and the Fredholm determinant with the kernel

$$
K_{2}(x, y)=\int_{\mathbb{R}} \mathrm{d} r \sigma(r) A(x+r+s) A(y+r+s)
$$

Consider $q_{0}(t)=A_{s} \frac{1}{1-K_{\mathbf{2}}}|\delta\rangle$,

Result (First member of the integro-differential PII)

the function q_{0} verifies the integro-differential extension of the Painlevé I/ equation (Amir-Corwin-Quastel)

$$
q_{0}^{\prime \prime}=(s+t) q_{0}+2 q_{0}\left(q_{0}^{\top} \sigma^{\prime} q_{0}\right)
$$

subject $q_{0}(t) \sim \operatorname{Ai}(s+t)$ as $s \rightarrow+\infty$ for fixed $t \in \mathbb{R}$ and ${ }^{\prime}=\partial_{s}$.
When σ is the projector onto \mathbb{R}_{+}this equation reduces to the standard Painlevé II equation.

Second member of the integro-differential Painlevé II hierarchy

Let $s \in \mathbb{R}$, consider the higher-order Airy function solution of $A^{(4)}(x)=x A(x)$ (or $A \equiv \mathrm{Ai}_{5}$) and the Fredholm determinant with the kernel

$$
K_{2}(x, y)=\int_{\mathbb{R}} \mathrm{d} r \sigma(r) A(x+r+s) A(y+r+s) .
$$

Define $q_{0}(t)=A_{s} \frac{1}{1-K_{\mathbf{2}}}|\delta\rangle$, then

Result (Second member of the integro-differential PII)

the function q_{0} verifies the integro-differential extension of the second equation of the Painlevé II hierarchy

$$
\begin{aligned}
& \qquad \begin{array}{l}
q_{0}^{\prime \prime \prime \prime}=(s+t) q_{0}+8 q_{0}^{\prime}\left(q_{0}^{\top} \sigma^{\prime} q_{0}^{\prime}\right)+6 q_{0}\left(q_{0}^{\top} \sigma^{\prime} q_{0}^{\prime \prime}\right) \\
\\
\quad-6 q_{0}\left(q_{0}^{\top} \sigma^{\prime} q_{0}\right)^{2}+2 q_{0}\left(\left(q_{0}^{\prime}\right)^{\top} \sigma^{\prime} q_{0}^{\prime}\right)+4 q_{0}^{\prime \prime}\left(q_{0}^{\top} \sigma^{\prime} q_{0}\right)
\end{array} \\
& \text { subject } q_{0}(t) \sim \mathrm{Ai}_{5}(s+t) \text { as } s \rightarrow+\infty \text { for fixed } t \in \mathbb{R} \text { and }{ }^{\prime}=\partial_{s}
\end{aligned}
$$

When σ is the projector onto \mathbb{R}_{+}this equation reduces to the second member of the PII hierarchy.

Second member of the integro-differential Painlevé II hierarchy

Procedure.

1. Differentiate q_{0} four times;
2. Replace the value of q_{4} by the closure relation;
3. Use the conservation law for $u_{3}+u_{3}^{\top}$;
4. Use the conservation law for $u_{2}-u_{2}^{\top}$;
5. Replace q_{2} by $q_{1}^{\prime}+u_{1} \sigma^{\prime} q_{0}$;
6. Use the symmetry of the inner-product $\left(v^{\top} u_{1} v\right)=\frac{1}{2}\left(v^{\top}\left[u_{1}+u_{1}^{\top}\right] v\right)$ and the conservation law for $u_{1}+u_{1}^{\top}$;
7. Replace q_{1} by $q_{0}^{\prime}+u_{0} \sigma^{\prime} q_{0}$;
8. Use that $u_{0}=u_{0}^{\top}$;
9. Use the symmetry of the various inner-products $\left(v^{\top} w\right)=\left(w^{\top} v\right)$.

Direct outlooks and extensions of this work

- Extension of the Zakharov-Shabat system to an operator-valued one by considering $\operatorname{Det}\left[I-\sigma K_{s}\right]$;
- Extension from a symmetric to a Hermitian operator $K_{s}=A_{s} \bar{A}_{s}$;
- Extension to operators of type $K_{s}=A_{s} B_{s}$ for two Hankel operators A_{s}, B_{s};
- Extension of the Beals-Coifman class of reflection coefficient ensuring unique solvability of RHP related to Zakharov-Shabat;
- Extension of the whole Painlevé II hierarchy to the integro-differential counterpart and definition of the related Lenard operators.

Thank you very much for listening! Any questions ?

