Painlevé 11 7-function as a Fredholm determinant.

Harini Desiraju
Integrable systems around the world. SISSA, Trieste

September 14, 2020

1/28



Plan

Introduction




Malgrange form and 7-function

Malgrange form: For a Riemann Hilbert problem on a contour X,
depending on a parameter ¢,

¢+(Z?t) = ¢ (2, t)M(zvt)§ P(o0) =1 (1)

Malgrange one-form is defined as

wmM = /—T‘rqﬁ ¢ SMM™ ] (2)
Whereézgdt,'zg '53—
T-function:
wa(t) = Slog (t) 3)

For a Riemann Hilbert problem corresponding to an isomonodromic
problem, the 7-function is related to the solution u(t) of isomonodromic

equation
2

e log 7[t]. (4)

Zeros of the T-function are the points where the Riemann Hilbert problem
is not solvable.

u(t) ~
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A brief history

» Its, Izergin, Korepin, Slavnov '90 : Correlation function of Bose gas
solves certain differential equation and the corresponding 7-function is
Fredholm determinant of an integrable kernel.

» Tracy, Widom 93 : Fredholm determinants of integrable kernels solve
integrable PDEs.

» Palmer ’93: 7-functions can be interpreted as determinants of a
singular Cauchy-Riemann operator acting on functions with prescribed
monodromy.

» Cafasso ’08: The SSW r-function can be expressed as a Fredholm
determinant of a particular combination of Toeplitz operators called
the Widom constant.

» Cafasso, Lisovyy, Gavrylenko ’17: The isomonodromic 7-function of
certain Painlevé equations (VI, V, III) assume the form of Widom
constant.
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Painlevé equations

» Solutions of the Painlevé equations can be viewed as nonlinear
analogues of special functions.

PVI — PV —_— P]]I

\ "

Pry — Pp — Pi,

Figure: Coalescence diagram for Painlevé equations

Gauss —> Kummer — Bessel

\L 4
Hermite-Weber — Airy .

» The Riemann-Hilbert problems of Painlevé equations are such that the
local parametrices are described by special functions.
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Figure: Confluence diagram for Painlevé equations

1

isomonodromic tau functions. CMP, 363(1), pp.1-58.

L Ref: Gavrylenko, P. and Lisovyy, O., 2018. Fredholm determinant and Nekrasov sum. representations of
a

D¢
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Painlevé VI
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Widom constant

Consider a Riemann Hilbert problem defined on a unit circle.
¢+(z1t) :qL(z,t)M(z,t); d)(OO) =1

M (z,t) can be factorized in two different ways
M(z,t) = ¢~ ¢ =93 -

M(z,t)

» [*(SY)Y=H o H-
» Define projection (Cauchy) operators My : L*(S*) — Hy
» Toeplitz operator is defined as Ths = 11+ M
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M(z,t) is a matrix valued ’symbol’ and the Widom constant is

mwlt] = det [Tay 0 Tyy1] (7)

» The zeros of T correspond to unsolvability of the RHP and the zeros
of Ty;—1 correspond to the unsolvability of the dual RHP.

» Logarithmic derivatives of mw (t), Malgrange 7(¢) coincide up to
explicit terms

Ot log Tw [t] = O; log T[t] + explicit terms (8)

Can a generic T-function of Painlevé Il equation be expressed as a
Fredholm determinant?
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What is known?

Painlevé II:  wugze = 2u> + zu 9)
» Ablowitz-Segur family of solutions:
u(z) = kAi(z); = — 400, K€EC (10)

» Tracy, Widom ’99: For the Ablowitz-Segur solutions,

2

022

Wi(z) = log det [1 — KK aif,00)] (11)

7(z)

Relation to the Widom constant?

~e& The Ablowitz-Segur 7-function can be expressed as Widom constant.
Further, we can obtain a minor expansion of the Airy kernel.
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RHP

W(A) is piecewise holomorphic 2 x 2 matrix valued function such that
» W()) is holomorphic for A € C U {v}

» Boundary conditions on each Stokes’ ray are

Ui(A) =PY_(A)Sk, X € % (12)

Stokes’ data satisfies the constraint
Sk4+3 = —Sk , S1 — S2 + 53 + 5152583 = 0

» Asymptotic behaviour is specified by
Do 4
WA NP8 5 TGN, @) :i<§)\3+x)\>, o5 = ( (1] 91 ) (13)
Changing the coordinates A\ = (—16)1/22;7 t= (—33)3/2 and defining the

parameter v = 5 log(1 — s153)

Disclaimer: All functions depend on z,t unless mentioned otherwise and all
the solutions of RHPs are normalised at co.
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Contour of the RHP
So

S3 S

Sy Se

Ss

!Painlevé transcendents: the Riemann-Hilbert approach (No. 128). AMS
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Contour of the RHP

S5t S

1/2

S5Sr S6

1Painlevé transcendents: the Riemann-Hilbert approach (No. 128). AMS
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Contour of the RHP

RHP of Parabolic Cylinder function

1Painlevé transcendents: the Riemann-Hilbert approach (No. 128). AMS 13 /28



Parabolic cylinder
ZRH () = Z,(¢); i =0, ..., 4 solve the following Riemann Hilbert problem.

> The following jump conditions are valid

751 (¢) = ZEM(Q) Hy, arg¢ = Tk, k=0,1,2,3 (14)
751 (¢) = 22 (Q)e* o0, arg (= 7 (15)

Wronskian of the parabolic cylinder functions D, (¢) and D_,_1(i¢) is the
solution of the RHP in one sector

_geos/2 [ D-v-1(iC) D,(¢) A5+
Zoler=2 ( deD-v-1(i€) 3z Du(C) ) ( 0 1 ) (16)

explicit form of the jump functions Hg

Hiyo = 67,'71'(u+%)03[-_Ikefi'rr(uﬂL%)037 Hy = ( 1 0 > , Hy = ( 1 m )

ho 1 0 1
(17)
and the parameters ho and h; are dependent on v
V2 V2 ; ;
ho = —i—Y21 = YT ™ 1 4 hohy = €2 (18)

Tw+1) " T(=v)
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In terms of Z®H | the local solution of the right parametrix is given by

_ vo3 s —o3/2 it
(I)R — etG(z)o'g (C(Z)Z 1/2> ( hl) 6%03270'3/2 ( C(]_z) é )

z+1/2 s3
— 3/2
<zt (T2) a9

W(z) is the global solution of Painlevé II RHP on X.
U, =0_G (20)

Define the functions R, £ in terms of the solutions of the local parametrices
and V.

Riz 1) — 7", _ @
(Z,t) - qI('Zat)@R ) [,(Z,t) - \I/(Z,t)(I)L (21)

R,L have a jump only on iR
R=LJ (22)

3
stationary points at +1. So, defining the dual RHP on iR is not
straightforward. However, we do have a way to construct an integrable
kernel on the line contour!

The transformation ¢(z) = 2¢1/2,/ =123 +iz — & induces additional
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Theorem 1 (H.D, 2020)

The 7-function of Painlevé II equation can be expressed in terms of a Fredholm
determinant of an integrable operator K
Liv 202

Ot log 7 = Ot logdet [1L2<L1ut3> B K] B [ 3 T} TR, (23)
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Its-Izergin-Korepin-Slavnov (IIKS) kernel

Theorem 2 (ITKS)
Given a RHP of the form

Yy =Y._J (24)
where the jump assumes the form J = 1 — 27wif(z)g” (2); a Kernel
fT(2)g(w)
K =4 2w 2
(s w) = L1298 (25)

can be constructed such that the RHP is solvable iff (1 — K) is invertible.

The jump on <R is
-1
J=oWao (26)

Now the task reduces to constructing the integrable kernel.
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Jump on R

The jump
J=oWe® ! _ [ «C“ g } , (27)

where
Az, t) = crevedt (7™ D_, (i¢)D—, (i&) + v*h~ %> Dy, _1(¢)Du—1(€))

z—z_

B(z,t) = (H)b ¢ (ih?e "™ D_, (i¢)D——1(i€) + vh2e2™ " D, _1(¢) Dy (€))

z—z_

) T e (02T D, 1 (1) Dy (i€) + vh 2T DL (O Dy -1 (6))

C(z,t) = (

D(zt) = ¢ Ve e 3t (—e ™ RAD_,_1 (i) D1 (i€) + €™ D, (¢) Dy (€))
(28)
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LDU decomposition

» One can decompose the jump function as LDU

=[2 e ][4 ][0 510 A]-1m e

» Similar to the previous case, a RHP can be defined on a set of three

parallel lines.
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LDU decomposition

> Noticing that the RHP with the diagonal jump on l2 can be solved
locally, the RHP on LDU can be transformed on to two parallel lines

with lower and upper triangular jumps.

» Let o(z,t)°% solve the RHP on ly. Then, ¥ =Y~ ! has jumps on

1 Uls.

Yy

Yy =Y,

h

Y
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RHP on [; Ul3 reads

Y, =Y_F
with the jumps
~ 1 0
F = c 2 ) sonly
~ TP 1
F =
~ 1 %@72
Fs = ;onl
Tlo 1 :

and

o(2) = exp VR log A(2',t) dfz']

z'—z 2m

(30)

(32)
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Defining the chacterstic functions x1(z), x3(z) on the contours l1, I3
respectively, the jumps can be expressed in integrable form. Define the
functions

. x3(2) Se*xi(z)
x1(2) Lo 7%xs(2)
F can be written as _
F=1-2nif(2)g" (2). (34)

and one can verify that f7(z)g(z) = 0. The integrable kernel is then

Koy — I o)

z—w
! 0 (L) ( xa(w) )
TR ( et (w,t) 0 x3(w)
and the corresponding 7-function is
TLU = det [I — ’C] . (35)
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Relating the Malgrange forms

4iv N 21/2}
3 t

_ dz Y S o1 (a1 Liv 22
= 0Otlog T pU —/R 2m(A) (AC AC) —/iRTr [<I>R<I>R A(@(I) )] — {73 +7t
dz Az, t)/ dw A (w, t) / dz ( ) , ,
=01 2 - bR St A
OrlogTru + /iR 2mi A(z,t) Jir_ 27 A(w, t)(z — w) + iR 27 LA (AC AC)
PRt . 411/ 2
- [ 1 [onegta (b )] - |54 2]
t

dz Az, )/ dw  A(w,t)
2mi A(z,t) Jir_ 2mi A(w, t)(z — w)

dz (B , ,
+/¢R27i(1) (AC/ — A'C)
/g1 L div 202
—/iRTr[<1>R‘I>RA(<I><I> >]_{?+T
4iv 21/2}

_/c] + F(t,v, h) — {TJFT

d¢logTprr = Ot log TR f/ Tr {@’R%’QIA (vi><1>*1>] _ [

= O¢logdet [1 — K] +2/
iR

= 9;log det 1 (36)

L2(11Ul3)
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What’s next?

» Minor expansion: After appropriate transformations, we expect to
transform the kernel on to the imaginary axis, thereby obtaining a
minor expansion as in the case of the Airy kernel.

» Painlevé I and IV: Painlevé I should have a similar structure with
the local parametrices defined by Airy function and Parabolic cylinder
functions.

» Other integrable equations: The 7-function of modified Korteweg
de Vries (mKdV) equation can be written as a Fredholm determinant.
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