Painlevé II τ-function as a Fredholm determinant.

Harini Desiraju

Integrable systems around the world. SISSA, Trieste
September 14, 2020

Plan

Introduction

Painlevé II

Outlook

Malgrange form and τ-function

Malgrange form: For a Riemann Hilbert problem on a contour Σ, depending on a parameter t,

$$
\begin{equation*}
\phi_{+}(z, t)=\phi_{-}(z, t) M(z, t) ; \quad \phi(\infty)=\mathbb{1} \tag{1}
\end{equation*}
$$

Malgrange one-form is defined as

$$
\begin{equation*}
\omega_{\mathcal{M}}=\int_{\Sigma} \frac{d z}{2 \pi i} \operatorname{Tr}\left[\phi_{-}^{-1} \phi_{-}^{\prime} \delta M M^{-1}\right] \tag{2}
\end{equation*}
$$

where $\delta \equiv \frac{\partial}{\partial t} d t,{ }^{\prime} \equiv \frac{\partial}{\partial z},{ }^{\prime} \equiv \frac{\partial}{\partial t}$
τ-function:

$$
\begin{equation*}
\omega_{\mathcal{M}}(t)=\delta \log \tau(t) \tag{3}
\end{equation*}
$$

For a Riemann Hilbert problem corresponding to an isomonodromic problem, the τ-function is related to the solution $u(t)$ of isomonodromic equation

$$
\begin{equation*}
u^{2}(t) \approx \frac{\partial^{2}}{\partial t^{2}} \log \tau[t] \tag{4}
\end{equation*}
$$

Zeros of the τ-function are the points where the Riemann Hilbert problem is not solvable.

A brief history

- Its, Izergin, Korepin, Slavnov '90 : Correlation function of Bose gas solves certain differential equation and the corresponding τ-function is Fredholm determinant of an integrable kernel.
- Tracy, Widom '93 : Fredholm determinants of integrable kernels solve integrable PDEs.
- Palmer '93: τ-functions can be interpreted as determinants of a singular Cauchy-Riemann operator acting on functions with prescribed monodromy.
- Cafasso '08: The SSW τ-function can be expressed as a Fredholm determinant of a particular combination of Toeplitz operators called the Widom constant.
- Cafasso, Lisovyy, Gavrylenko '17: The isomonodromic τ-function of certain Painlevé equations (VI, V, III) assume the form of Widom constant.
- Solutions of the Painlevé equations can be viewed as nonlinear analogues of special functions.

Figure: Coalescence diagram for Painlevé equations

$$
\begin{gathered}
\text { Gauss } \longrightarrow \text { Kummer } \longrightarrow \text { Bessel } \\
\downarrow \\
\downarrow \\
\text { Hermite-Weber } \longrightarrow \text { Airy } .
\end{gathered}
$$

- The Riemann-Hilbert problems of Painlevé equations are such that the local parametrices are described by special functions.

Figure：Confluence diagram for Painlevé equations ${ }^{1}$

[^0]
Painlevé VI

Widom constant

Consider a Riemann Hilbert problem defined on a unit circle.

$$
\begin{equation*}
\phi_{+}(z, t)=\phi_{-}(z, t) M(z, t) ; \quad \phi(\infty)=\mathbb{1} \tag{5}
\end{equation*}
$$

$M(z, t)$ can be factorized in two different ways

$$
\begin{equation*}
M(z, t)=\phi_{-}^{-1} \phi_{+}=\psi_{+}^{-1} \psi_{-} \tag{6}
\end{equation*}
$$

- $L^{2}\left(S^{1}\right)=H_{+} \oplus H_{-}$
- Define projection (Cauchy) operators $\Pi_{ \pm}: L^{2}\left(S^{1}\right) \rightarrow H_{ \pm}$
- Toeplitz operator is defined as $T_{M}=\Pi_{+} M$
$M(z, t)$ is a matrix valued 'symbol' and the Widom constant is

$$
\begin{equation*}
\tau_{W}[t]=\operatorname{det}_{H_{+}}\left[T_{M} \circ T_{M^{-1}}\right] \tag{7}
\end{equation*}
$$

- The zeros of T_{M} correspond to unsolvability of the RHP and the zeros of $T_{M^{-1}}$ correspond to the unsolvability of the dual RHP.
- Logarithmic derivatives of $\tau_{W}(t)$, Malgrange $\tau(t)$ coincide up to explicit terms

$$
\begin{equation*}
\partial_{t} \log \tau_{W}[t]=\partial_{t} \log \tau[t]+\text { explicit terms } \tag{8}
\end{equation*}
$$

Can a generic τ-function of Painlevé II equation be expressed as a Fredholm determinant?

Plan

Introduction

Painlevé II

Outlook

What is known?

$$
\begin{equation*}
\text { Painlevé II: } \quad u_{x x}=2 u^{3}+x u \tag{9}
\end{equation*}
$$

- Ablowitz-Segur family of solutions:

$$
\begin{equation*}
u(x) \approx \kappa A i(x) ; \quad x \rightarrow+\infty, \quad \kappa \in \mathbb{C} \tag{10}
\end{equation*}
$$

- Tracy, Widom '99: For the Ablowitz-Segur solutions,

$$
\begin{equation*}
u^{2}(x)=-\frac{\partial^{2}}{\partial x^{2}} \log \underbrace{\operatorname{det}\left[1-\left.\kappa K_{A i}\right|_{[x, \infty)}\right]}_{\tau(x)} \tag{11}
\end{equation*}
$$

Relation to the Widom constant?
\sim The Ablowitz-Segur τ-function can be expressed as Widom constant. Further, we can obtain a minor expansion of the Airy kernel.

RHP

$\Psi(\lambda)$ is piecewise holomorphic 2×2 matrix valued function such that

- $\Psi(\lambda)$ is holomorphic for $\lambda \in \mathbb{C} \cup\left\{\gamma_{k}\right\}$
- Boundary conditions on each Stokes' ray are

$$
\begin{equation*}
\Psi_{+}(\lambda)=\Psi_{-}(\lambda) S_{k}, \lambda \in \gamma_{k} \tag{12}
\end{equation*}
$$

Stokes' data satisfies the constraint
$s_{k+3}=-s_{k}, s_{1}-s_{2}+s_{3}+s_{1} s_{2} s_{3}=0$

- Asymptotic behaviour is specified by

$$
\Psi(\lambda) e^{\theta(\lambda, x) \sigma_{3}} \rightarrow I ; \theta(\lambda, x)=i\left(\frac{4}{3} \lambda^{3}+x \lambda\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \tag{13}\\
0 & -1
\end{array}\right)
$$

Changing the coordinates $\lambda=(-x)^{1 / 2} z, \quad t=(-x)^{3 / 2}$ and defining the parameter $\nu=\frac{1}{2 \pi} \log \left(1-s_{1} s_{3}\right)$
Disclaimer: All functions depend on z, t unless mentioned otherwise and all the solutions of RHPs are normalised at ∞.

Contour of the RHP

${ }^{1}$ Painlevé transcendents: the Riemann-Hilbert approach (No. 128). AMS

Contour of the RHP

[^1]
Contour of the RHP

[^2]
Parabolic cylinder

$Z^{R H}(\zeta)=Z_{i}(\zeta) ; i=0, \ldots, 4$ solve the following Riemann Hilbert problem.

- The following jump conditions are valid

$$
\begin{gather*}
Z_{+}^{R H}(\zeta)=Z_{-}^{R H}(\zeta) H_{k}, \arg \zeta=\frac{\pi}{2} k, k=0,1,2,3 \tag{14}\\
Z_{+}^{R H}(\zeta)=Z_{-}^{R H}(\zeta) e^{2 \pi i \nu \sigma_{3}}, \arg \zeta=-\frac{\pi}{4} \tag{15}
\end{gather*}
$$

Wronskian of the parabolic cylinder functions $D_{\nu}(\zeta)$ and $D_{-\nu-1}(i \zeta)$ is the solution of the RHP in one sector

$$
Z_{0}(\zeta)=2^{-\sigma_{3} / 2}\left(\begin{array}{cc}
D_{-\nu-1}(i \zeta) & D_{\nu}(\zeta) \tag{16}\\
\frac{d}{d \zeta} D_{-\nu-1}(i \zeta) & \frac{d}{d \zeta} D_{\nu}(\zeta)
\end{array}\right)\left(\begin{array}{cc}
e^{i \frac{\pi}{2}(\nu+1)} & 0 \\
0 & 1
\end{array}\right)
$$

explicit form of the jump functions H_{k}

$$
H_{k+2}=e^{i \pi\left(\nu+\frac{1}{2}\right) \sigma_{3}} H_{k} e^{-i \pi\left(\nu+\frac{1}{2}\right) \sigma_{3}}, H_{0}=\left(\begin{array}{cc}
1 & 0 \tag{17}\\
h_{0} & 1
\end{array}\right), H_{1}=\left(\begin{array}{cc}
1 & h_{1} \\
0 & 1
\end{array}\right)
$$

and the parameters h_{0} and h_{1} are dependent on ν

$$
\begin{equation*}
h_{0}=-i \frac{\sqrt{2 \pi}}{\Gamma(\nu+1)}, h_{1}=\frac{\sqrt{2 \pi}}{\Gamma(-\nu)} e^{i \pi \nu}, 1+h_{0} h_{1}=e^{2 \pi i \nu} \tag{18}
\end{equation*}
$$

In terms of $Z^{R H}$, the local solution of the right parametrix is given by

$$
\begin{array}{r}
\Phi_{R}=e^{t \theta(z) \sigma_{3}}\left(\zeta(z) \frac{z-1 / 2}{z+1 / 2}\right)^{\nu \sigma_{3}}\left(\frac{-h_{1}}{s_{3}}\right)^{-\sigma_{3} / 2} e^{\frac{i t}{3} \sigma_{3}} 2^{-\sigma_{3} / 2}\left(\begin{array}{cc}
\zeta(z) & 1 \\
1 & 0
\end{array}\right) \\
 \tag{19}\\
\times Z^{R H}(\zeta(z))\left(\frac{-h_{1}}{s_{3}}\right)^{\sigma_{3} / 2}
\end{array}
$$

$\Psi(z)$ is the global solution of Painleve II RHP on Σ.

$$
\begin{equation*}
\Psi_{+}=\Psi_{-} G \tag{20}
\end{equation*}
$$

Define the functions \mathcal{R}, \mathcal{L} in terms of the solutions of the local parametrices and Ψ.

$$
\begin{equation*}
\mathcal{R}(z, t)=\Psi(z, t) \Phi_{R}^{(0)^{-1}} ; \quad \mathcal{L}(z, t)=\Psi(z, t) \Phi_{L}^{(4)^{-1}} \tag{21}
\end{equation*}
$$

\mathcal{R}, \mathcal{L} have a jump only on $i \mathbb{R}$

$$
\begin{equation*}
\mathcal{R}=\mathcal{L} J \tag{22}
\end{equation*}
$$

The transformation $\zeta(z)=2 t^{1 / 2} \sqrt{\frac{-4 i}{3} z^{3}+i z-\frac{i}{3}}$ induces additional stationary points at ± 1. So, defining the dual RHP on $i \mathbb{R}$ is not straightforward. However, we do have a way to construct an integrable kernel on the line contour!

Theorem 1 (H.D, 2020)

The τ-function of Painlevé II equation can be expressed in terms of a Fredholm determinant of an integrable operator \mathcal{K}

$$
\begin{equation*}
\partial_{t} \log \tau_{P I I}=\partial_{t} \log \operatorname{det}\left[\mathbb{1}_{L^{2}\left(l_{1} \cup l_{3}\right)}-\mathcal{K}\right]-\left[\frac{4 i \nu}{3}+\frac{2 \nu^{2}}{t}\right]+\mathcal{F}(t, \nu, h) \tag{23}
\end{equation*}
$$

Its-Izergin-Korepin-Slavnov (IIKS) kernel

Theorem 2 (IIKS)

Given a RHP of the form

$$
\begin{equation*}
Y_{+}=Y_{-} J \tag{24}
\end{equation*}
$$

where the jump assumes the form $J=1-2 \pi i f(z) g^{T}(z)$; a Kernel

$$
\begin{equation*}
K(z, w)=\frac{f^{T}(z) g(w)}{z-w} \tag{25}
\end{equation*}
$$

can be constructed such that the RHP is solvable iff $(1-K)$ is invertible.

The jump on $i \mathbb{R}$ is

$$
\begin{equation*}
J=\Phi_{L}^{(4)} \Phi_{R}^{(0)^{-1}} \tag{26}
\end{equation*}
$$

Now the task reduces to constructing the integrable kernel.

Jump on $i \mathbb{R}$

The jump

$$
J=\Phi_{L}^{(4)} \Phi_{R}^{(0)^{-1}}=\left[\begin{array}{cc}
\mathcal{A} & \mathcal{B} \tag{27}\\
\mathcal{C} & \mathcal{D}
\end{array}\right]
$$

where

$$
\begin{gather*}
\mathcal{A}(z, t)=\zeta^{\nu} \xi^{\nu} e^{\frac{2 i}{3} t}\left(e^{-\pi i \nu} D_{-\nu}(i \zeta) D_{-\nu}(i \xi)+\nu^{2} h^{-4} e^{2 \pi i \nu} D_{\nu-1}(\zeta) D_{\nu-1}(\xi)\right) \\
\mathcal{B}(z, t)=\left(\frac{z-z_{-}}{z-z_{+}}\right)^{2 \nu} \zeta^{\nu} \xi^{-\nu}\left(i h^{2} e^{-i \pi \nu} D_{-\nu}(i \zeta) D_{-\nu-1}(i \xi)+\nu h^{-2} e^{2 \pi i \nu} D_{\nu-1}(\zeta) D_{\nu}(\xi)\right) \\
\mathcal{C}(z, t)=\left(\frac{z-z-}{z-z+}\right)^{-2 \nu} \zeta^{-\nu} \xi^{\nu}\left(i h^{2} e^{-i \pi \nu} D_{-\nu-1}(i \zeta) D_{-\nu}(i \xi)+\nu h^{-2} e^{2 \pi i \nu} D_{\nu}(\zeta) D_{\nu-1}(\xi)\right) \\
\mathcal{D}(z, t)=\zeta^{-\nu} \xi^{-\nu} e^{-\frac{2 i}{3} t}\left(-e^{-\pi i \nu} h^{4} D_{-\nu-1}(i \zeta) D_{-\nu-1}(i \xi)+e^{2 \pi i \nu} D_{\nu}(\zeta) D_{\nu}(\xi)\right) \tag{28}
\end{gather*}
$$

LDU decomposition

- One can decompose the jump function as LDU

$$
J=\left[\begin{array}{cc}
\mathcal{A} & \mathcal{B} \tag{29}\\
\mathcal{C} & \mathcal{D}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
\frac{\mathcal{C}}{\mathcal{A}} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathcal{A} & 0 \\
0 & \frac{1}{\mathcal{A}}
\end{array}\right]\left[\begin{array}{cc}
1 & \frac{\mathcal{B}}{\mathcal{A}} \\
0 & 1
\end{array}\right]=\prod_{i=1}^{3} F_{i} .
$$

- Similar to the previous case, a RHP can be defined on a set of three parallel lines.

LDU decomposition

- Noticing that the RHP with the diagonal jump on l_{2} can be solved locally, the RHP on LDU can be transformed on to two parallel lines with lower and upper triangular jumps.
- Let $\varphi(z, t)^{\sigma_{3}}$ solve the RHP on l_{2}. Then, $\tilde{Y}=Y \varphi^{-1}$ has jumps on $l_{1} \cup l_{3}$.

RHP on $l_{1} \cup l_{3}$ reads

$$
\begin{equation*}
\widetilde{Y}_{+}=\tilde{Y}_{-} \widetilde{F} \tag{30}
\end{equation*}
$$

with the jumps

$$
\widetilde{F}=\left\{\begin{array}{l}
\widetilde{F}_{1}=\left(\begin{array}{cc}
1 & 0 \\
\frac{\mathcal{C}}{\mathcal{A}} \varphi^{2} & 1
\end{array}\right) ; \text { on } l_{1} \tag{31}\\
\widetilde{F}_{3}=\left(\begin{array}{cc}
1 & \frac{\mathcal{B}}{\mathcal{A}} \varphi^{-2} \\
0 & 1
\end{array}\right) ; \text { on } l_{3}
\end{array}\right.
$$

and

$$
\begin{equation*}
\varphi(z)=\exp \left[\int_{i \mathbb{R}} \frac{\log \mathcal{A}\left(z^{\prime}, t\right)}{z^{\prime}-z} \frac{d z^{\prime}}{2 \pi i}\right] \tag{32}
\end{equation*}
$$

Defining the chacterstic functions $\chi_{1}(z), \chi_{3}(z)$ on the contours l_{1}, l_{3} respectively, the jumps can be expressed in integrable form. Define the functions

$$
\begin{equation*}
f(z, t)=\frac{1}{2 \pi i}\binom{\chi_{3}(z)}{\chi_{1}(z)} \quad ; \quad g(z, t)=\binom{\frac{\mathcal{C}}{\mathcal{A}} \varphi^{2} \chi_{1}(z)}{\frac{\mathcal{B}}{\mathcal{A}} \varphi^{-2} \chi_{3}(z)} \tag{33}
\end{equation*}
$$

\widetilde{F} can be written as

$$
\begin{equation*}
\widetilde{F}=\mathbb{1}-2 \pi i f(z) g^{T}(z) \tag{34}
\end{equation*}
$$

and one can verify that $f^{T}(z) g(z)=0$. The integrable kernel is then

$$
\begin{gathered}
K(z, w)=\frac{f^{T}(z) g(w)}{z-w} \\
=\frac{1}{z-w}\left(\begin{array}{cc}
\chi_{1}(z) & \chi_{3}(z)
\end{array}\right)\left(\begin{array}{cc}
0 & \frac{\mathcal{B}(w, t)}{\mathcal{A}(w, t)} \varphi^{-2}(w, t) \\
\frac{\mathcal{C}(w, t)}{\mathcal{A}(w, t)} \varphi^{2}(w, t) & 0
\end{array}\right)\binom{\chi_{1}(w)}{\chi_{3}(w)}
\end{gathered}
$$

and the corresponding τ-function is

$$
\begin{equation*}
\tau_{L U}=\operatorname{det}[I-\mathcal{K}] \tag{35}
\end{equation*}
$$

Relating the Malgrange forms

$$
\begin{gather*}
\partial_{t} \log \tau_{P I I}=\partial_{t} \log \tau_{i \mathbb{R}}-\int_{i \mathbb{R}} \operatorname{Tr}\left[\Phi_{R}^{\prime} \Phi_{R}^{-1} \Delta\left(\dot{\Phi}^{-1}\right)\right]-\left[\frac{4 i \nu}{3}+\frac{2 \nu^{2}}{t}\right] \\
=\partial_{t} \log \tau_{L D U}-\int_{i \mathbb{R}} \frac{d z}{2 \pi i}\left(\frac{\dot{\mathcal{B}}}{\mathcal{A}}\right)\left(\mathcal{A} \mathcal{C}^{\prime}-\mathcal{A}^{\prime} \mathcal{C}\right)-\int_{i \mathbb{R}} \operatorname{Tr}\left[\Phi_{R}^{\prime} \Phi_{R}^{-1} \Delta\left(\dot{\Phi} \Phi^{-1}\right)\right]-\left[\frac{4 i \nu}{3}+\frac{2 \nu^{2}}{t}\right] \\
=\partial_{t} \log \tau_{L U}+2 \int_{i \mathbb{R}} \frac{d z}{2 \pi i} \frac{\dot{\mathcal{A}}(z, t)}{\mathcal{A}(z, t)} \int_{i \mathbb{R}-} \frac{d w}{2 \pi i} \frac{\mathcal{A}^{\prime}(w, t)}{\mathcal{A}(w, t)(z-w)}+\int_{i \mathbb{R}} \frac{d z}{2 \pi i}\left(\frac{\dot{\mathcal{B}}}{\mathcal{A}}\right)\left(\mathcal{A \mathcal { C } ^ { \prime }}-\mathcal{A}^{\prime} \mathcal{C}\right) \\
\quad-\int_{i \mathbb{R}} \operatorname{Tr}\left[\Phi_{R}^{\prime} \Phi_{R}^{-1} \Delta\left(\dot{\Phi} \Phi^{-1}\right)\right]-\left[\frac{4 i \nu}{3}+\frac{2 \nu^{2}}{t}\right] \\
=\partial_{t} \log \operatorname{det}[1-\mathcal{K}]+2 \int_{i \mathbb{R}} \frac{d z}{2 \pi i} \frac{\dot{\mathcal{A}}(z, t)}{\mathcal{A}(z, t)} \int_{i \mathbb{R}-} \frac{d w}{2 \pi i} \frac{\mathcal{A}^{\prime}(w, t)}{\mathcal{A}(w, t)(z-w)} \\
\quad+\int_{i \mathbb{R}} \frac{d z}{2 \pi i}\left(\frac{\dot{\mathcal{B}}}{\mathcal{A}}\right)\left(\mathcal{A \mathcal { A } ^ { \prime } - \mathcal { A } ^ { \prime } \mathcal { C })}\right. \\
\quad-\int_{i \mathbb{R}} \operatorname{Tr}\left[\Phi_{R}^{\prime} \Phi_{R}^{-1} \Delta\left(\dot{\Phi} \Phi^{-1}\right)\right]-\left[\frac{4 i \nu}{3}+\frac{2 \nu^{2}}{t}\right] \\
= \tag{36}\\
\partial_{t} \log \operatorname{det}\left[\mathbb{1}_{L^{2}\left(l_{1} \cup U_{3}\right)}-\mathcal{K}\right]+\mathcal{F}(t, \nu, h)-\left[\frac{4 i \nu}{3}+\frac{2 \nu^{2}}{t}\right]
\end{gather*}
$$

Plan

Introduction

Painlevé II

Outlook

What's next?

- Minor expansion: After appropriate transformations, we expect to transform the kernel on to the imaginary axis, thereby obtaining a minor expansion as in the case of the Airy kernel.
- Painlevé I and IV: Painlevé I should have a similar structure with the local parametrices defined by Airy function and Parabolic cylinder functions.
- Other integrable equations: The τ-function of modified Korteweg de Vries (mKdV) equation can be written as a Fredholm determinant.

References

1. Fokas, A.S., Its, A.R., Novokshenov, V.Y., Kapaev, A.A., Kapaev, A.I. and Novokshenov, V.Y., 2006. Painlevé transcendents: the Riemann-Hilbert approach (No. 128). American Mathematical Soc..
2. Bertola, M., 2017. The Malgrange Form and Fredholm Determinants. Symmetry, Integrability and Geometry: Methods and Applications, 13(0), pp.46-12.
3. H.D, 2019. The τ-function of the Ablowitz-Segur family of solutions to Painlevé II as a Widom constant. Journal of Mathematical Physics, 60(11), p. 113505.
4. H.D, 2020. Fredholm determinant representation of the Painlevé II τ-function. arXiv preprint arXiv:2008.01142.

[^0]: ${ }^{1}$ Ref：Gavrylenko，P．and Lisovyy，O．，2018．Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions．CMP，363（1），pp．1－58．

[^1]: ${ }^{1}$ Painlevé transcendents: the Riemann-Hilbert approach (No. 128). AMS

[^2]: ${ }^{1}$ Painlevé transcendents: the Riemann-Hilbert approach (No. 128). AMS

