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Plan of this talk

• Recall the definition of Poisson-Nijenhuis manifold
(Magri-Morosi-Ragnisco, CMP, 1985) and its relation with
(finite-dimensional) integrable systems

• Recall the definition of Poisson quasi-Nijenhuis manifold
(Stiénon-Xu, CMP, 2007) −→ no relation with integrable systems

• Present sufficient conditions on a Poisson quasi-Nijenhuis manifold
such that a family of functions in involution can be easily
constructed

• Frame in such a geometrical structure the closed (or periodic)
n-particle Toda lattice, along with its relation with the open (or non
periodic) Toda lattice



Poisson-Nijenhuis manifolds
A Poisson-Nijenhuis (PN) manifold (M, π,N) is a Poisson manifold
(M, π) endowed with a (1, 1) tensor field N : TM→ TM such that

1. the Nijenhuis torsion of N vanishes;

2. the Poisson tensor π : T ∗M→ TM and the tensor field N are
compatible (in a suitable sense).

Recall that:

• a tensor π : T ∗M→ TM and a manifold (M, π) are said to be
Poisson if

{f , g} = 〈df , π dg〉

has the usual properties of the Poisson bracket;

• the Nijenhuis torsion TN of N is defined as

TN (X ,Y ) = [NX ,NY ]−N ([NX ,Y ] + [X ,NY ]−N [X ,Y ]) ,

where X and Y are vector fields on M.

• the tensor π′ = N π : T ∗M→ TM is Poisson and compatible
with π, so that M is a bi-Hamiltonian manifold.



PN manifolds and integrable systems

Given a PN manifold (M, π,N), it is well known that the functions

Ik =
1

k
Tr(Nk ) , k = 1, 2, . . . ,

satisfy
dIk+1 = N∗dIk ,

where N∗ : T ∗M→ T ∗M is the transpose of N. This entails the
so-called Lenard-Magri relations

π dIk+1 = π′ dIk

and therefore the involutivity of the Ik (with respect to both Poisson
brackets induced by π and π′). Moreover, if Xk = π dIk , then

Xk+1 = N Xk ,

so that N is sometimes called a recursion operator.



Example: the open Toda lattice

Das and Okubo showed in 1989 that the open (or non periodic)
n-particle Toda lattice can be studied in the context of PN manifolds.

The manifold is M = R2n 3 (q1, . . . , qn, p1, . . . , pn), the Poisson tensor
π is the canonical one, and the tensor field N is (in the 3-particle case)

N =



p1 0 0 0 1 1

0 p2 0 −1 0 1

0 0 p3 −1 −1 0

0 −eq1−q2 0 p1 0 0

eq1−q2 0 −eq2−q3 0 p2 0

0 eq2−q3 0 0 0 p3


.

It is compatible with π and its Nijenhuis torsion vanishes.
Hence (R6, π,N) is a PN manifold.



The traces Ik of the powers of N are the usual integrals of motion of the
open Toda lattice.

For example,

I1 = Tr(N) = 2(p1 + p2 + p3)

I2 =
1

2
Tr(N2) = p21 + p22 + p23 + 2eq1−q2 + 2eq2−q3

are respectively twice the total momentum and the Hamiltonian.

The involutivity of the Ik is a consequence of the relations

dIk+1 = N∗dIk .

We will see that for Poisson quasi-Nijenhuis manifolds these relations do
not hold, so that one needs additional assumptions to prove that the Ik
are in involution.



Poisson quasi-Nijenhuis manifolds

A Poisson quasi-Nijenhuis (PqN) manifold (M, π,N, φ) is a Poisson
manifold (M, π) endowed with a (1, 1) tensor field N : TM→ TM
and a closed 3-form φ such that

• the Poisson tensor π and the (1, 1) tensor field N are compatible;

• the 3-form iNφ, defined as

iNφ(X ,Y ,Z ) = φ(NX ,Y ,Z ) + φ(X ,NY ,Z ) + φ(X ,Y ,NZ ) ,

is closed;

• TN (X ,Y ) = π (iX∧Y φ) for all vector fields X and Y , where iX∧Y φ
is the 1-form defined as 〈iX∧Y φ,Z 〉 = φ(X ,Y ,Z ).

Notice that

φ = 0 =⇒ TN = 0 =⇒ the manifold is PN



In the paper where Stiénon and Xu introduced and studied PqN
manifolds, they wrote:

Poisson Nijenhuis structures arise naturally in the study of
integrable systems. It would be interesting to find applications
of Poisson quasi-Nijenhuis structures in integrable systems as
well.

We will see that the integrability of the closed n-particle Toda lattice,
along with its relation with the open one, can be interpreted in the
framework of PqN manifolds. Before doing this, we will

1. check that the PqN structure is too general to ensure the
involutivity of the traces Ik of the powers of N;

2. present a general scheme to deform a PN manifold into a PqN
manifold;

3. give sufficient conditions for the involutivity of the traces Ik of a
PqN manifold (obtained as a deformation of a PN manifold).



Examples of non-involutive PqN manifolds
We call involutive a PqN manifold (M, π,N, φ) if

{Ij , Ik} = 0 for all j , k ≥ 1, where Ik = 1
k Tr(Nk ).

Generalizing the Das-Okubo example, we can easily construct
non-involutive PqN manifolds.
Consider M = R6 3 (q1, q2, q3, p1, p2, p3) with the canonical Poisson
tensor π and the (1, 1) tensor field given by

N =



p1 0 0 0 1 1

0 p2 0 −1 0 1

0 0 p3 −1 −1 0

0 −V (q1 − q2) −V (q3 − q1) p1 0 0

V (q1 − q2) 0 −V (q2 − q3) 0 p2 0

V (q3 − q1) V (q2 − q3) 0 0 0 p3


,

where V is an arbitrary (differentiable) function of one variable.



It can be checked that

• (R6, π,N, φ) is a PqN manifold if

φ =
(
V ′(q1 − q2)− V (q1 − q2)

)
d(p1 + p2) ∧ dq2 ∧ dq1

+
(
V ′(q2 − q3)− V (q2 − q3)

)
d(p2 + p3) ∧ dq3 ∧ dq2

−
(
V ′(q3 − q1) + V (q3 − q1)

)
d(p1 + p3) ∧ dq3 ∧ dq1

− 2V ′(q3 − q1)dp2 ∧ dq3 ∧ dq1 .

• {I1, I2} = {I1, I3} = 0, while the Poisson bracket

{I2, I3} = 4V (q1 − q2)
(
V ′(q2 − q3)− V ′(q3 − q1)

)
+ 4V (q2 − q3)

(
V ′(q3 − q1)− V ′(q1 − q2)

)
+ 4V (q3 − q1)

(
V ′(q1 − q2)− V ′(q2 − q3)

)
does not vanish for any function V . However, involutivity holds in
the cases V (x) = ex (corresponding to the closed Toda lattice) and
V (x) = 1/x2 (corresponding to the Calogero model).

In conclusion, given a PqN manifold, further conditions on (π,N, φ) are
needed to guarantee that the functions Ik are in involution.



Relations between PN and PqN manifolds

To deform a PN structure into a PqN one, and to give conditions on the
deformation entailing that the PqN manifold is involutive, we need two
ingredients.

1. Given a tensor field N : TM→ TM, the usual Cartan differential
can be modified as follows,

(dNα)(X0, . . . ,Xq) =
q

∑
j=0

(−1)jLNXj

(
α(X0, . . . , X̂j , . . . ,Xq)

)
+ ∑

i<j

(−1)i+jα([Xi ,Xj ]N ,X0, . . . , X̂i , . . . , X̂j , . . . ,Xq) ,

where α is a q-form, the Xi are vector fields, LY is the Lie derivative
along the vector field Y , and

[X ,Y ]N = [NX ,Y ] + [X ,NY ]−N [X ,Y ].

The torsion of N vanishes if and only if d2N = 0.



2. Given a Poisson tensor π on a manifold M, one can define a Lie
bracket between the 1-forms as

[α, β]π = Lπαβ− Lπβα− d〈β, πα〉 .

It can be uniquely extended to all forms on M in such a way that

• [η, η′]π = −(−1)(q−1)(q
′−1)[η′, η]π if η is a q-form and η′ is a

q′-form;

• [α, f ]π = 〈α, π df 〉 for all f ∈ C∞(M) and for all 1-forms α;

• if η is a q-form, then [η, ·]π is a derivation of degree q − 1 of the
wedge product, that is,

[η, η′ ∧ η′′]π = [η, η′]π ∧ η′′ + (−1)(q−1)q
′
η′ ∧ [η, η′′]π

if η′ is a q′-form and η′′ is any differential form.

This extension is a graded Lie bracket. An elegant way to define the
compatibility between π and N is to ask (Kosmann-Schwarzbach, LMP,
1996) that dN is a derivation of [·, ·]π, that is,

dN [η, η′]π = [dNη, η′]π + (−1)(q−1)[η, dNη′]π

if η is a q-form and η′ is any differential form.



From PN to PqN manifolds: a deformation theorem

Theorem (deformation)
Given a PN manifold (M, π,N), suppose that Ω is a closed 2-form such
that

[dNΩ, Ω]π = 0 .

Let Ω[ : TM→ T ∗M be defined as usual by 〈Ω[(X ),Y 〉 = Ω(X ,Y ).
If

N̂ = N − π Ω[ and φ = dNΩ +
1

2
[Ω, Ω]π ,

then (M, π, N̂, φ) is a PqN manifold.

Many features of the usual picture of PN manifolds are lost in the PqN
case.
In particular, the functions Îk = 1

k Tr(N̂k ) do not fulfill the relations

N̂∗dÎk = dÎk+1, so that they may not be in involution (as seen before).
However, the involutivity of the Îk can be proved under additional
hypotheses.



An involutivity theorem

In the following theorem we identify a suitable set of compatibility
conditions between π, N and Ω, implying the involutivity of the traces Îk
of the powers of the deformed tensor field N̂.

Theorem (involutivity)
Given a PN manifold (M, π,N), let Ω be a closed 2-form on M such
that

[Ω, Ω]π = 0 .

Define N̂ = N − π Ω[ and Îk = 1
k Tr(N̂k ). Suppose that

1. dNΩ = dÎ1 ∧Ω;

2. Ω(Yk , ·) = 0, where Yk = (N̂)k−1X1 − Xk and Xk = π dÎk ;

3. {Î1, Îk} = 0 for all k ≥ 2.

Then (M, π, N̂, dNΩ) is an involutive PqN manifold, that is,

{Îj , Îk} = 0 for all j , k ≥ 1.



From PN to PqN manifolds: the Toda case

Let us consider the PN structure of the 3-particle open Toda system and
let Ω = eq3−q1dq3 ∧ dq1. It is closed and satisfies

[Ω, Ω]π = 0 ,

so that [dNΩ, Ω]π = 0 and the deformation theorem can be applied (the
generalization to the n-particle case being obvious). It turns out that

N̂ = N−π Ω[ =



p1 0 0 0 1 1

0 p2 0 −1 0 1

0 0 p3 −1 −1 0

0 −eq1−q2 −eq3−q1 p1 0 0

eq1−q2 0 −eq2−q3 0 p2 0

eq3−q1 eq2−q3 0 0 0 p3


.



The resulting PqN structure describes the closed Toda lattice. Indeed, if
Îk = 1

k Tr(N̂k ) and Xk = π dÎk , then

Î2 =
1

2
Tr(N̂2) = p21 + p22 + p23 + 2eq1−q2 + 2eq2−q3 + 2eq3−q1

is (twice) the Hamiltonian, so that X2 is (twice) the vector field
associated with the closed Toda lattice.



Involutivity theorem: the Toda case

One can check that also the involutivity theorem can be applied to the
(deformed) PqN structure associated with the closed n-particle Toda
lattice.

In detail, if Ω = eqn−q1dqn ∧ dq1, one can check that:

1. dNΩ = dÎ1 ∧Ω (easy);

2. Ω(Yk , ·) = 0, where Yk = (N̂)k−1X1 − Xk (not so easy);

3. {Î1, Îk} = 0 for all k ≥ 2 (easy).

This gives a geometric proof of the fact that the functions

Îk =
1

k
Tr(N̂k )

are integrals of motion (in involution) of the closed Toda lattice.



Résumé

• We presented a general result showing how a PN structure can be
deformed into a PqN structure by means of a suitable 2-form Ω.

• We gave conditions on the deformation such that the PqN manifold
turns out to be involutive.

• We applied these results to the Toda system.

• More precisely, we interpreted the (well known) integrals of motion
of the closed Toda system as involutive deformations of the traces of
the powers of the recursion operator of the open Toda system.


