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Overview

1 The problem relating:

Rational solutions of Painlevé II
Degenerate spectrum of anharmonic oscillator

2 Link between PII and the anharmonic oscillator

3 Our approach

4 Exact WKB Method

All in ≤ 30 minutes!
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Painlevé II: the basics

PII : v′′ = 2v3 + tv + α, α ∈ C

Key property:

∃! rational solutions ⇐⇒ α = N ∈ Z:

v(t) =
d

dt
log

(
YN−1(t)

YN (t)

)
where Yn(t) are Yablonskii-Vorob’ev polynomials:
Y0 = 1, Y1 = t and

YN+1 =
tY 2
N + 4(Y ′N

2 − YNY ′′N )

YN−1

(YES, they’re polynomials!)

Poles of rational sols of PII ←→ Roots of Yablonski-Vorob’ev poly
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Roots of YN

Question: What do the roots of
Yn(t) look like?
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Figure: Roots of Y15(t)

Buckingham, Miller (2013):
Large N asymptotic analysis
via JM Lax pair of PII

Bertola, Bothner (2015):
Hankel determinant
expression for Y 2

N , RHP
analysis of (pseudo)
orthogonal polynomials
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Anharmonic oscillator

Eigenvalue problem:

y′′ −
(
x4

4
− ax2

2
− (N + 1)x

)
y = λy, y(re±iπ/3) −−−→

r→∞
0.

If N ∈ N there exists quasi-polynomial solutions:

y(x) := p(x)e−
x3

6
+ax

2 , p(x) polynomial of deg(p) ≤ N.

Question: for which a ∈ C are these eigenvalues λ degenerate?
Answer: Obtain such a ∈ C as zeros of a discriminant :

Dn(a) = poly of degN(N + 1)/2.
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Roots of the discriminant
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Figure: The answer seems familiar...
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Suspicious coincidence
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Figure: This image should surprise you
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Shapiro-Tater conjecture

Shapiro-Tater conjecture (2014)

(After appropriate scaling) the sets

{roots of DN (a) = 0} and {roots of YN (t) = 0}

coincide as N →∞.

Shapiro-Tater results:

Support of counting measure for the ’algebraic’ eigenvalues.

Partial results on monodromy of eigenvalues.

Only numerical evidence towards conjecture.

Coincidence? Unlikely!
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Searching for a link

Lax pair at the pole t = a of transcendent −→ Anharmonic oscillator{
Φx = A(x, t)Φ

Φt = B(x, t)Φ
−→ y′′ = Q(x)y

Previous works:

Its, Novokshenov (1986)
PII(0) - Flashcka-Newell −→ Q(x) = 16x4 + 8ax2 + λ

Masoero (2010)
PI - tritronquée solution −→ Q(x) = 4x3 − 2ax− 28b

where a =pole.

Analysis of anharmonic oscillators leads to asymptotic description
of poles.
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Jimbo-Miwa Lax pair

Jimbo-Miwa (1981) gave a Lax pair for PII:

Φx =

(
x2

[
1 0
0 −1

]
+ x

[
0 u

−2u−1w 0

]
+

[
w + t

2 −uv
−2u−1(vw + θ) −w − t

2

])
Φ

Φt =

(
x

2

[
1 0
0 −1

]
+

1

2

[
0 u

−2u−1w

])
Φ, θ ∈ C

where u = u(t), v = v(t), w = w(t) are functions of t.
If At −Bx + [A,B] = 0, they satisfy:

ut = −vu, vt = v2 + w +
t

2
, wt = −2vw − θ.

and v(t) solves PII(−θ + 1/2).

Question: How to get anharmonic oscillator from here?
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Reduction at pole

Transform the differential equation: Φx(x, t) = A(x, t)Φ(x, t) by setting

Φ̂(x, t) = G(x, t)Φ(x, t)

such that the system becomes:

Φ̂x(x, t) =

[
0 1

Q(x, t) 0

]
Φ̂(x).

Φ̂ = [y(x, t), yx(x, t)]> −→ scalar ODE: y′′ = Q(x, t)y.

Near a pole of PII t = a, the potential simplifies:

lim
t→a

Q(x; t) = x4 − ax2 + 2θx−
(
−10b+

7

36
a2

)
=: QJM(x).
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Anharmonic oscillator & PII

Found link between PII and the anharmonic oscillator:

QST =
x4

4
− ax2

2
− (N + 1)x− Λ

l
QJM =x4 − ax2 + 2θx− λ

Only beginning of the story.

Need to understand the quasi-polynomials and repeated
eigenvalue conditions.
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Approach

Implement conditions for existence of

1 quasi-polynomials (QP),

2 repeated eigenvalues (RE)

asymptotically for large N , to obtain quantization conditions:

πi(2k + 1) = N

∮
γ

√
x4 − ax2 + 2x− λdx

which implicitly determine (a, λ) such that we have QP and RE. Then
compare with similar quantization conditions for Yablonski-Vorob’ev.

What are these conditions?
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Quasi-polynomial condition

A necessary condition to have quasi-polynomial solutions of

y′′(x) =

(
x4

4
− ax2

2
− (N + 1)x− Λ

)
y(x).

is the vanishing of the Stokes matrices. The solutions
[P (x), Qi(x)] give explicit Stokes phenomenon:

S1 =

[
1 s1

0 1

]

S3 =

[
1 0
s3 1

]

S5 =

[
1 s−1

0 1

]

where the Stokes
factors are:

si =

∫
1

PN (x)2
ex

3/3−axdx
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Repeated eigenvalue condition

If p(x)eθ(x) is a quasi-polynomial solution, a necessary condition for the
existence of repeated eigenvalues is:∫

Γ
p(x)2e2θ(x) dx = 0,

where Γ is the contour:

Question: how to turn these exact conditions into asymptotic
conditions?
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Exact WKB method

The exact WKB method in the spirit of Voros (94) and Kawai,
Takei (05).

y′′ = n2

(
x4

4
− ax2

2
− x− Λ

)
f = n2Q(x)y

Ansatz y(x) = e
∫ x S(u,n)du where S(x, n) = nS−1 + S0 + n−1S1 + . . .

=⇒ ψ
(τ)
± (x, n) =

1

Sodd(x, n)1/2
exp

(
±
∫ x

τ
Sodd(u, n)du

)
=

n−1/2

V (x)1/4
exp

(
±n
∫ x

τ

√
Q(u)du

)(
1 +O

(
n−1

))
The WKB solutions ψ± are asymptotic to actual solutions in certain
regions.
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Generic Stokes graphs

Stokes lines are the level set Im
∫ x
τ

√
Q(u)du = 0, τ =root of Q(u)
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Stokes graph for Shapiros potential, with a=1e-05j,  =1000j

Theorem

For every region D and turning point τ , there exists a unique vector

solution y to ODE s.t. y(x) ∼ [ψ
(τ)
+ (x, n), ψ

(τ)
− (x, n)] in D as n→∞.
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For every region D and turning point τ , there exists a unique vector

solution y to ODE s.t. y(x) ∼ [ψ
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+ (x, n), ψ
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− (x, n)] in D as n→∞.
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Theorem

For every region D and turning point τ , there exists a unique vector

solution y to ODE s.t. y(x) ∼ [ψ
(τ)
+ (x, n), ψ

(τ)
− (x, n)] in D as n→∞.
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RHP for WKB solutions

Jumps across Stokes lines are known (Voros 83) so we can write a RHP.

τ0

τ1

τ2

τ3

+

−+

−

+ −

Computation of Stokes
matrices using:[

1 0
−i 1

]
,

[
1 i
0 1

]
[
0 i
i 0

]
,

[
−1 0
0 −1

]
,

eσ3Va,b , eσ3Wa ,

Vi,j =
1

2

∫ τj

τi

Sodd(x, n)dx,

Wi =
1

2

∫ ∞
τi

Sreg
odd(x, n)dx.

Eduardo Chavez-Heredia Painlevé equations and anharmonic oscillators 20 / 23



Stokes matrices

S0 =

[
1 0

−ie2W0(1 + e−2V1,0) 1

]
, S3 =

[
1 −ie−2W3X
0 1

]
,

S1 =

[
1 −ie−2W2(1 + e2V0,2)
0 1

]
, S4 =

[
1 0

−ie2W3

]
,

S2 =

[
1 0

−ie2W2

]
, S5 =

[
1 −ie−2W1(1 + e2V3,1)
0 1

]
.

where X = 1 + e−2V3,1 + e−2(V3,1+V1,0) + e−2(V3,1+V1,0+V0,2).
Stokes matrices vanish if and only if

1 + e2V0,2 = 0 ⇐⇒ πi (2k + 1) = V0,2 =

∫
γ0,2

Sodd(x, n)dx,

1 + e2V1,3 = 0 ⇐⇒ πi (2l + 1) = V1,3 =

∫
γ1,3

Sodd(x, n)dx,

What’s next? Implement (RE) condition asympotically with exact
WKB. Work in progress
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Summary

1 The conjecture of Shapiro-Tater

2 Connection between Lax pairs near poles ←→ anharmonic
oscillators

3 Study of quasi-polynomials and repeated eigenvalues.

4 Implement asymptotically via exact WKB

5 Work in progress - stay tuned!
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Thank you for listening!
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