Painlevé equations and anharmonic oscillators

Eduardo Chavez-Heredia

SISSA \& University of Bristol
Integrable Systems around the world 16 Sept 2020

Overview

(1) The problem relating:

- Rational solutions of Painlevé II
- Degenerate spectrum of anharmonic oscillator
(2) Link between PII and the anharmonic oscillator
(3) Our approach
(1) Exact WKB Method

$$
\text { All in } \leq 30 \text { minutes! }
$$

Painlevé II: the basics

$$
\text { PII : } \quad v^{\prime \prime}=2 v^{3}+t v+\alpha, \quad \alpha \in \mathbb{C}
$$

Key property:

- \exists ! rational solutions $\Longleftrightarrow \alpha=N \in \mathbb{Z}$:

$$
v(t)=\frac{\mathrm{d}}{\mathrm{~d} t} \log \left(\frac{Y_{N-1}(t)}{Y_{N}(t)}\right)
$$

where $Y_{n}(t)$ are Yablonskii-Vorob'ev polynomials:
$Y_{0}=1, Y_{1}=t$ and

$$
Y_{N+1}=\frac{t Y_{N}^{2}+4\left(Y_{N}^{\prime 2}-Y_{N} Y_{N}^{\prime \prime}\right)}{Y_{N-1}}
$$

(YES, they're polynomials!)
Poles of rational sols of PII \longleftrightarrow Roots of Yablonski-Vorob'ev poly

Roots of Y_{N}

Question: What do the roots of $Y_{n}(t)$ look like?

- Buckingham, Miller (2013): Large N asymptotic analysis via JM Lax pair of PII
- Bertola, Bothner (2015): Hankel determinant expression for Y_{N}^{2}, RHP analysis of (pseudo) orthogonal polynomials

Figure: Roots of $Y_{15}(t)$

Anharmonic oscillator

Eigenvalue problem:

$$
y^{\prime \prime}-\left(\frac{x^{4}}{4}-\frac{a x^{2}}{2}-(N+1) x\right) y=\lambda y, \quad y\left(r e^{ \pm i \pi / 3}\right) \xrightarrow[r \rightarrow \infty]{ } 0
$$

Anharmonic oscillator

Eigenvalue problem:

$$
y^{\prime \prime}-\left(\frac{x^{4}}{4}-\frac{a x^{2}}{2}-(N+1) x\right) y=\lambda y, \quad y\left(r e^{ \pm i \pi / 3}\right) \underset{r \rightarrow \infty}{ } 0
$$

If $N \in \mathbb{N}$ there exists quasi-polynomial solutions:

$$
y(x):=p(x) e^{-\frac{x^{3}}{6}+\frac{a x}{2}}, \quad p(x) \text { polynomial of } \operatorname{deg}(p) \leq N
$$

Question: for which $a \in \mathbb{C}$ are these eigenvalues λ degenerate?
Answer: Obtain such $a \in \mathbb{C}$ as zeros of a discriminant :

$$
D_{n}(a)=\text { poly of } \operatorname{deg} N(N+1) / 2
$$

Roots of the discriminant

Figure: The answer seems familiar...

Suspicious coincidence

Figure: This image should surprise you

Shapiro-Tater conjecture

Shapiro-Tater conjecture (2014)

(After appropriate scaling) the sets

$$
\left\{\text { roots of } D_{N}(a)=0\right\} \text { and }\left\{\text { roots of } Y_{N}(t)=0\right\}
$$

coincide as $N \rightarrow \infty$.
Shapiro-Tater results:

- Support of counting measure for the 'algebraic' eigenvalues.
- Partial results on monodromy of eigenvalues.
- Only numerical evidence towards conjecture.

Coincidence? Unlikely!

Searching for a link

Lax pair at the pole $t=a$ of transcendent \longrightarrow Anharmonic oscillator

$$
\left\{\begin{array}{l}
\Phi_{x}=A(x, t) \Phi \\
\Phi_{t}=B(x, t) \Phi
\end{array} \quad \longrightarrow \quad y^{\prime \prime}=Q(x) y\right.
$$

Previous works:

- Its, Novokshenov (1986) PII(0) - Flashcka-Newell $\longrightarrow \quad Q(x)=16 x^{4}+8 a x^{2}+\lambda$
- Masoero (2010)

PI - tritronquée solution $\longrightarrow \quad Q(x)=4 x^{3}-2 a x-28 b$
where $a=$ pole.
Analysis of anharmonic oscillators leads to asymptotic description of poles.

Jimbo-Miwa Lax pair

Jimbo-Miwa (1981) gave a Lax pair for PII:

$$
\begin{aligned}
\Phi_{x} & =\left(x^{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+x\left[\begin{array}{cc}
0 & u \\
-2 u^{-1} w & 0
\end{array}\right]+\left[\begin{array}{cc}
w+\frac{t}{2} & -u v \\
-2 u^{-1}(v w+\theta) & -w-\frac{t}{2}
\end{array}\right]\right) \Phi \\
\Phi_{t} & =\left(\frac{x}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{cc}
0 & u \\
-2 u^{-1} w &
\end{array}\right]\right) \Phi, \quad \theta \in \mathbb{C}
\end{aligned}
$$

where $u=u(t), v=v(t), w=w(t)$ are functions of t. If $A_{t}-B_{x}+[A, B]=0$, they satisfy:

$$
u_{t}=-v u, \quad v_{t}=v^{2}+w+\frac{t}{2}, \quad w_{t}=-2 v w-\theta
$$

and $v(t)$ solves $\operatorname{PII}(-\theta+1 / 2)$.
Question: How to get anharmonic oscillator from here?

Reduction at pole

Transform the differential equation: $\Phi_{x}(x, t)=A(x, t) \Phi(x, t)$ by setting

$$
\widehat{\Phi}(x, t)=G(x, t) \Phi(x, t)
$$

such that the system becomes:

$$
\widehat{\Phi}_{x}(x, t)=\left[\begin{array}{cc}
0 & 1 \\
Q(x, t) & 0
\end{array}\right] \widehat{\Phi}(x)
$$

$\widehat{\Phi}=\left[y(x, t), y_{x}(x, t)\right]^{\top} \longrightarrow$ scalar ODE: $\quad y^{\prime \prime}=Q(x, t) y$.
Near a pole of PII $t=a$, the potential simplifies:

$$
\lim _{t \rightarrow a} Q(x ; t)=x^{4}-a x^{2}+2 \theta x-\left(-10 b+\frac{7}{36} a^{2}\right)=: Q_{\mathrm{JM}}(x)
$$

Anharmonic oscillator \& PII

Found link between PII and the anharmonic oscillator:

$$
\begin{aligned}
Q_{\mathrm{ST}} & =\frac{x^{4}}{4}-\frac{a x^{2}}{2}-(N+1) x-\Lambda \\
& \downarrow \\
Q_{\mathrm{JM}} & =x^{4}-a x^{2}+2 \theta x-\lambda
\end{aligned}
$$

Only beginning of the story.

Need to understand the quasi-polynomials and repeated eigenvalue conditions.

Approach

Implement conditions for existence of
(1) quasi-polynomials (QP),
(2) repeated eigenvalues (RE)
asymptotically for large N, to obtain quantization conditions:

$$
\pi i(2 k+1)=N \oint_{\gamma} \sqrt{x^{4}-a x^{2}+2 x-\lambda} \mathrm{d} x
$$

which implicitly determine (a, λ) such that we have QP and RE. Then compare with similar quantization conditions for Yablonski-Vorob'ev.

What are these conditions?

Quasi-polynomial condition

A necessary condition to have quasi-polynomial solutions of

$$
y^{\prime \prime}(x)=\left(\frac{x^{4}}{4}-\frac{a x^{2}}{2}-(N+1) x-\Lambda\right) y(x)
$$

is the vanishing of the Stokes matrices. The solutions [$\left.P(x), Q_{i}(x)\right]$ give explicit Stokes phenomenon:

Repeated eigenvalue condition

If $p(x) e^{\theta(x)}$ is a quasi-polynomial solution, a necessary condition for the existence of repeated eigenvalues is:

$$
\int_{\Gamma} p(x)^{2} e^{2 \theta(x)} \mathrm{d} x=0
$$

where Γ is the contour:

Question: how to turn these exact conditions into asymptotic conditions?

Exact WKB method

The exact WKB method in the spirit of Voros (94) and Kawai, Takei (05).

$$
y^{\prime \prime}=n^{2}\left(\frac{x^{4}}{4}-\frac{a x^{2}}{2}-x-\Lambda\right) f=n^{2} Q(x) y
$$

Ansatz $y(x)=e^{\int^{x} S(u, n) \mathrm{d} u}$ where $S(x, n)=n S_{-1}+S_{0}+n^{-1} S_{1}+\ldots$

$$
\begin{aligned}
\Longrightarrow \psi_{ \pm}^{(\tau)}(x, n) & =\frac{1}{S_{\text {odd }}(x, n)^{1 / 2}} \exp \left(\pm \int_{\tau}^{x} S_{\text {odd }}(u, n) \mathrm{d} u\right) \\
& =\frac{n^{-1 / 2}}{V(x)^{1 / 4}} \exp \left(\pm n \int_{\tau}^{x} \sqrt{Q(u)} \mathrm{d} u\right)\left(1+\mathcal{O}\left(n^{-1}\right)\right)
\end{aligned}
$$

The WKB solutions $\psi_{ \pm}$are asymptotic to actual solutions in certain regions.

Generic Stokes graphs

Stokes lines are the level set $\operatorname{Im} \int_{\tau}^{x} \sqrt{Q(u)} \mathrm{d} u=0, \tau=$ root of $Q(u)$

Theorem

For every region \mathcal{D} and turning point τ, there exists a unique vector solution \boldsymbol{y} to $O D E$ s.t. $\boldsymbol{y}(x) \sim\left[\psi_{+}^{(\tau)}(x, n), \psi_{-}^{(\tau)}(x, n)\right]$ in \mathcal{D} as $n \rightarrow \infty$.

Generic Stokes graphs

Stokes lines are the level set $\operatorname{Im} \int_{\tau}^{x} \sqrt{Q(u)} \mathrm{d} u=0, \tau=$ root of $Q(u)$

Theorem

For every region \mathcal{D} and turning point τ, there exists a unique vector solution \boldsymbol{y} to $O D E$ s.t. $\boldsymbol{y}(x) \sim\left[\psi_{+}^{(\tau)}(x, n), \psi_{-}^{(\tau)}(x, n)\right]$ in \mathcal{D} as $n \rightarrow \infty$.

Generic Stokes graphs

Stokes lines are the level set $\operatorname{Im} \int_{\tau}^{x} \sqrt{Q(u)} \mathrm{d} u=0, \tau=$ root of $Q(u)$

Theorem

For every region \mathcal{D} and turning point τ, there exists a unique vector solution \boldsymbol{y} to $O D E$ s.t. $\boldsymbol{y}(x) \sim\left[\psi_{+}^{(\tau)}(x, n), \psi_{-}^{(\tau)}(x, n)\right]$ in \mathcal{D} as $n \rightarrow \infty$.

RHP for WKB solutions

Jumps across Stokes lines are known (Voros 83) so we can write a RHP.

Computation of Stokes matrices using:

$$
\begin{gathered}
{\left[\begin{array}{cc}
1 & 0 \\
-i & 1
\end{array}\right], \quad\left[\begin{array}{cc}
1 & i \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]} \\
e^{\sigma_{3} V_{a, b},} e^{\sigma_{3} W_{a}}, \\
V_{i, j}=\frac{1}{2} \int_{\tau_{i}}^{\tau_{j}} S_{\mathrm{odd}}(x, n) \mathrm{d} x \\
W_{i}=\frac{1}{2} \int_{\tau_{i}}^{\infty} S_{\mathrm{odd}}^{\mathrm{reg}}(x, n) \mathrm{d} x .
\end{gathered}
$$

Stokes matrices

$$
\begin{array}{ll}
S_{0}=\left[\begin{array}{cc}
1 & 0 \\
-i e^{2 W_{0}}\left(1+e^{-2 V_{1,0}}\right) & 1
\end{array}\right], & S_{3}=\left[\begin{array}{cc}
1 & -i e^{-2 W_{3}} X \\
0 & 1
\end{array}\right], \\
S_{1}=\left[\begin{array}{ccc}
1 & -i e^{-2 W_{2}}\left(1+e^{2 V_{0,2}}\right) \\
0 & 1 & S_{4}
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
-i e^{2 W_{3}}
\end{array}\right], \\
S_{2}=\left[\begin{array}{cc}
1 & 0 \\
-i e^{2 W_{2}} &],
\end{array}\right. & S_{5}=\left[\begin{array}{cc}
1 & -i e^{-2 W_{1}}\left(1+e^{2 V_{3,1}}\right) \\
0 & 1
\end{array}\right] .
\end{array}
$$

where $X=1+e^{-2 V_{3,1}}+e^{-2\left(V_{3,1}+V_{1,0}\right)}+e^{-2\left(V_{3,1}+V_{1,0}+V_{0,2}\right)}$.
Stokes matrices vanish if and only if

$$
\begin{aligned}
& 1+e^{2 V_{0,2}}=0 \Longleftrightarrow \pi i(2 k+1)=V_{0,2}=\int_{\gamma_{0,2}} S_{\text {odd }}(x, n) \mathrm{d} x \\
& 1+e^{2 V_{1,3}}=0 \Longleftrightarrow \pi i(2 l+1)=V_{1,3}=\int_{\gamma_{1,3}} S_{\text {odd }}(x, n) \mathrm{d} x
\end{aligned}
$$

What's next? Implement (RE) condition asympotically with exact WKB. Work in progress

Summary

(1) The conjecture of Shapiro-Tater
(2) Connection between Lax pairs near poles \longleftrightarrow anharmonic oscillators
(3) Study of quasi-polynomials and repeated eigenvalues.
(9) Implement asymptotically via exact WKB
(- Work in progress - stay tuned!

